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Abstract

This work addresses the problem of target detection for multistatic radars. We propose an algorithm that is able to
keep constant the false alarm rate, when the disturbance samples associated with each receiver-transmitter pair are
distributed according to a compound Gaussian model. The performance of the proposed detection algorithm are
analysed to assess the impact of clutter diversity on detection performance. The results show that clutter statistical
diversity has a strong impact on detection performance. The performance of both single-channel and multichannel
detection schemes are evaluated by processing real sea clutter data collected by the NetRAD nodes, in order to
evaluate which of the two channels, i.e. the bistatic and monostatic channels, is more favourable for target
detection. Furthermore, the gain achieved by using a multistatic detection algorithm is also analysed.

1 Introduction
Sea clutter is typically non-Gaussian and non-stationary,
which makes the design of proper detection algorithms a
critical task. The development of radar detection algo-
rithms in the presence of Gaussian or non-Gaussian dis-
turbance has been widely addressed in literature and is
still an active research field. In the case of non-Gaussian
disturbance, one of the most used algorithms is the so-
called normalized matched filter (NMF) [1–3]. Under
the hypothesis of compound Gaussian clutter, this algo-
rithm is able to keep constant the false alarm rate (FAR).
This property is verified both when the clutter covari-
ance matrix is a priori known and when it is unknown
and estimated from the range cells surrounding the
range cell under test (in this case, we use the adaptive
version of the NMF, i.e. the normalized adaptive
matched filter (NAMF) [4–6]). The fast temporal fluctu-
ations of the clutter make its samples to be only partially
correlated in short times and broaden the clutter
spectrum. The correlation properties are described, from
a statistical standpoint, by the clutter covariance matrix.
The use of multiple transmitters and receivers in a

radar system aims at improving the target detection,
tracking and recognition capabilities of a radar system
[7–13]. Radar detection techniques for multistatic radars

can be distinguished between centralized and decentra-
lized ones. According to a centralized detection scheme,
the signals associated with each transmitter-receiver pair
are processed locally at each receiver node, which com-
putes a local statistic, and then, all the local statistics are
transmitted to a central processor, which in turn com-
putes a global statistic [7, 9]. The hard decision is per-
formed by comparing this global statistic with a
threshold. An alternative detection rule is the decentra-
lized one (see, e.g. [14–17]), according to which each
node performs a hard decision, then transmits the
resulting binary symbols to a central processor, that exe-
cutes the final decision. One of the main limitations of a
centralized detection technique is that it requires a large
bandwidth of the communication link between the sys-
tem nodes. If the communication bandwidth is not suffi-
ciently large, the local statistics, transmitted by each
node to the central processor, may be distorted [18]. For
this reason, in real systems, the local statistics are quan-
tized and then transmitted to the central processor; thus,
a quantization noise is present. In this work, a central-
ized detection rule is considered, without accounting for
the limitations associated with a communication link
with finite bandwidth, as the aim of the work is to study
the effect of clutter diversity on the detection perform-
ance of a multistatic radar system.
One of the first works dealing with the design of cen-

tralized detection for multistatic radar is Conte et al.’s
paper [7] that proposes both optimum and suboptimum
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detection algorithms in the case of white Gaussian noise.
In [8], the authors discuss again the optimum and sub-
optimum multistatic radar detection techniques in the
cases that clutter and jamming are Gaussian and corre-
lated with both time and space. A multichannel detection
technique, under cross-correlated Gaussian channels, is
proposed in [19], where a multichannel generalized likeli-
hood ratio test (GLRT) is derived. More recently, the
interest of the radar community towards Multi-Input
Multi-Output (MIMO) radar systems has encouraged the
research on multichannel detection techniques. MIMO
radars can be distinguished, based on the location of their
nodes, between collocated and not collocated (also known
as widely separated MIMO). In a collocated MIMO radar
[11], the transmitter and receiver antennas are in the same
location; thus, the diversity is achieved by using antennas
with a certain number of elements, each of them transmit-
ting a different waveform. Hence, the diversity gain is
guaranteed by the fact that each element of the receiver
antenna looks at a different channel. In the case of widely
separated radars, transmitter and receiver locations are
not the same; thus, the signals associated with each
transmitter-receiver pair—if combined together in a cor-
rect way—can provide a diversity gain, due to the spatial
separation between channels [10, 13]. The optimum de-
tection technique for MIMO radars in the cases of Gauss-
ian and spatially uncorrelated clutter, called MIMO-
Optimum Gaussian Detector (MIMO-OGD), has been
discussed in [13]. In [20], the authors evaluate the per-
formance of the MIMO-OGD, compared with a decentra-
lized detection scheme. A detection algorithm for MIMO
radar that utilizes space-time coded waveforms is derived
and discussed in [12]. A MIMO-GLRT, based on a para-
metric approach, is proposed and validated in [21]. In
[22], a MIMO-GLRT and Rao detector are derived in the
case of non-Gaussian clutter, and their performance are
evaluated in the case of known covariance matrix.
In this work, we consider a multichannel extension of

the NMF, introduced with the name of MIMO-
Generalized Likelihood Ratio Test-Linear Quadratic
(MIMO-GLRT-LQ) in [23]. This detector is the MIMO
version of the aforementioned NMF; thus, it can also be
termed MIMO-NMF. It has been demonstrated to be
able to keep constant the false alarm rate under different
clutter distributions belonging to the compound Gauss-
ian family, associated with each transmitter (TX) re-
ceiver (RX) pair. The mode of operation of the adopted
detection rule is centralized.
In this work, we first discuss the received signal model

for multistatic radar, where the target is observed in the
presence of non-Gaussian disturbance. Then, two funda-
mental assumptions—uncorrelated channels and com-
pound Gaussian disturbance—are introduced, in order
to derive a suboptimum detection scheme, i.e. the

multichannel NMF. First, the performance of the pro-
posed detector are tested by processing simulated data.
The adaptive version of the adopted detector, i.e. the
MIMO-NAMF is also implemented, by estimating the
clutter covariance matrix [5]. The performance of the
single-channel NAMF is then evaluated on real sea clut-
ter data, collected by the nodes of the multistatic radar
system, NetRAD [24, 25], in order to evaluate the differ-
ences between the bistatic and monostatic sea clutter
from a radar detection standpoint. NetRAD sea clutter
data have been analysed in some recent papers, in order
to highlight the differences in the statistics between
monostatic and bistatic sea clutter, which have been de-
fined as clutter diversity in [25]. Our performance ana-
lysis aims at assessing which of the two channels is the
more favourable for target detection. At the same time,
the performance of the multichannel NAMF are also
analysed by processing real clutter data, with the aim of
investigating whether and under which conditions a
multistatic detector is able to provide a performance
gain with respect to the single-channel detector. In synthe-
sis, the novelty of this work consists of the evaluation of
false alarm regulation and detection performance over the
two channels, bistatic and monostatic, with different statis-
tical properties. Performance analysis has been carried out
by processing both simulated and real clutter data.
The rest of this paper is organized as follows. In

