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Abstract
An initial boundary value problem of the semilinear wave equation of which the
source term f (x,u) is without variational structure in a bounded domain is considered.
Firstly, we prove that it has a unique globally weak solution (u,ut) ∈ C0([0,∞),H1

0(�)×
L2(�)) by using our previous results (Pan et al. in Bound. Value Probl. 2012:42, 2012).
Secondly, we obtain the existence of global attractors in H1

0(�)× L2(�) by using the
ω-limit compactness condition (Ma et al. in Indiana Univ. Math. J. 5(6):1542-1558,
2002), rather than the traditional method.
MSC: 35B33; 35B41; 35L71
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1 Introduction
In this paper we are concerned with the existence of global attractors for nonlinear wave
equations with linear dissipative terms in a bounded domain � in Rn:

⎧
⎪⎨

⎪⎩

utt + kut = �u – |u|p–u + f (x, u) in � × (,∞),
u(x, t) =  on ∂� × (,∞),
u(x, ) = ϕ(x), ut(x, ) = ψ(x) in �,

(.)

where ut = ∂u
∂t , utt = ∂u

∂t , � =
∑n

i=
∂

∂x
i

, x = (x, . . . , xn); the sourcing terms are –|u|p–u +
f (x, u),  < p < n

n– , n ≥ ;  < p < ∞, n = , ; and f (x, u) satisfies

∣
∣f (x, z)

∣
∣≤ C|z|q + g(x), q ≤ p + 


, g ∈ L(�). (.)

The attractor is an important concept describing the asymptotic properties of dynam-
ical systems. A great deal of work has been devoted to the existence of global attractors
of dynamical systems (see, e.g. [–] and references therein). The existence of a global at-
tractor (.) with a source term only containing f was proved by Hale [] for f satisfying
for n ≥  the growth condition f (u) ≤ C(|u|γ + ), with  ≤ γ < n

n– . For the case n = ,
Hale and Raugel [] proved the existence of the attractor under an exponential growth
condition of the type |f (u)| ≤ exp θ (u) (such a condition previously appeared in the work
of Gallouët []). The existence of the attractor in the critical case γ = n

n– was first proved
by Babin and Vishik [], and then more generally by Arrieta et al. []. For other treatments
see Chepyzhov and Vishik [], Ladyzhenskaya [], Raugel [] and Temam []. When �
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is bounded and u is subjected to suitable boundary conditions, the general result is that
the dynamical system associated with the problem possesses a global attractor in the nat-
ural energy space H

(�) × L(�) if nonlinear term f has a subcritical or critical exponent,
because there exist typical parabolic-like flows with an inherent smoothing mechanism.
By the traditional method (see [] for examples), in order to obtain the existence of global
attractors for semilinear wave equations, one needs to verify the uniform compactness of
the semigroup by getting the boundedness in a more regular function space. However,
in some cases it is difficult to obtain the uniform compactness of the semigroup. Fortu-
nately, a new method for obtaining the global attractors has been developed in []. With
this method, one only needs to verify a necessary compactness condition (ω-limit com-
pactness) with the same type of energy estimates as those for establishing the absorbing
sets. In this paper, we use this method to obtain the existence of global attractors for prob-
lem (.) with the general condition where the source term f (x, u) is without variational
structure.

This paper is organized as follows:
- in Section  we recall some preliminary tools, definitions and our previous results;
- in Section  we obtain the existence and uniqueness of weak solution by using our

previous results [] and the various conditions can also be found [];
- in Section  we obtain our main results for problem (.) by using the new method

(ω-compactness condition).

2 Preliminaries
Consider the abstract nonlinear evolution equation defined on X, given by

⎧
⎪⎨

⎪⎩

du
dt + k du

dt = G(u), k > ,
u(x, ) = ϕ(x),
ut(x, ) = ψ(x),

(.)

where G : X × R+ → X
∗ is a mapping, X ⊂ X, X, X are Banach spaces and X∗

 is the
dual space of X, R+ = [,∞), u = u(x, t) is an unknown function.

First we introduce a sequence of function spaces:

{
X ⊂ H ⊂ X ⊂ X ⊂ H ,
X ⊂ H ⊂ H ,

(.)

where H , H, H are Hilbert spaces, X is a linear space, X, X are Banach spaces and all
inclusions are dense embeddings.

