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Abstract
In this paper, the existence results of positive solutions for three-point
Riemann-Stieltjes integral BVPs (boundary value problems) is considered. By applying
shooting method and comparison principle, we obtain some new results which
extend the known ones. At the same time, the theorems in one of our published
articles are corrected by another theorem in this paper.
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1 Introduction
By applying the shooting method, we establish the criteria for the existence of positive
solutions to the following Riemann-Stieltjes integral BVPs:

u′′(t) + a(t)f
(
u(t)

)
= ,  < t < , (.)

u() = , u() = α

∫ η


u(s) ds, (.)

where f ∈ C([,∞); [,∞)) and  < η < , α ≥  are given constants, and  < αη < .
Set

f = lim
u→+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

,

f̄x = lim
u→x

sup
f (u)

u
, f

x
= lim

u→x
inf

f (u)
u

, x ∈ {, +∞}.

By Krasnoselskii’s fixed point theorem in a cone, Tariboon and Sitthiwirattham [] proved
that BVP (.)-(.) has a positive solution in the case f =  and f∞ = ∞ (super-linear case)
or in the case f = ∞ and f∞ =  (sub-linear case) when  < αη < .

Some meaningful results of nonlinear second-order integral BVPs have already been
obtained by Kong [], Webb and Infante [, ], etc. The following BVP:

u′′(t) + f
(
u(t)

)
= ,  < t < ; u() = , u() = α

∫ η


u(s) ds, (.)
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is a special case of Webb and Infante’s [], where we can deduce the result. Suppose
 < αη < ; BVP (.) has at least one positive solution if one of the following conditions
holds:

(i) f̄ < μ and f ∞ > μ;
(ii) f̄ > μ and f ∞ < μ,

where μ = /r(L) and r(L) is the spectral radius of the associated linear operator. In [],
the authors used fixed point index theory.

As a numerical method, the shooting method is efficient to find the solution of BVPs
[–]. Kwong and Wong [] obtained some results for the Robin boundary condition of
the form

sin θu() – cos θu′() = , u() –
m–∑

i=

αiui(ηi) = , (.)

where θ ∈ [, π/] and θ �= π/. Kwong and Wong [] showed that BVP (.) with (.) has
at least one positive solution if f̄ < Lθ and f ∞ > Lθ , where Lθ is a certain but not specified
constant related to the associated linear operator.

When θ = π/ and  ≤ ∑m–
i= αiηi < , Ma [] has studied BVP (.) with (.) by using

Krasnoselskii’s fixed point theorem in a cone. The sufficient condition for the existence of
positive solutions is also the super-linear case or the sub-linear case.

When a(t) ≡ , m = , η = /, as a special case of [], the BVP

u′′(t) + f
(
u(t)

)
= ,  < t < ; u() = , u() = μu(η), (.)

was studied by Kwong in [], where the existence condition is

f̄ <
(

 cos–
(

μ



))

< f ∞, or f̄∞ <
(

 cos–
(

μ



))

< f

, (.)

which is obtained by the shooting method.
Following the main idea in [, ], we considered the generalized multi-point integral

BCs []

u() = , u() =
n∑

i=

αi

∫ ηi


u(s) ds, (.)

where  < η < η < · · · < ηn < , αi ≥  for i = , . . . , n – , and αn >  are given constants.
However, Theorem . and some proofs in [] need to be corrected, which is one of

the reasons why we write this paper. Furthermore, more general existence criteria are pre-
sented in this article as well as the application of the shooting method in the study of BVPs.
For simplicity and without loss of generality, we start from BVP (.)-(.).

2 Preliminaries: some notation and lemmas
The principle of the shooting method is converting the BVP into an IVP (initial value
problem) by finding suitable initial slopes m >  such that the solution of (.) comes with
the initial value condition

u() = , u′() = m. (.)
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Denote by u(t, m) the solution of the IVP (.) with (.) provided it exists, and define

k(m) =
α

∫ η

 u(s, m) ds
u(, m)

, ϕ(m) = α

∫ η


u(s, m) ds – u(, m). (.)