Section 2, we summarize the single-channel NMF de-
tector, describe the multistatic signal model and de-
rive the multichannel detection scheme. In Section 3,
the performance of the multichannel NAMF are ana-
lysed by processing simulated data. In Section 4, the
performance of the single-channel and multichannel
NAMF are analysed by processing real sea clutter
data collected by the NetRAD system. Final remarks
are drawn in Section 5.

2 Problem formulation
2.1 Single-channel detection
In the case of single-channel radar, the received signal
model under the hypothesis H1 (target signal plus dis-
turbance) is z = αp + w, whereas under the H0 hypoth-
esis (disturbance only), is z =w ([1, 2]). The received

signal samples, z(n), are stacked into the vector z

¼ z nð Þf gL−1n¼0 , where L is the number of coherently inte-
grated pulses. The time duration of the coherent pro-
cessing interval (CPI) is TCPI; thus, L = TCPI ⋅ PRF.
Similarly, the vector w contains the disturbance
samples. The target signal is modelled by the target
complex amplitude α times the target steering vector

p ¼ p nð Þf gL−1n¼0 , whose nth element is given by pðnÞ
¼ exp f−j2πnf D=PRFg , where fD is the target Doppler
frequency.
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The disturbance is usually modelled as a compound
Gaussian (CG) random vector, consisting of a slowly
varying component, called texture, τ (assumed as com-
pletely correlated within a CPI), and a rapidly varying
component, called speckle, x; thus, w ¼ ffiffiffi

τ
p

x. The valid-
ity of this model for sea clutter has been discussed by a
large number of works in literature for both monostatic
[26–28] and, more recently, for bistatic clutter [25, 29,
30]. The rapid fluctuations of sea clutter are taken into
account for the speckle component, which is modelled
as a complex Gaussian random vector, whose covariance
matrix is R = E{xxH}. As shown in many works (see, e.g.
[1–3]), the NMF performs the following test:

Λ zð Þ ¼ pHR−1z
�� ��2

pHR−1p
� �

zHR−1p
� � H1

>
<
H0

η: ð1Þ

The non-adaptive version requires the prior know-
ledge of the speckle covariance matrix, R, whereas in the

adaptive version, R is replaced by its estimate, R̂ ; in this
case, the detector is called normalized adaptive matched
filter (NAMF). This test has been demonstrated to be
“texture-CFAR” and “covariance matrix-CFAR,” i.e. it
keeps constant the false alarm rate with respect to the
texture distribution and to the shape of the speckle co-
variance matrix, if a proper estimation technique is used
[4, 5, 31]. The estimation of the speckle covariance
matrix is a crucial operation in order to guarantee good
performance of the NAMF detector. In the case of CG-
distributed clutter, the fixed-point (FP) estimate of the
covariance matrix has been demonstrated [4–6] to be
asymptotically optimum. Other possible estimators are
the sample covariance matrix (SCM) and the normalized
sample covariance matrix (NSCM) [32, 33].

2.2 Multichannel received signal model
Let us consider a radar system consisting of M transmit-
ters and N receivers, whose geometry is sketched in
Fig. 1. The transmitter and receiver indexes are m and n,

respectively; thus, m = 1,…,M and n = 1,…,N. The azi-
muth pointing angles of the m-th transmitter and n-th

receiver are θ tð Þ
m and θ rð Þ

n , respectively. The unit vector
associated with the line-of-sight (LOS) of the m-th

transmitter is r tð Þ
m , whereas r tð Þ

n is the unit vector associ-
ated with the LOS of the n-th receiver. By assuming a
bi-dimensional system geometry, the unit vectors are

given by r tð Þ
m ¼ cosθ tð Þ

m sinθ tð Þ
m

h i
and r rð Þ

n ¼
cosθ rð Þ

n sinθ rð Þ
n

h i
. The target velocity v consists of two

components, vx and vy, i.e. v = [vx vy]. Hence, the target
Doppler frequency, associated with the mn-th TX-RX pair,
is given by

f mnð Þ
D ¼ 1

λ0
v⋅r tð Þ

m þ v⋅r rð Þ
n

� �
¼ 1

λ0

�
vx cosθ

tð Þ
m þ vx cosθ

rð Þ
n þ vy sinθ

tð Þ
m

þvy sinθ
rð Þ
n

�
ð2Þ

The signal received by the nth receiver and trans-
mitted by the m-th transmitter is indicated as zmn(l),
where l is the pulse index. We assume that the CPI
consists of L samples, assumed equal for all the TX-
RX pairs; thus, the received signal vector can be

expressed as zmn ¼ zmn lð Þf gL−1l¼0 .We can distinguish be-
tween the H1 and the H0 hypotheses:

H1 : zm;n ¼ αm;npm;n þ wm;n ;
H0 : zm;n ¼ wm;n;

ð3Þ
where m = 1,…,M n = 1,…,N, αmn is the target complex
amplitude and wmn is the disturbance. A general re-
ceived signal model is obtained by stacking the vectors
zmn for all the TX-RX pairs, i.e. z ¼ zT11;…;

�
zT1N ; z

T
21;…;

zT2N ;…; zTM1;…; zTMN �T , and then,

H1 : z ¼ Pαþ w;
H0 : z ¼ w;

ð4Þ

where P ¼ diag pT
11;…; pT

MN

� 	� �
, w ¼ wT

11;…;wT
MN

� 	T
. In

a more general case, the disturbance can be modelled as
a complex elliptically symmetric (CES) random variable
[34], and then, its multivariate probability density func-
tion (pdf) can be expressed as

fW wð Þ ¼ CL;g Σj j−1g wHΣ−1w
� � ð5Þ

where g(.) is the density generator, Σ is the covariance
matrix and CL,g is the normalizing constant [34]. The
compound Gaussian family is a subset of the CES family,
described by the following density generator:

Fig. 1 Sketch of the geometry involving the m-th transmitter and n-
th receiver of a MIMO radar system with widely separated nodes
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g tð Þ ¼
Z∞
0

τ−L exp −t=τf gf τ τð Þdτ; ð6Þ

and normalizing constant CL,g = π− L. The texture is dis-
tributed according to fτ(τ).
In the multidimensional disturbance model, there

is a combination of a multidimensional texture
vector τ = [τ11(0)… τ11(L − 1)… τMN(0)… τMN(L − 1)]T

and speckle vector s = [s11(0)… s11(L − 1),…, sMN(0)…
sMN(L − 1)]. Hence, the disturbance w can be
expressed as

w ¼ τ1=2⊙s ¼ Ts ð7Þ

where ⊙ denotes the Hadamard product and T is a
diagonal matrix, containing the texture samples, T =
diag(τ1/2). The space-time clutter covariance matrix, Σ,
is given by

Σ ¼ E wwHf g ¼ E TssHTH

 � ¼ E τ1=2⊙s

� �
τ1=2⊙s
� �Hn o

¼ E τ1=2 τ1=2
� �Hn o

⊙E ssHf g ¼ C1=2⊙R

ð8Þ

where R is the space-time speckle covariance matrix and
C is the space-time covariance matrix of the texture. It
can be concluded that the global covariance matrix Σ is
given by the Hadamard (i.e. element-wise) product of
the space-time speckle and texture covariance matrices.
The size of Σ, R and C is MNL ×MNL, i.e. the product
of the number of TX-RX pairs (MN) times the number
of integrated pulses, L. Each space-time covariance
matrix can be viewed as a block-matrix, whose block
size is L × L and total number of blocks is (MN)2. The
global, speckle and texture covariance matrices are re-
lated by

Σ1;1 ⋯ Σ1;MN

⋮ ⋱ ⋮
ΣMN ;1 ⋯ ΣMN ;MN

2
64

3
75 ¼

C1=2
1;1 ⋯ C1=2

1;MN

⋮ ⋱ ⋮
C1=2
MN ;1 ⋯ C1=2

MN ;MN

2
664

3
775

⊙
R1;1 ⋯ R1;MN

⋮ ⋱ ⋮
RMN ;1 ⋯ RMN ;MN

2
64

3
75

¼
C1=2

1;1⊙R1;1 ⋯ C1=2
1;MN⊙R1;MN

⋮ ⋱ ⋮
C1=2

MN ;1⊙RMN ;1 ⋯ C1=2
MN ;MN⊙RMN ;MN

2
664

3
775
ð9Þ

The general blocks Σmn,rs, Cmn,rs and Rmn,rs are given
by

Σmn;rs ¼ E wmnwH
rs


 �
Cmn;rs ¼ E τmnτHrs


 �
Rmn;rs ¼ E smnsHrs


 �
8><
>:

ð10Þ

m, r = 1,…,M ; n, s = 1,…,N. By examining Eq. (9), it
could be noted that the blocks on the main diagonal rep-
resent the autocovariance matrices of the clutter, texture
and speckle samples collected by one transmitter-receiver
pair, whereas the blocks off the diagonal represent the
cross-covariances between the temporal samples collected
by the mn-th and rs-th channels. Hence, if the channels
are assumed statistically independent, matrices Σ, C, and
R are block-diagonal. Due to the element-wise product
structure shown in (9), in order for the global space-time
covariance matrix to be not block-diagonal, both the tex-
ture covariance matrix, C, and speckle covariance matrix,
R, should not be block-diagonal. In other words, both the
texture and speckle samples should be correlated across
different TX-RX pairs. However, in this work, the chan-
nels are assumed statistically independent; hence, the
matrices Σ, C and R are block-diagonal.1

The target complex amplitudes can be stacked into the
vector α, whose covariance matrix is Cα = E{ααH}, of size
MNL ×MNL, and is block-structured, similar to Σ, C
and R. Hence, if the target returns are statistically inde-
pendent across different channels, the matrix Cα is
block-diagonal. In addition, if a Swerling I target model
is used, the target amplitude is constant within a CPI.
Under the assumption of compound Gaussian clutter,

the joint pdfs under the hypotheses H0 and H1 are given
by [34]

f ðzjH0Þ ¼
Z

f ðzjH0; τ0Þf ðτ0Þdτ0 ð11Þ

f ðzjH1;α; vÞ ¼
Z

f ðzjH1;α; v; τ1Þf ðτ1Þdτ1 ð12Þ

where the vectors τ0 and τ1 are the texture vectors in
the two hypotheses.
Under the assumption of independent channels,

concerning both the clutter and target returns, the joint
pdfs can be written as:

f z H0jð Þ ¼
YM
m¼1

YN
n¼1

f zm;n H0j� �

¼
YM
m¼1

YN
n¼1

Z
f zm;n H0; τ

0ð Þ
m;n

���� �
f τ 0ð Þ

m;n

� �
dτ 0ð Þ

m;n

ð13Þ

Palamà et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:107 Page 4 of 17



f z H1;α; vjð Þ ¼
YM
m¼1

YN
n¼1

f zm;n H1; αm;n; v
��� �

¼
YM
m¼1

YN
n¼1

Z
f zm;n H1; τ

1ð Þ
m;n; αm;n; v

���� �
f τ 1ð Þ

m;n

� �
dτ 1ð Þ

m;n

ð14Þ
where

f zm;n H0j� � ¼ g 0ð Þ
m;n q 0ð Þ

m;n zm;n
� �� �

πL Mm;n

�� ��
¼ 1

πL Mm;n

�� ��
Z∞
0

τ 0ð Þ
m;n

h i−L

exp
−q 0ð Þ

m;n zm;n
� �

2τ 0ð Þ
m;n

( )
f τ 0ð Þ

m;n

� �
dτ 0ð Þ

m;n

ð15Þ

f zm;n H1;j αm;n; vx; vy
� � ¼ g 1ð Þ

m;n q 1ð Þ
m;n zm;n
� �� �

πL Mm;n

�� ��
¼ 1

πL Mm;n

�� ��
Z∞
0

τ 1ð Þ
m;n

h i−L

exp −
q 1ð Þ
m;n

zm;n
� �
2τ 1ð Þ

m;n

( )
f τ 1ð Þ

m;n

� �
dτ 1ð Þ

m;n

ð16Þ
In the general case of CG disturbance, the expressions
of the joint pdfs (11)–(12) have not closed form; thus,
the optimum detector cannot be derived in closed form.
A suboptimum approach [2] consists of replacing the
texture with its maximum likelihood estimate (MLE),
which gives the following GLRT:

ΛðzÞ ¼ maxτ1 ;α
; vf ðzjH1;α; v; τ1Þ

maxτ0 f ðzjH0; τ0Þ H1
>

<
H0

λ
ð17Þ

This approach is tantamount to consider the clutter as
Gaussian distributed with unknown covariance. In the
following, a multichannel GLRT is derived in both cases
of perfectly known target signal and unknown target
complex amplitude.