Suppose that

{
L : X → X is a one to one dense linear operator,
〈Lu, v〉H = 〈u, v〉H , ∀u, v ∈ X.

(.)

In addition, the operator L has an eigenvalue sequence

Lek = λkek (k = , , . . .) (.)

such that {ek} ⊂ X is the common orthogonal basis of H and H.
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Definition . [] Set (ϕ,ψ) ∈ X × H, u ∈ W ,∞
loc ((,∞), H) ∩ L∞

loc((,∞), X) is called
a globally weak solution of (.), if ∀v ∈ X, we have

〈ut , v〉H + k〈u, v〉H =
∫ t


〈Gu, v〉dt + k〈ϕ, v〉H + 〈ψ , v〉H . (.)

Definition . [] Let Y, Y be Banach spaces, the solution u(t,ϕ,ψ) of (.) is called
uniformly bounded in Y × Y, if for any bounded domain � ×� ⊂ Y × Y, there exists
a constant C which only depends on the domain � × �, such that

‖u‖Y + ‖ut‖Y ≤ C, ∀(ϕ,ψ) ∈ � × � and t ≥ .

Suppose that G = A + B : X × R+ → X
∗. Throughout this paper, we assume that:

(i) There exists a functional F ∈ C : X → R such that

〈Au, Lv〉 =
〈
–DF(u), v

〉
, ∀u, v ∈ X. (.)

(ii) The functional F is coercive, i.e.

F(u) → ∞ ⇔ ‖u‖X → ∞. (.)

(iii) There exist constants C >  and C >  such that

∣
∣〈Bu, Lv〉∣∣≤ CF(u) + C‖v‖

H , ∀u, v ∈ X. (.)

Lemma . [] Set G : X × R+ → X
∗ to be weakly continuous, (ϕ,ψ) ∈ X × H, then we

obtain the following results:
() If G = A satisfies the assumptions (i) and (ii), then there exists a globally weak

solution of (.),

u ∈ W ,∞
loc
(
(,∞), H

)∩ L∞
loc
(
(,∞), X

)
,

and u is uniformly bounded in X × H.
() If G = A + B satisfies the assumptions (i), (ii) and (iii), then there exists a globally

weak solution of (.),

u ∈ W ,∞
loc
(
(,∞), H

)∩ L∞
loc
(
(,∞), X

)
.

() Furthermore, if G = A + B satisfies

∣
∣〈Gu, v〉∣∣≤ 


‖v‖

H + CF(u) + g(t) (.)

for some g ∈ L
loc(,∞), then u ∈ W ,

loc ((,∞), H).

A family of operators S(t) : X → X (t ≥ ) is called a semigroup generated by (.) if it
satisfies the following properties:
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() S(t) : X → X is a continuous map for any t ≥ ,
() S() = id : X → X is the identity,
() S(t + s) = S(t) · S(s), ∀t, s ≥ . Then the solution of (.) can be expressed as

u(t, u) = S(t)u.

Introducing the expression of the abstract semilinear wave equation:

⎧
⎪⎨

⎪⎩

du
dt + k du

dt = Lu + T(u), k ≥ ,
u(x, ) = ϕ(x),
ut(x, ) = ψ(x),

(.)

where X, X are Banach spaces, X ⊂ X is a dense inclusion, L : X → X is a sectorial linear
operator, and T : X → X is a nonlinear bounded operator.

Lemma . [] Set L : X → X, a sectorial linear operator and T : X → X, a nonlinear
bounded operator, L = L + kI , then the solution of (.) can be expressed as follows:

u = e–kt
[

cos t(–L)

 ϕ + k(–L)– 

 sin (–L)

 ϕ + (–L)– 

 sin t(–L)

 ψ

+
∫ t


e–k(t–τ )(–L)– 

 sin(t – τ )(–L)

 T(u) dτ

]

,

ut = –ku + e–kt
[

–(–L)

 sin t(–L)


 ϕ + k cos t(–L)


 ϕ + cos t(–L)


 ψ

+
∫ t


e–k(t–τ ) cos(t – τ )(–L)


 T(u) dτ

]

.