Then solving the boundary value problem is equivalent to finding a m∗ such that k(m∗) = 
or ϕ(m∗) = .

For the sake of convenience, we denote

max
≤t≤

{
a(t)

}
= aL, min

≤t≤

{
a(t)

}
= al.

In this paper, we always assume

(H) f ∈ C([,∞); [,∞)), a ∈ C([, ]; [,∞)).

Furthermore, we assume that f is strong continuous enough to guarantee that u(t, m) is
uniquely defined and that it depends continuously on both t and m. As for the discussion
of this problem, see [].

Next, we present some comparison theorems which help us to establish the main results.

Lemma . (Sturm comparison theorem) Let ϕ and ϕ be non-trivial solutions of the
equations

y′′ + q(x)y = , y′′ + q(x)y = ,

respectively, on an interval I; here q and q are continuous functions such that q(x) ≤ q(x)
on I. Then between any two consecutive zeros x and x of ϕ, there exists at least one zero
of ϕ unless q(x) ≡ q(x) on (x, x).

Lemma . Let y(t, m), z(t, m), Z(t, m) be the positive solution of the initial value problems,
respectively,

y′′(t) + f
(
y(t)

)
= , y() = , y′() = m,

Z′′(t) + G(t)Z(t) = , Z() = , Z′() = m,

z′′(t) + g(t)z(t) = , z() = , z′() = m.

Suppose g(t) ≤ G(t) be two piecewise continuous functions defined on [, ]. If

 ≤ g(t) ≤ f (y(t))
y(t)

≤ G(t)

and suppose that Z(t) does not vanish in (, ], then for any  ≤ s ≤ ξ ≤ , it yields

z(s, m)
z(ξ , m)

≤ y(s, m)
y(ξ , m)

≤ Z(s, m)
Z(ξ , m)

, (.)

and hence, for any  ≤ η ≤ ξ ≤ , we have
∫ η

 z(s, m) ds
z(ξ , m)

≤
∫ η

 y(s, m) ds
y(ξ , m)

≤
∫ η

 Z(s, m) ds
Z(ξ , m)

. (.)
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Proof Since  ≤ g(t) ≤ f (y(t))/y(t) ≤ G(t) and Z(t) does not vanish in (, ], from
Lemma ., it follows that y(t) and z(t) will not vanish in (, ]. The proof for (.) can
be seen in []. The continuity of the integrands implies the existence of the Riemann in-
tegral. In view of the definition of Riemann integral, by using the inequality of the limit,
we have (.). �

Remark . Lemma . is also the correction for Theorem . in [].

Lemma . Consider the BVP

y′′(t) + Ay(t) = ,  < t < , (.)

y() = , y() = b. (.)

(i) If A = π, then y(t) vanishes at t =  for the first time on interval (, ] and b = ;
(ii) if  < A < π, then y(t) does not vanish on the interval (, ] and b > ;

(iii) if A > π, then y(t) vanishes before t =  on interval (, ].

Proof Obviously, y(t) = sin(πt) satisfies the conditions y() = , y() = , and y(t) >  for
t ∈ (, ), hence (i) is established. According to the Sturm comparison theorem, we can
draw the conclusions (ii) and (iii). �

Lemma . ([]) Assume that (H) holds and αη > , then BVP (.)-(.) has no positive
solution.

In [] and [], the proofs are conducted by contradiction to the concavity of solution
(also see []). In fact, for m > , we compare the solution u(t, m) of the IVP given by (.)
and (.) with the solution y(t) = mt of

y′′(t) + y(t) = , y() = , y′() = m. (.)

If BVP (.)-(.) has a positive solution u(t, m), then by Lemma . and the concavity of
u(t, m), we have


η

≥ u(, m)
u(η, m)

=
α

∫ η

 u(s, m) ds
u(η, m)

≥ α
∫ η

 y(s, m) ds
y(η, m)

=
α

∫ η

 ms ds
mη

=
αη


, (.)

that is, αη ≤ .
In the following, we always assume that

(H)  < αη < .