2.3 Multichannel detection
In the case that target signal is perfectly known, we have
knowledge of the elements of the vector α containing
the target complex amplitudes and of the target steering
vectors pmn, for all the values of m and n, which in turn
requires a perfect knowledge of the system geometry
and of the target velocity v. Hence, the target signal, for

the mnth pair, is sm,n = αm,npm,n; thus, q 1ð Þ
m;n zm;n
� � ¼

zm;n−sm;n
� �H

R−1
m;n zm;n−sm;n
� �

.

The GLRT reduces to

Λ zð Þ ¼
max
τ1

f z H1; τ1jð Þ
max
τ0

f z H0; τ0jð Þ
H1
>
<
H0

λ ð18Þ

The numerator is max
τ1

f z H1; τ1jð Þ ¼ f z H1; τ̂1jð Þ ,

where τ̂1 is the texture MLE, which can be calculated as
∇τ1 f z H1; τ1jð Þf g τ1¼τ̂1j ¼ 0 . In the case that the clutter
samples are statistically independent across channels, we

have ∂f zjH1;τ1ð Þ�
∂τ 1ð Þ

mn
¼ ∂f zmnjH1;τ

1ð Þ
mnð Þ.

∂τ 1ð Þ
mn

. The texture MLE

for the mnth channel, τ̂mn, is obtained by equating to zero
the previous derivative. Hence, the vector consists of the
texture estimates, calculated separately for each receiver-

transmitter pair. τ̂1 ¼ τ̂ 1ð Þ
m;n

n oM;N

m;n¼1;1
¼ τ̂ 1ð Þ

1;1…τ̂ 1ð Þ
M;N

h i
,

where

τ̂ 1ð Þ
m;n ¼ argmax

τ 1ð Þ
m;n

f zm;n H1; τ
1ð Þ
m;n

���� �n o

¼ q 1ð Þ
m;n zm;n
� �
2L

ð19Þ

thus,

f zm;n H1; τ̂
1ð Þ
m;n

���� �
¼ 1

πL Rm;n

�� �� τ̂ 1ð Þ
m;n

h i−L
exp

−q 1ð Þ
m;n zm;n
� �

2τ̂ 1ð Þ
m;n

( )

¼ 1

πL Rm;n

�� �� q 1ð Þ
m;n zm;n
� �
2L

" #−L
e−L=2

ð20Þ

Similarly, under the H0 hypothesis, the texture

MLE for the mnth channel is τ̂ 0ð Þ
m;n ¼ q 0ð Þ

m;n zm;n
� �

=2L ;
thus,

f zm;n H0; τ̂
0ð Þ
m;n

���� �
¼ 1

πL Rm;n

�� �� q 0ð Þ
m;n zm;n
� �
2L

" #−L
e−L=2:

ð21Þ
The suboptimum GLR in (18) is given by

Λ zð Þ ¼
YM
m¼1

YN
n¼1

f zm;n H1; τ̂
1ð Þ
m;n

���� �
f zm;n H0; τ̂

0ð Þ
m;n

���� � ¼
YM
m¼1

YN
n¼1

τ 0ð Þ
m;n

τ 1ð Þ
m;n

" #L

¼
YM
m¼1

YN
n¼1

q 0ð Þ
m;n

q 1ð Þ
m;n

" #L
¼
YM
m¼1

YN
n¼1

1þ q 1ð Þ
m;n−q

0ð Þ
m;n

q 0ð Þ
m;n

 !−L

¼
YM
m¼1

YN
n¼1

1þ
−2Re sHm;nR

−1
m;nzm;n

n o
þ sHm;nR

−1
m;nsm;n

zHm;nR
−1
m;nzm;n

0
@

1
A

−L

ð22Þ
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Hence, the suboptimum multichannel GLRT for per-
fectly known signal can be recasted as

Λ zð Þ ¼
YM
m¼1

YN
n¼1

1−
2Re sHm;nR

−1
m;nzm;n

n o
−sHm;nR

−1
m;nsm;n

zHm;nR
−1
m;nzm;n

0
@

1
A

−1
H1
>
<
H0

λ

ð23Þ
In the case that the target complex amplitudes, con-

tained in the vector α, are now unknown parameters
(and the target velocity v is still a known quantity), the
general form of the adopted suboptimum GLRT is given
by

ΛðzÞ ¼ maxα;τ1 f ðzjH1;α; τ1Þ
maxτ0 f ðzjH0; τ0Þ H1

>
<
H0

λ:
ð24Þ

Due to the statistical independence across the target
returns associated with different channels, the MLE of
the vector α is a vector consisting of the MLEs of the
target complex amplitude associated with all the TX-

RX pairs ( α̂m;n , m = 1,…,M and n = 1,…,N), i.e. α̂¼

f ^αm;ngM;N
m;n¼1;1; thus, for the mn-th channel,

α̂m;n ¼ argmax
αm;n

f m;n zm;n H1; τ̂
1ð Þ
m;n

���� �n o

¼ argmax
αm;n

1

πL Rm;n

�� �� q 1ð Þ
m;n zm;n
� �
2L

" #−L
exp −

L
2

 �( )

¼ argmax
αm;n

q 1ð Þ
m;n zm;n
� �h i−L� �

¼ argmax
αm;n

zm;n−αm;npm;n

� �H
R−1
m;n zm;n−αm;npm;n

� �h i−L� �

ð25Þ

After straightforward manipulations, the value of αmn

that maximizes the final quantity in (25) is

α̂m;n ¼
pH
m;nR

−1
m;nzm;n

pH
m;nR

−1
m;npm;n

ð26Þ
By substituting the value of α̂mn in the general expres-
sion of the suboptimum GLRT in (22), we obtain

Hence, the multichannel GLRT in the case of unknown
complex target amplitude can be recasted in the form