Next, we introduce the concepts and definitions of invariant sets, global attractors, and
ω-limit compactness sets for the semigroup S(t).

Definition . Let S(t) be a semigroup defined on X. A set � ⊂ X is called an invariant
set of S(t) if S(t)� = �, ∀t ≥ . An invariant set � is an attractor of S(t) if � is compact,
and there exists a neighborhood U ⊂ X of � such that, for any u ∈ U ,

inf
v∈�

∥
∥S(t)u – v

∥
∥

X → , as t → .

In this case, we say that � attracts U . Especially, if � attracts any bounded set of X, � is
called a global attractor of S(t) in X.

Definition . Let X be an infinite dimensional Banach space and A be a bounded subset
of X. The measure of noncompactness γ (A) of A is defined by

γ (A) = inf{δ >  | for A there exists a finite cover by sets whose diameter ≤ δ}.

Lemma . [] If An ⊂ X is a sequence bounded and closed sets, An �= ∅, An+ ⊂ An, and
γ (An) →  (n → ∞), then the set A =

⋂∞
n= An is a nonempty compact set.
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Definition . [] A semigroup S(t) : X → X (t ≥ ) in X is called ω-limit compact, if
for any bounded set B ⊂ X and ∀ε > , there exists t such that

γ

(⋃

t≥t

S(t)B
)

≤ ε,

where γ is a noncompact measure in X.

For a set D ⊂ X, we define the ω-limit set of D as follows:

ω(D) =
⋂

s≥

⋃

t≥s
S(t)D,

where the closure is taken in the X-norm.

Lemma . [] Let S(t) be a semigroup in X, then S(t) has a global attractor A in X if
and only if

() S(t) has ω-limit compactness, and
() there is a bounded absorbing set B ⊂ X .
In addition, the ω-limit set of B is the attractor A = ω(B).

Remark . Although the lemma has been proved partly in [], we still give a proof here.
Our proof is different from that in [] but is similar to that in []. We adopt and present
the proof also because we will use the same method to obtain the existence of the global
attractor.

Proof Step . To prove the sufficiency of Lemma ..
(a) S(t) has ω-limit compactness, i.e., for any bounded set B ⊂ X and ∀ε > , there exists

a t, such that

γ

(⋃

t≥t

S(t)B
)

≤ ε.

So, we know that ω(B) =
⋂∞

t=
⋃

t≥t
S(t)B is a compact set from Lemma ..

(b) ω(B) is nonempty.
For B �= ∅, so

⋃
t≥s S(t)B �= ∅, ∀s ≥ , and

⋃

t≥s

S(t)B ⊂
⋃

t≥s

S(t)B, ∀s ≥ s,

we can obtain

ω(B) =
∞⋂

s≥

⋃

t≥s
S(t)B �= ∅.

(c) ω(B) is invariant.
For x ∈ ω(B) ⇔ there exist {xn} ∈ B and tn → ∞, such that S(tn)xn → x.
If y ∈ S(t)ω(B), then for some x ∈ ω(B), y = S(t)x.
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Hence, there exist {xn} ⊂ B, tn → ∞, such that

S(t)S(tn)xn = S(t + tn)xn → S(t)x = y.

In conclusion, y ∈ ω(B), S(t)ω(B) ∈ ω(B), ∀t ≥ .
If x ∈ ω(B), fix {xn} ⊂ B and tn, such that

S(t)xn → x, as tn → ∞, n → ∞.

S(t) is ω-limit compact, i.e., there exists a y ∈ H , such that

S(t)
⋂

tn≥

⋃

t≥tn

S(tn)xn → y, n → ∞.

Therefore y ∈ ω(B).
For

⋂

tn≥

⋃

t≥tn

S(tn)xn =
⋂

tn≥

⋃

t≥tn

S(t)S(tn – t)xn →
⋂

tn≥

⋃

t≥tn

S(t)y

and

S(tn)xn → x ∈ ω(B),

which implies that

S(t)y → x, ω(B) ⊂ S(t)ω(B).

In conclusion, combining (a)-(c) and condition (), Step  has been proved.
Step . To prove the necessity of Lemma ..
If A is a global attractor, then the ε-neighborhood Uε(A) ⊂ X is an absorbing set. So we

need only to prove S(t) has ω-limit compactness.
Since Uε(A) is an absorbing set, for any bounded set B ⊂ X and ε > , there exists a time

tε(B) >  such that

⋃

t≥tε(B)

S(t)B ⊂ U ε


(A) =
{

x ∈ X
∣
∣
∣ dist(x,A) <

ε



}

.