3 Main results
Lemma . Assume that (H)-(H) holds. Then there exist a solution x = A ∈ (,π ) such
that

g(x) :=
α[ – cos(ηx)]

x sin x
=  (.)
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and a solution x = A ∈ (,π ) such that

g(x) :=
αη sin(ηx)

 sin x
= . (.)

Proof It is not difficult to show that

lim
x→+

g(x) =
αη


< , lim

x→π– g(x) = ∞ > .

Since the function g(x) is continuous on (,π ), there must exist a constant A ∈ (,π )
such that g(A) = .

Similarly,

lim
x→+

g(x) =
αη


< , lim

x→π– g(x) = ∞ > .

Thus, there exists a positive constant A ∈ (,π ) such that g(A) = . �

Theorem . Assume that (H)-(H) holds. Suppose one of the following conditions holds:

(i)  ≤ f̄ <
A

aL , f ∞ >
Ā

al ; (ii)  ≤ f̄∞ <
A

aL , f


>
Ā

al .

Then problem (.)-(.) has at least one positive solution, where

A = min{A, A}, Ā = max{A, A},

and A, A is defined in (.) and (.), respectively.

Proof (i) Since  ≤ f̄ < A

aL , there exists a positive number r such that

f (u)
u

<
A

aL ≤ A


aL ,  < u ≤ r. (.)

Let  < m∗
 < r, then from the Sturm comparison theorem and the concavity of u(t, m∗

 ), it
follows that  ≤ u(t, m∗

 ) ≤ m∗
 t ≤ m∗

 < r for t ∈ [, ]. Thus

 ≤ a(t)f
(
u
(
t, m∗


))

< aL A


aL u
(
t, m∗


)

= A
 u

(
t, m∗


)

< πu
(
t, m∗


)
, t ∈ (, ].

By Lemma ., it gives u(t, m∗
 ) >  for t ∈ (, ].

Let Z(t) = (m∗
 /A) sin(At) for t ∈ [, ], then

Z′′(t) + A
 Z(t) = , Z() = , Z′() = m∗

 . (.)

From Lemma . and Lemma ., we have

k
(
m∗


)

=
α

∫ η

 u(s, m∗
 ) ds

u(, m∗
 )

<
α

∫ η

 m∗
 sin(As) ds

m∗
 sin A

=
α[ – cos(ηA)]

A sin A
= , (.)

that is, ϕ(m∗
 ) ≤ .
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On the other hand, the second inequality in (i) implies that there exists a number L large
enough such that

f (u)
u

>
Ā

al ≥ A


al , u ≥ L, (.)

and there exists a positive number ε < A( – η)/η small enough that

f (u)
u

≥ (A + ε)

al , u ≥ L. (.)

Next, we will find a positive number m∗
 such that ϕ(m∗

) ≥ .
Claim. There exist a slope m∗

 and two positive numbers ρ and σ such that

 < ρ ≤ η ≤ A

A + ε
≤ σ ≤  and u

(
t, m∗


) ≥ L for t ∈ [ρ,σ ].

Since the solution u(t, m) is concave, it hits the line u = L at most two times for the
constant L defined in (.) and t ∈ (, ]. We denote the left intersecting time by δm
and the right one by δm provided they exist. Henceforth, denote Im = [δm, δm] ⊆ (, ].
If u(, m) ≥ L, then δm = .

The discussion is divided into three steps.
Step . We claim that there exists a slope m large enough such that  ≤ u(t, m) ≤ L for

t ∈ [, δm ] and u(t, m) ≥ L for t ∈ Im .
Otherwise, provided u(t, m) ≤ L for all t ∈ [, ] as m → ∞, then by integrating both

sides of (.) from  to t, we have

u(t, m) = mt –
∫ t


(t – s)a(s)f

(
u(s, m)

)
ds. (.)