Λ zð Þ ¼
YM
m¼1

YN
n¼1

1−
pHm;nR

−1
m;nzm;n

��� ���2
pH
m;nR

−1
m;npm;n

� �
zHm;nR

−1
m;nzm;n

� �
2
64

3
75
−1

H1
>
<
H0

λ;

ð28Þ
which is the MIMO (or multichannel) version of the nor-
malized matched filter. This detector has been originally
derived in [23] in a different manner. In [23], the authors
show that in the case of known covariance matrices, this
detector is texture-CFAR and PFA is a function only of the
detection threshold λ, the number of pulses L and the
number of transmitter-receiver pairs (MN= P),

PFA ¼ λ1−L
X
p¼0

P−1 L−1ð Þp
p!

lnλð Þp: ð29Þ

If P = 1 (one receiver and one transmitter), PFA = λ1-L,
which is the well-known expression of the probability of
false alarm achieved by the single-channel NMF [1]. In
[23], it is also shown that detector (28) outperforms the
MIMO-Optimum Gaussian Detector (MIMO-OGD) in
non-Gaussian clutter.

3 Performance analysis on simulated data
The performance of the multichannel NMF detector was
analysed by simulating the target and clutter signals.
Simulations were realized for both known and unknown
covariance matrix. In the latter case, the adaptive version
of the detector (28) was implemented, by replacing the
covariance matrix with its estimates.
The global signal-to-clutter ratio (SCR) is given by

the sum of all the local signal-to-clutter ratios

(SCRmn), SCR ¼PM
m¼1

PN
n¼1SCRmn , where the local

SCR is given by

SCRmn ¼ Ps mnð Þ

Pc mnð Þ
¼ E αmnj j2
 �

2E τmnf g ð30Þ

In the simulations, SCR is assumed uniformly dis-
tributed over all the transmitter-receiver pairs; thus,
SCRmn = SCR/MN. The target is modelled according

Λ zð Þ ¼
YM
m¼1

YN
n¼1

1þ q 1ð Þ
m;n−q

0ð Þ
m;n

q 0ð Þ
m;n

" #−L
¼ ¼

YM
m¼1

YN
n¼1

1þ
−2Re α̂m;nzHm;nM

−1
m;npm;n

n o
þ α̂m;n

�� ��2pHm;nM
−1
m;npm;n

zHm;nM
−1
m;nzm;n

2
4

3
5
−L

¼
YM
m¼1

YN
n¼1

1−
pH
m;nM

−1
m;nzm;n

��� ���2
pHm;nM

−1
m;npm;n

� �
zHm;nM

−1
m;nzm;n

� �
2
64

3
75
−L

ð27Þ
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to the Swerling-I model, and its amplitude is a com-
plex Gaussian random variable and independent for
different TX-RX pairs. For each CPI, one value of the
complex amplitude is generated, according to the
complex Gaussian distribution, and assumed as con-
stant for all the samples within the CPI. The clutter
power P mnð Þ

c is assumed equal to 1. The clutter is
modelled as a first-order autoregressive stochastic
process, AR(1), characterized by the one-lag correl-
ation coefficient ρmn and centre frequency f mnð Þ

c [35].
Both the target Doppler frequency and the clutter
centre frequency were assumed to be zero, in order
to remove the influence of the system geometry on
the algorithm performance, and to consider the worst
case, where the target is totally embedded in clutter.
Then, we set ρmn = 0.9, a value that is typically
adopted to model sea clutter spectrum. We consid-
ered the case of two TX-RX pairs, studying three dif-
ferent cases for the clutter statistical distribution,
illustrated in Table 1 (note that the shape parameters
are indicated as ν, with a subscript indicating the
channel index, whereas p(n) indicates the noise level
for the K-plus-noise distribution). In the case of K-
plus-noise distribution, the clutter-to-noise ratio
(CNR) is also indicated in Table 1. The number of in-
tegrated pulses, L, was set equal to 8. We considered
both the scenarios where the speckle covariance
matrix is known and unknown (and estimated by
using the SCM, NSCM and FP estimates). The num-
ber of iterations for the iterative estimation algorithm
was set to 4. The number of Monte Carlo runs was
107. The number of secondary range cells used to estimate
the clutter covariance matrix was K = 2L, which guaran-
tees quite accurate covariance estimates [5].

3.1 False alarm regulation
The false alarm regulation performance of the multi-
channel NMF detector, (28), is illustrated in Fig. 2. The
PFA values obtained by simulating the clutter samples,
and using the statistical models described in Table 1, are
compared with the theoretical PFA values, given by (29)
[23]. In the case of known covariance matrix, the PFA
values are identical for all the clutter configurations, per-
fectly matched with the theoretical values; thus, the

CFAR property of the multichannel NMF in the ideal
case (i.e. non-adaptive) is confirmed. The PFA values are
not influenced by the clutter distribution, if the covari-
ance matrix is estimated by the NSCM and FP methods,
which indeed confirms the robustness of the multichan-
nel NAMF. On the other hand, the multichannel NAMF
that utilizes the SCM covariance estimate is not a CFAR
detector with respect to the clutter distribution. These
results are expected, as the SCM estimator is optimum
in the case of Gaussian clutter, whereas the NSCM and
FP estimators are able to give good estimates in the case
of compound Gaussian clutter [4–6].
By evaluating the “PFA-vs-threshold” plots, the values

of the detection threshold λ can be set in order to
achieve a desired value of the PFA. As the values of λ de-
pends on the technique used to estimate the covariance
matrix, λKC indicates the value of the threshold in the
case of known covariance matrix; λNSCM and λFP are the
values of the threshold in the case of NSCM and FP esti-
mates, respectively. The values of λKC, λNSCM and λFP to
set in order to achieve PFA values from 10−5 to 10−2 are
shown in Table 3. These values will be used in evaluating
the detection performance of the multichannel NAMF,
by setting a desired PFA.