On the other hand, A is a compact set, and there exist finite elements x, x, . . . , xn ∈ X
such that

A⊂
n⋃

k=

U
(

xk ,
ε



)

.

Then

U ε


(A) ⊂
n⋃

k=

U
(

xk ,
ε



)

,
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which implies that

γ

( ⋃

t≥tε (B)

S(t)B
)

≤ γ
(
U ε


(A)

)≤ ε.

Hence, Lemma . has been proved. �

3 Existence and uniqueness of globally weak solution
Now, in this section, we begin to prove that problem (.) has a unique globally weak so-
lution (u, ut) ∈ C([,∞), H

 × L(�)).

Theorem . (Existence) If ∀(ϕ,ψ) ∈ H
(�)×L(�), f satisfies condition (.) and  < p <

n
n– , n ≥ ;  < p < ∞, n = , , then (.) has a globally weak solution

u ∈ W ,∞
loc
(
(,∞), L(�)

)∩ L∞
loc
(
(,∞), H

(�)
)
.

Remark . Divide the operator G(u) in Lemma . into two parts: A and B, where A has
a variational structure and B has a non-variational structure. Then we obtain the globally
weak solution by applying our result () in Lemma ..

Proof Fix spaces as follows:

X = X = H
(�) ∩ Lp+(�), (.)

X = C∞
 (�), H = H = L(�). (.)

In problem (.), set G(u) = �u – |u|p–u + f (x, u).
Define the map G(u) = A + B : X → X∗

 as

〈Au, v〉 = –
∫

�

[∇u · ∇v + |u|p–u · v
]

dx, (.)

〈Bu, v〉 =
∫

�

f (x, u)v dx. (.)

Note the functional I : X → R,

I[u] =
∫

�

[


|∇u| +


p + 

|u|p+
]

dx. (.)

Obviously, we obtain

〈Au, v〉 = –
〈
DI[u], v

〉
, ∀u, v ∈ X (.)

and

I[u] → ∞ ⇔ ‖u‖X → ∞, (.)

which implies that conditions () and () in Lemma . hold.
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From the growth restriction condition (.), we get

∣
∣〈Bu, v〉∣∣ =

∣
∣
∣
∣

∫

�

f (x, u)v dx
∣
∣
∣
∣

≤
∫

�

∣
∣f (x, u)

∣
∣|v|dx

≤ 


∫

�

|v| dx +



∫

�

∣
∣f (x, u)

∣
∣ dx

≤ 


∫

�

|v| dx + C
∫

�

[|u|q + g(x)
]

dx

≤ 

‖v‖

H + C

∫

�

|u|p+ dx + C

≤ 

‖v‖

H + CI[u] + C,

where C, C, C > . It implies that condition () in Lemma . holds.
In conclusion, we see that problem (.) has a globally weak solution

u ∈ W ,∞
loc
(
(,∞), L(�)

)∩ L∞
loc
(
(,∞), H

(�)
)

from the second result in Lemma .. �

Next, we prove the uniqueness of the globally weak solution to problem (.).

Theorem . If u ∈ W ,∞
loc ((,∞), L(�)) ∩ L∞

loc((,∞), H
(�)) is a weak solution of prob-

lem (.), then the solution u is unique.

Remark . From the formula of the wave equation in Lemma . and using the Gronwall
inequality, we obtain the uniqueness of the globally weak solution.

Proof Set u, u ∈ W ,∞
loc ((,∞), L(�)) ∩ L∞

loc((,∞), H
(�)) as the solutions of problem

(.), then from Lemma ., we get ui ∈ C([,∞), H
(�)), i = , , and

‖u – u‖H


=
∥
∥
(
–� 


)
(u – u)

∥
∥

L

≤ C
∫ t



∥
∥
[|u|p–u – |u|p–u

]
+
[
f (x, u) – f (x, u)

]∥
∥

L dτ

≤ C

∫ t



[(∥
∥|ũ|p–∥∥ +

∥
∥Df (x, ũ)

∥
∥
) · ‖u – u‖H



]
dτ ;

by using the Gronwall inequality, we easily obtain

‖u – u‖H

≤ ,

where ũ is the mean value between u and u.
It implies that

‖u – u‖H

≤  ⇒ u = u. �
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4 Existence of global attractor
In this section, we proved the existence of global attractor to problem (.).