Hence, from (.) and the continuity of f (u), we have

m = u(, m) +
∫ 


( – s)a(s)f

(
u(s, m)

)
ds ≤ L + Lf aL, (.)

where Lf = maxu∈[,L] f (u). If we choose m > L + Lf aL, (.) will lead to a contradiction.
Since u(t, m) is continuous and concave, there exists a number m large enough such

that u(t, m) ≥ L for t ∈ Im .
Step . There exists a monotonically increasing sequence {mk} such that the sequence

δmk
is decreasing on mk and δmk is increasing on mk . That is,

Im ⊂ Im ⊂ · · · ⊂ Imk ⊂ · · · ⊆ (, ]

and u(t, mk) ≥ L for t ∈ Imk .
First, we prove that

δmk
< δmk–

, k = ,  . . . for mk > mk–. (.)

When k = , we have

u(δm , m) > u(δm , m)
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Figure 1 The relationship of m and Im . m1 >m0,
Im0 ⊂ Im1 .

in the case

m > m + aLLf δm . (.)

Otherwise, provided

u(δm , m) ≤ u(δm , m) = L, (.)

then from (.) and (.), we have

u(δm , m) – u(δm , m)

= (m – m)δm –
∫ δm


(δm – s)a(s)

[
f
(
u(s, m)

)
– f

(
u(s, m)

)]
ds

> (m – m)δm – aLLf δ

m

= δm

[
(m – m) – aLLf δm

]
> ,

which contradicts (.).
Hence, for a slope m > m + aLLf δm , there exists a number  < δm < δm such that

u(δm , m) = L, and u(t, m) ≤ L for t ∈ (, δm ].

See Figure .
By mathematical induction, it is not difficult to show that δmk

< δmk–
, k = , , . . . .

Further, we turn to the right hand of the interval Imk . Since f guarantees that u(t, m) is
uniquely defined, the solutions u(t, mk–) and u(t, mk) have no intersection in the interval
[δmk–

, ). It follows from

u(δmk–
, mk) > u(δmk–

, mk–)

that

u(δmk– , mk) > u(δmk– , mk–).
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Figure 2 Two of the possible cases of Im0 . Subcase 1: η ∈ [δm0
,δm0 ] and u(1,m0) ≥ L; Subcase 2:

η � [δm0
,δm0 ] or u(1,m0) < L.

Thus we have

δmk > δmk– , k = , , . . . for mk > mk–. (.)

When k = , also see Figure .
Step . Seek out a slope m∗

 and two positive numbers ρ and σ such that  < ρ ≤ η ≤
A

A+ε
≤ σ ≤  and u(t, m∗

) ≥ L for t ∈ [ρ,σ ].
Subcase . η ∈ [δm , δm ] and u(, m) ≥ L. In this case, we take m∗

 = m and ρ = δm ,
σ = δm = .

Subcase . η � [δm , δm ] or u(, m) < L. Following the step , step , and the extension
principle of solutions, there exists a positive integer n large enough such that

δmn < η, δmn ≥ A

A + ε
. (.)

If we take m∗
 = mn and ρ = δmn , σ = δmn , then

σ (A + ε) ≥ A. (.)

Two of the possible cases of Im can be seen in Figure .
In the following, we prove that k(m∗

) ≥  or ϕ(m∗
) >  for the selected m∗

 and ρ , σ .
Set z(t) = (m∗

/σ (A + ε)) sin(σ (A + ε)t), then

z′′(t) + σ (A + ε)z(t) = , z() = , z′() = m∗
, t ∈ [ρ,σ ], (.)

where ρ ≤ η < σ ≤ . From (.), we have

f (u)
u

≥ σ (A + ε)

al , u ≥ L.

Further, noting that u(, m∗
) > L (this time σ = ) or u(, m∗

) ≤ u(σ , m∗
) = L and the func-

tion

S(x) =
sinηx
sin x
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is increasing for x ∈ (,π ), then by Lemma ., Lemma ., and inequality (.), we have

k
(
m∗


)

=
α

∫ η

 u(s, m∗
) ds

u(, m∗
)

≥ αηu(η, m∗
)

u(, m∗
)

≥ αηu(η, m∗
)

u(σ , m∗
)

≥ αη sinησ (A + ε)
 sinσ (A + ε)

≥ αη sin(ηA)
 sin A

= , (.)

which implies ϕ(m∗
) ≥ .