3.2 Detection performance
The ROC of the multichannel NAMF have been derived
for the three clutter configurations illustrated in Table 1;
for known and estimated covariance matrix, the global
SCR was equal to 10 dB. Figure 3 shows the ROC curves
of the MIMO-NAMF, i.e. for unknown target signal.
The detection performance in the first clutter config-

uration is similar to the one in the second clutter config-
uration, whereas it decreases in the third clutter
configuration. This is probably because the third clutter
configuration includes the presence of a thermal noise
component. The PD values are, as expected, the highest
in the case of known covariance matrix. Furthermore,
the NSCM method shows slightly better performance
than the FP, whereas the PD values obtained through the
SCM method are always lower than the one obtained by
using the NSCM and FP methods. This is an expected
result, because the SCM method is optimum only if the
clutter is Gaussian.
It should be noted that the single-channel optimum

detector has already shown (for many combinations of
the values of PFA and SCR) better detection performance
with decreasing values of the K-distribution shape par-
ameter, i.e. with increasing clutter spikiness [1, 33, 38–
40]
The ROC curves have shown that different shape par-

ameter values associated with different TX-RX pairs
have an impact on the detection performance. In order
to better evaluate this impact, simulations were realized

Table 1 Clutter configurations

Clutter configuration Statistical distribution Parameters

1 K v1 = 0.1, v2 = 0.5

2 K v1 = 0.2, v2 = 0.9

3 K-plus-noise v1 = 0.2, v2 = 0.9

p nð Þ
1 ¼ p nð Þ

2 ¼ 0:1

CNR = 10 dB
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by generating clutter samples distributed according to
the K-plus-noise distribution, with unitary clutter power,
thermal noise power of 0.1 and different values of the
shape parameters (ν1, ν2), both included between 0.04
and 1.2 (in real data, the values of the shape parameter
are usually included within this interval [30]). The
threshold values were set in order to obtain a PFA = 10−5,
as shown in Table 2. PD was calculated for each pair of
shape parameters (ν1, ν2). Figure 4 shows 3D contour
plots of the PD values versus (ν1,ν2), for a value of the
global SCR of 15 dB. A peak occurs for both the shape
parameters equal to about 0.15, which is suggested by

the black contours (delimiting the areas where PD ≥ 0.93)
in Fig. 4a, red contours (PD ≥ 0.93) in Fig. 4b, and by the
orange contour in Fig. 4c (delimiting the area where
PD ≥ 0.85). For both the shape parameters greater than
0.1, the contour plots are similar to hyperbolas, meaning
that high PD values are obtained for low values of the
shape parameters. It could be noted that the gradient
(through which the values of PD decrease with increas-
ing either ν1 or ν2) is less steep in the case of known co-
variance matrix with respect to the cases of unknown
estimated covariance matrix. The SCM estimator has
not been considered for this analysis, as it has already

Fig. 2 PFA as a function of the detection threshold, multichannel NAMF detector, known covariance matrix (a), SCM (b), NSCM (c) and FP (d)
covariance estimate
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shown much lower performance than the NSCM and FP
estimators. In addition, the NSCM covariance estimator
shows better performance than the FP one and a less
steep gradient. The contour plots highlight that identical
values of PD are achieved by the multichannel NAMF
for different combinations of the shape parameters asso-
ciated with the two jointly processed channels. In other
words, the clutter conditions experienced by each of the
two channels jointly influence the global detection
performance.
In recent works [25, 30], the statistical analysis of simul-

taneously collected bistatic and monostatic data of the
shape parameter has highlighted that the monostatic
shape parameter is almost constant with range, whereas
the bistatic one shows large deviations, due to the geom-
etry change. Hence, the detection performance, achieved
by applying the multichannel NAMF to monostatic and
bistatic data at different ranges, may be heavily influenced
by this clutter diversity, especially by the behaviour of
bistatic clutter.

4 Performance analysis on real data
4.1 Data overview
The performance of the multichannel NAMF were
analysed on real sea clutter data, collected by the nodes of
the NetRAD system, which is an S-band multistatic radar
system, developed at the University College London. The

main parameters of the NetRAD are summarized in
Table 3.
The analysed data were collected by the NetRAD system

during a measurement campaign realized in October 2010
at Scarborough, Cape Town, by researchers from the
University College London and University of Cape Town.
Two nodes—a monostatic one and a bistatic one—were
employed in the measurements and were located on the
sea coast, at a short distance from the sea.
Measurements were made by varying the azimuth angle,

polarization and baseline. For each range cell, the number
of received pulses is Np = 130,000, corresponding to a total
acquisition time of 130 s. In this work, we consider the
datasets collected on October 21, 2010, with a baseline of
728 m and a bistatic angle (β) of 30° [25, 30].
In order to evaluate the performance of both single-

channel and multichannel NAMF detectors on NetRAD
data, a target was simulated and its signal superimposed
on real clutter data. In particular, the target fluctuations
were modelled according to the Swerling-I model, with a
complex Gaussian target amplitude, completely correlated
within a CPI. The signal-to-clutter ratio (SCR) was set
similar to the case of simulated data, and the clutter
power is directly computed from the data [30].
The target Doppler frequency, fD, influences heavily

the performance of a detection algorithm, as if the
Range-Doppler bin of the target is located within an area
of low clutter power, the detection performance will be
high. In order to evaluate the impact of sea clutter on
false alarm regulation and on detection performance, the
range cell under test (rCUT) was set where the clutter
power is high for both the bistatic and monostatic sea
clutter data, i.e. at the centre of the intersection between
the antenna patterns of the transmitter and bistatic re-
ceivers (range of about 1400 m for the analysed dataset)
[30]. Since the aim of this work is to study the impact of
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Fig. 3 ROC curves of the multichannel NAMF, in the cases of two TX-RX pairs, first (a), second (b) and third (c) clutter configuration. SCR = 10 dB

Table 2 Threshold values (simulated data)

PFA Known covariance NSCM FP

10−2 1.13 1.23 1.25

10−3 1.18 1.31 1.35

10−4 1.23 1.44 1.45

10−5 1.29 1.54 1.55
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clutter statistics on the radar performance, the values of
the bistatic and monostatic Doppler frequencies of the
target were set manually, by evaluating the sea clutter
spectra, in order to inject the target within the area of
heavy clutter. Figure 5 shows the sea clutter spectra of
the analysed data, for both horizontal and vertical
polarization. The method adopted to estimate the Power
Spectral Density (PSD) was the Welch periodogram [35],
with a window of 512 samples and an overlap of 50 %.
Each periodogram was calculated over a time interval of
15 s. We note that most spectra are centred at a normal-
ized Doppler frequency of about 0.1. Figure 5 shows that
monostatic spectrum is wider than bistatic one and VV
spectra are wider than HH ones.
An important quantity to analyse is the cross-

correlation between monostatic and bistatic data. The
received signal model at the basis of the adopted detec-
tion scheme assumes that the signals associated with dif-
ferent channels are uncorrelated. Thus, the fact that two
(or more) channels are actually correlated might worsen
the performance of the adopted detection scheme. We
separated two clutter components, i.e texture and
speckle, by using the technique illustrated in [30] (by
using blocks of 512 samples, resulting in a total number
of blocks, Nb, equal to 250), and then, we computed the
cross-correlation coefficient between the texture samples
(shown in Fig. 6a) and in-phase and quadrature speckle
samples (shown in Fig. 6b).
The cross-covariance function between the bistatic

and monostatic textures, Rτ, was calculated as

Rτ mð Þ ¼ 1
Nb

X
l¼1

Nb− mj j
τ̂B lð Þ−μ̂ Bð Þ

τ

h i
τ̂M l þ mj jð Þ−μ̂ Mð Þ

τ

h i
;