Theorem . For any (ϕ,ψ) ∈ (H
(�) × L(�)), the sourcing term f satisfies the growth

restriction (.) and the exponent of p satisfies  < p < n
n– , n ≥  or  < p < ∞, n = , ; then

problem (.) has a global attractor A in (H
(�) × L(�)).

Remark . Comparing Remark ., we divide the operator G(u) of (.) into two parts: L
and T , where L is a linear operator, while T is a nonlinear operator. We obtain the global
attractor of problem (.) by using Lemma ..

Proof According to Lemma ., we prove Theorem . in the following three steps.
Step . Problem (.) has a globally unique weak solution.
Step . S(t) has a bounded absorbing set in H

(�) × L(�).
From Theorems . and ., we see that problem (.) has a globally unique weak solution

(u, ut) ∈ C([,∞), H
 × L). Equation (.) generates a semigroup:

S(t) : H 


× H → H 


× H .

Fix the spaces as follows:

H = L(�), H = H(�) ∩ H
(�),

L : H → H , T : H → H .

Note that

Lu = �u, (.)

Tu = –|u|p–u + f (x, u), (.)

and L generates the fractional space, H 


= H
(�).

Obviously, there exists a C functional F : H 


→ R such that

F(u) =


p + 
|u|p+ –

∫ t


f (x, u) dτ , (.)

and we easily get

T(u) = –DF(u), ∀u ∈ H. (.)

Since

∣
∣f (x, z)

∣
∣≤ C|z|q + g(x), q ≤ p + 


, g ∈ L(�),

then we get

F(u) ≥ –C (.)
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and

〈
DF(u), u

〉

H – k〈u, v〉H ≥ –


‖v‖

H – C, C > . (.)

Equation (.) is equivalent to the equations that follow:

{
∂u
∂t = –ku + v, k ≥ ,
∂v
∂t = Lu + ku – kv – |u|p–u + f (x, u).

(.)

Multiply (.) by (–Lu, v) and take the inner product in H :

〈
∂u
∂t

, –Lu
〉

H
= –k〈u, –Lu〉H + 〈–Lu, v〉H , (.)

〈
∂v
∂t

, v
〉

H
= 〈Lu, v〉H +

〈
ku, v

〉

H – k〈v, v〉H +
〈
T(u), v

〉

H . (.)

Summing (.) and (.), it follows that

〈
∂u
∂t

, –Lu
〉

H
+
〈
∂v
∂t

, v
〉

H

= –k〈u, –Lu〉H – k〈v, v〉H + k〈u, v〉H + 〈Tu, v〉H . (.)

Furthermore,

〈–Lu,ω〉H =
〈(

–L


)
u,
(
–L



)
ω
〉

H , ∀u,ω ∈ H 


. (.)

From (.) and (.), we get

〈Tu, v〉H =
〈

Tu,
∂u
∂t

+ ku
〉

H

=
〈

–DF(u),
∂u
∂t

+ ku
〉

H

= –
〈

DF(u),
∂u
∂t

〉

H
– k
〈
DF(u), u

〉

H

= –
dF(u)

dt
– k
〈
DF(u), u

〉

H .

Integrating (.) over [, t] with respect to time t and combining the two formulas, we
get



‖u‖H




+


‖v‖

H –


‖ϕ‖H




–


‖ψ‖H

=
∫ t



[〈
∂u
∂t

, –Lu
〉

H
+
〈
∂v
∂t

, v
〉

H

]

dτ

= –k
∫ t



[〈u, –Lu〉H + 〈v, v〉H – k〈u, v〉H
]

dτ +
∫ t


〈Tu, v〉H dτ
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= –k
∫ t



[〈(
–L



)
u,
(
–L



)
u
〉

H + ‖v‖
H – k〈u, v〉H

]
dτ

+
∫ t



[

–
dF(u)

dt
– k
〈
DF(u), u

〉

H

]

dτ

= –k
∫ t



[‖u‖H



+ ‖v‖
H – k〈u, v〉H

]
dτ – F

(
u(t)

)
+ F

(
u()

)

– k
∫ t



〈
DF(u), u

〉

H dτ

= –k
∫ t



[‖u‖H



+
〈
DF(u), u

〉

H – k〈u, v〉H
]

dτ – F(u) + F(ϕ);

combining with (.), it follows that

‖u‖H



+ ‖v‖
H ≤ –k

∫ t



[‖u‖H



+ ‖v‖
H
]

dτ + f (ϕ,ψ) + Ct, C > .