From (.) and (.), we can find a m∗ between m∗
 and m∗

 such that u(t, m∗) is the
solution of (.)-(.). The theorem is complete.

The proof for (ii) is similar, so we omit it. �

Now, we present the result for BVP (.) with (.), which is also the correction of The-
orem . and Theorem . in [].

Theorem . Assume that (H)-(H) hold. Suppose one of the following conditions holds:

(i)  ≤ f̄ <
A

aL , f ∞ >
Ā

al ; (ii)  ≤ f̄∞ <
A

aL , f


>
Ā

al .

Then problem (.) with (.) has at least one positive solution, where

A = min{A, A}, Ā = max{A, A}

and A, A is defined by

∑n
i= αi[ – cos(Aηi)]

A sin A
=  (.)

and
∑n

i= αiηi sin(Aηi)
 sin A

= . (.)

Proof Similar to (.) and (.), it follows from (.) and (.)-(.) that

k
(
m∗


)

=
∑n

i= αi
∫ ηi

 u(s, m∗
 ) ds

u(, m∗
 )

<
∑n

i= αi
∫ ηi

 m∗
 sin(As) ds

m∗
 sin A

=
∑n

i= αi[ – cos(Aηi)]
A sin A

=  (.)

and

k
(
m∗


)

=
∑n

i= αi
∫ ηi

 u(s, m∗
) ds

u(, m∗
)

≥
∑n

i= αiηiu(ηi, m∗
)

u(, m∗
)

≥
∑n

i= αiηiu(ηi, m∗
)

u(σ , m∗
)

≥
∑n

i= αiηi sin(ηiσ (A + ε))
 sinσ (A + ε)

≥
∑n

i= αiηi sin(Aηi)
 sin A

= , (.)

where ηn < σ ≤  and (.) holds.
The remainder of the proof is similar, so we omit it. �
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4 Conclusion and discussion
The conditions in [] and [] are easy to verify; however, they are not as general as ours,
because the sup-linear case or the sub-linear case is sufficient for the conditions in Theo-
rem .. As an example of [], where the constant μ is related to the Green’s function and
the spectral radius of associated linear operator, our calculation is more direct. The idea
of this paper was illuminated by [, ]; however, the certain constant Lθ could not be given
explicitly in [] and η only equals / in []. From this point of view, this paper extends the
work of [, ] and presents another way to find the ‘eigenvalue’ by numerical calculation,
though it is related to a transcendental equation which has at least one numerical solution.

In fact, we can extent our results to []. The proof is fit, where

k(m) =
∑m–

i= αiu(ηi, m)
u(, m)

and the constant A = A = A ∈ (,π ) is explicitly determined by

∑m–
i= αi sin(Aηi)

sin A
= . (.)

In other words, we can substitute the condition

(i) f =  and f∞ = ∞, or
(ii) f = ∞ and f∞ = ,

with

(i′)  ≤ f̄ < A < f ∞; or
(ii′)  ≤ f̄∞ < A < f


,

where A is defined in (.).
Next, we apply the result to the special case BVP (.), where aL = al = , m = , α = μ,

η = /. From (.), we have

A =  cos–
(

μ



)
.

By plugging it into (i′) and (ii′), we have the same result as (.).
Further, when αη = , BVP (.)-(.) is at resonant. There may not exist a solution

x = A ∈ (,π ) and x = A ∈ (,π ) to (.) and (.), respectively. If (.) and (.) has
a solution x = A ∈ (,π ) and x = A ∈ (,π ), respectively, then we can also obtain the
existence result for (.)-(.), similarly for (.) with (.).

When θ = π/ and
∑m–

i= αiηi = , BVP (.) with (.) is resonant. If there exists a num-
ber A ∈ (,π ) such that (.), then the existence result for BVP (.) with (.) can be
obtained, similarly for BVP (.).
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