ð31Þ

where τ̂B and τ̂M represent the bistatic and monostatic
texture, respectively, whose sample means are μ̂ Bð Þ

τ and
μ̂ Mð Þ
τ , respectively. The texture cross-correlation coeffi-

cient is rτ mð Þ ¼ Rτ mð Þ= σ̂ Bð Þ
τ σ̂ Mð Þ

τ

� �
, where σ̂ Mð Þ

τ and σ̂ Bð Þ
τ

are the estimated standard deviations of monostatic and
bistatic texture, respectively.
Concerning the analysis of the speckle, the cross-

covariance function between the bistatic and monostatic
in-phase speckle samples was calculated as

Rs;II mð Þ ¼ 1
Np

X
l¼1

Np− mj j
x̂B;I ið Þ−μ̂ Bð Þ

s;I

h i
x̂M;I iþ mj jð Þ−μ̂ Mð Þ

s;I

h i
;

ð32Þ
where x̂B;I and x̂M;I are the bistatic and monostatic in-
phase speckle estimates (obtained by normalizing the
clutter samples over the texture estimates), respectively,
and μ̂ Bð Þ

s;I and μ̂ Mð Þ
s;I are their sample means, respectively.

The cross-correlation coefficient between the in-phase
components is rs;II ið Þ ¼ Rs;II mð Þ= σ̂ Bð Þ

s;I σ̂
Mð Þ
s;I

� �
, where σ̂ Bð Þ

s;I
and σ̂ Mð Þ

s;I are the estimated standard deviations of the in-
phase speckle components. The cross-correlation coeffi-
cient between the quadrature components, rs,QQ(m), is
calculated similar to rs,II(m).
The texture cross-correlation coefficient shows a small

periodicity for both HH and VV data. For VV data, there
are two peaks at a time lag of about 5 and 22 s, whereas
for HH data, there are peaks at about 3, 16 and 22 s. In
general, VV data show higher peaks, separated by longer
intervals, with respect to HH data.
The values of the speckle cross-correlation coefficient

are very low for all the data, even if not null (with max-
imum values around 0.01), and show different behav-
iours, depending on polarization. For HH data, both
rs,QQ and rs,II show an almost identical periodic

Fig. 4 Contour plots of the PD values as a function of the shape parameters (ν1, ν2), in the cases of known (a) covariance matrix, NSCM (b) and FP
(c) estimates. SCR = 15 dB, CNR = 10 dB, PFA = 10−5
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behaviour, whose fluctuations decrease with increasing
time lag. For VV data, both rs,QQ and rs,II show a slightly
decreasing behaviour as a function of the time lag, with
the values of rs,II lower than the values of rs,QQ.
In general, the analysis of the cross-correlation suggests

that bistatic and monostatic data have a certain degree of
correlation, which could influence the performance of the
adopted detector.

4.2 False alarm regulation
In the first analysis, we studied the behaviour of the prob-
ability of false alarm as a function of the detection thresh-
old, for the single-channel NAMF, applied separately on
simultaneous bistatic and monostatic data. This analysis
was realized also for the multichannel NAMF, combining
the bistatic and monostatic data. In order to evaluate the
robustness of the adopted detectors against the time-
varying clutter spectra [36], four different values of the
normalized Doppler frequency were chosen, i.e. fD = [−0.1,
0, 0.1, 0.2]. As shown in Fig. 5 for the datasets collected by
the NetRAD on October 21, 2010, at a bistatic angle of
30°, the clutter power is low for fD = −0.1, 0 and 0.2 (PC <
−35 dBm) and very high for fD = 0.1 (PC ≈ −10 dBm).

In the following, we analyse the false alarm regulation
performance of the single-channel and multichannel
NAMF on the HH polarized data, collected at a bistatic
angle of 30°. The range cell under test is at 1400 m.
It should be noted that the total number of pulses is

about 130,000 and that the number of integrated pulses
(L) was set as 8. The PFA was measured over bursts of L
pulses, with 50 % overlap; thus, it cannot be accurately
estimated for values lower than 10−2.
Figure 7 shows the behaviour of the PFA for the multi-

channel NAMF. All the plots compare the PFA values
obtained at different Doppler frequencies, by employing
the SCM, NSCM and FP covariance estimates. The
“PFA-vs-threshold” plots show that the variation of the
clutter properties (in particular its non-stationarity) with
the Doppler frequency influences the false alarm regula-
tion performance. It could be noted that the maximum
values of PFA are obtained for a normalized Doppler
frequency equal to 0.1.
From the examination of the clutter spectra, it is

confirmed that the Doppler bins giving higher values of
PFA are included within the area where the sea clutter is
more powerful and spikier. This phenomenon has been
already observed and explained in [36]. For this reason,
the values of PFA are not constant over the entire range,
and their spread is larger if the SCM estimate is used
and reduced if either the NSCM or FP estimates are
employed. The SCM estimate is not accurate in the case
that the clutter is not Gaussian, whereas the NSCM and
FP estimates are more accurate [5, 36].
By examining Fig. 7, it is possible to set suitable values

of the threshold in order to achieve a desired PFA. Due
to the variation of PFA as a function of the analysed
Doppler frequency, these threshold values are not
unique. A possible choice consists of adopting the
average threshold, included between its maximum and
minimum values. The resulting average threshold values
(that were then adopted in our analysis), obtained for
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Fig. 5 Spectrum of bistatic and monostatic sea clutter. β = 30°, rCUT = 1400 m, HH (a) and VV (b) polarization