Applying the Gronwall inequality, we get

‖u‖H



+ ‖v‖
H ≤ f (ϕ,ψ)e–kt + C

(
 – e–t). (.)

It implies that S(t) has a bounded absorbing set in H 


× H .
Step . S(t) has ω-limit compactness.
From the formula in Lemma ., the solution of problem (.) can be expressed as fol-

lows:

u = e–kt[cos t(–�)

 ϕ + k(–�)– 

 sin t(–�)

 ϕ + (–�)– 

 sin t(–�)

 ψ
]

+
∫ t



[
e–k(t–τ )(–�)– 

 sin(t – τ )(–�)


(
–|u|p–u + f

)]
dτ , (.)

ut = –ku + e–kt[–(–�)

 sin t(–�)


 ϕ + k cos t(–�)


 ϕ + cos t(–�)


 ψ
]

+
∫ t



[
e–k(t–τ ) cos(t – τ )(–�)



(
–|u|p–u + f

)]
dτ . (.)

Since the linear operator

L = � : H(�) × H
(�) → L(�)

is a symmetrical sector operator, it has the eigenvalue sequence:

 > λ ≥ λ ≥ · · · , λk → –∞, k → ∞.

Then

sin t(–�)

 v =

∞∑

j=

vj sin
√

–λjtej, (.)

cos t(–�)

 v =

∞∑

j=

vj cos
√

–λjtej. (.)
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For any v =
∑∞

j= vjej ∈ L(�) and –λj >  (j ≥ ), the operator

sin t(–�)

 , cos t(–�)


 : L(�) → L(�)

is uniformly bounded, i.e.

∥
∥sin t(–�)



∥
∥

L ,
∥
∥cos t(–�)



∥
∥

L ≤ , ∀t ≥ . (.)

Furthermore, (u, ut) contains two parts:
degenerative term

(
u

u
t

)

= e–kt

(
cos(–�) 

 + k(–�)– 
 sin t(–�) 

 (–�)– 
 sin t(–�) 



k cos t(–�) 
 – (–�) 

 sin t(–�) 
 cos t(–�) 



)(
ϕ

ψ

)

;

integral term

(
u

u
t

)

=

(∫ t
 e–k(t–τ )(–�)– 

 sin(t – τ )(–�) 
 (–|u|p–u + f ) dτ

∫ t
 e–k(t–τ ) cos(t – τ )(–�) 

 (–|u|p–u + f ) dτ

)

.

From the uniformly bounded condition (.), we get

lim
t→∞

(
u, u

t
)

=  in H
(�) × L(�); (.)

and for any (ϕ,ψ) ∈ B,

⋃

t≥

(
u, u

t
)

is a compact set in H
(�) × L(�), (.)

where B ⊂ H
(�) × L(�) is a bounded set.

From (.) and H
(�) ↪→ Lp(�) (p < n

n– ), we get

T : H
(�) → L(�) is a compact map,

Hence, combining (.) and (.), for the noncompact measure γ we get

γ

(⋃

t≥t

S(t)B
)

= γ

(⋃

t≥t

(
u(t, B), ut(t, B)

)
)

≤ γ

(⋃

t≥t

(
u, –ku + u

t
)
)

+ γ

(⋃

t≥t

(
u, –ku + u

t
)
)

= γ

(⋃

t≥t

(
u, –ku + u

t
)
)

→  (t → ∞), (.)
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it implies that

S(t) =
(
u(t, ·), ut(t, ·)) has ω-limit compactness.

Finally, combining Step  and Step , applying Lemma ., problem (.) has a global
attractor A in H

(�) × L(�). �
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