Table 3 NetRAD radar parameters

Radar parameters

Carrier frequency 2.4 GHz

Transmitted signal Up/down chirp

Bandwidth 45 MHz

Pulse duration Variable

Pulse repetition frequency 1 kHz

Range resolution 3.33 m

Sampling frequency 100 MHz

Polarization HH, VV (separately)

Half power beamwidth 9° (el.) × 11° (az.)
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the analysed dataset (HH polarized data, β = 30°, rCUT =
1400 m) and for each covariance matrix estimation
method, are shown in Table 4.2

The false alarm regulation performance achieved by the
adopted detectors (by using the chosen thresholds) is ana-
lysed as a function of the Doppler frequency, as shown in
Fig. 8. In other words, for a fixed Doppler frequency, the
PFA values were computed for the single-channel detector,
applied separately on monostatic and bistatic data and for
the multichannel detector. The fluctuations of the PFA
values as a function of the Doppler frequency are smaller
for monostatic data (Fig. 8a) with respect to bistatic ones
(Fig. 8b). Both the bistatic and monostatic data show a
peak of PFA at fD ≈ 0.1, and this peak is higher for bistatic
data. The overall behaviour of the PFA values is matched
to the clutter spectra shown in Fig. 5.

In general, the FP and NSCM estimates guarantee a
more stable behaviour of the PFA values, fluctuating
around the desired value of 10−2. The behaviour of PFA
seems to be less stable for the multichannel detector with
respect to the single-channel one. It seems that the PFA
values obtained by using the multichannel detector adapt
themselves to the less favourable between the bistatic and
monostatic channels, i.e. the channel that, for each Dop-
pler bin, gives PFA values farther from the desired value of
10−2. By comparing the covariance estimation methods,
the SCM is shown to give larger fluctuations of the PFA
with respect to the FP and NSCM ones.

4.3 Detection performance
In the first analysis, the detection performances of the
single-channel and multichannel detectors on NetRAD
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Fig. 6 Cross-correlation between monostatic and bistatic sea clutter data, for texture (a) and in-phase and quadrature speckle components (b).
β = 30°, rCUT = 1400 m, HH and VV polarization
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Fig. 7 PFA of the multichannel NAMF as a function of the threshold λ, utilizing the SCM (a), NSCM (b) and FP (c) covariance estimate. Monostatic
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data are examined, in terms of receiver operating charac-
teristics, obtained for different values of the target Doppler
frequency and of the signal-to-clutter ratio. The ROC
curves of the multichannel NAMF are evaluated by using
the SCM, NSCM and FP covariance estimates. Different
values of the normalized target Doppler frequency were
analysed, i.e. fD = [−0.1, 0, 0.1, 0.2], and the value of SCR
was set as 0 dB. ROC curves in Fig. 9 show that the PD
values are lower for fD equal to 0.1, where the majority of
the clutter power is concentrated. On the other hand, PD
values are very high for fD = −0.1. From a comparison be-
tween the covariance matrix estimators, the NSCM and
FP ones give better performance than the SCM one, espe-
cially in heavy clutter conditions (fD = 0.1 and, less clearly,
fD = to 0 and 0.2). This is due to the fact that the SCM es-
timator has good performance if the statistical distribution
of the disturbance samples approaches the Gaussian one,
whereas the NSCM and FP estimators are accurate also in
the case of non-Gaussian clutter [36].
In order to better examine the detection performance,

only the heavy-clutter Doppler bin (fD = 0.1) was consid-
ered. Figure 10 shows the ROC curves obtained by the
single-channel and multichannel detectors for fD = 0.1,
for two different values of SCR (0 and 5 dB), on horizon-
tally and vertically polarized data. By examining the
single-channel NAMF detector, the PD values are always
higher for bistatic data with respect to monostatic ones,

for both HH and VV data, meaning that bistatic clutter
offers, in the analysed cases, more favourable conditions
for target detection. Polarization seems to have a small
impact on results obtained on monostatic clutter (the PD
values are similar to HH and VV monostatic data). On
the other hand, for bistatic clutter, for PFA = 10−2 and
SCR = 0 dB, PD is about 0.65 for HH and 0.5 for VV,
whereas for SCR = 5 dB, PD is about 0.82 for HH and 0.7
for VV.
In addition, the difference between the PD values of

bistatic and monostatic channels is higher for HH polar-
ized data with respect to the VV ones. This difference
could be due to the different behaviours of the shape
parameter between HH and VV data, shown in [30], ac-
cording to which the estimated values of the K +N
shape parameters are lower in the bistatic data com-
pared to the monostatic ones, for both polarizations
(relative to the datasets collected at a bistatic angle of 30
and range cell of 1400 m).
The higher PD values shown by the bistatic channel are

consistent with the results shown in Section 3.2 for simu-
lated data, which highlight that, for each covariance esti-
mate, the lower the shape parameter, the higher the
detection probability (this behaviour of the detection prob-
ability of the NMF detector has been shown also in [1]).
The multichannel NAMF provides a gain in perform-

ance over the single-channel NAMF. This gain is more
evident for a higher value of the SCR (i.e. SCR = 5 dB).
In terms of detection performance, analysed on a single
Doppler bin, it is evident that, by jointly processing the
signals associated with two different channels of the
system, the multichannel NAMF adapts itself to the
more favourable between the two channels.
The analysis of detection performance was deepened

by studying the behaviour of the PD values as a function

Table 4 Average threshold values for PFA = 10−2, evaluated on
NetRAD data

SCM NSCM FPE

Bi 0.79 0.84 0.83

Mono 0.81 0.85 0.83

Mono and Bi 1.35 1.42 1.38
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Fig. 8 PFA as a function of the normalized Doppler frequency, for single-channel NAMF on monostatic (a) and bistatic (b) and of the multichannel
NAMF (c), obtained by utilizing the SCM (blue), NSCM (red) and FP (black) covariance estimators. HH polarization, β = 30°, rCUT = 1400 m
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Fig. 9 ROC of the multichannel NAMF applied to real data, achieved by using the SCM (a), NSCM (b), and FP (c) estimates. HH pol., β= 30°, rCUT = 1400 m

(a) (b)

(c) (d)

Fig. 10 ROC of the single-channel NAMF, on monostatic (blue) and bistatic (red) data, and of the multichannel NAMF (black), obtained by utilizing
the NSCM covariance estimate. SCR = 0 dB, HH pol. (a), SCR = 5 dB, HH pol (b), SCR = 0 dB, VV pol (c), SCR = 5 dB, VV pol. β = 30°, rCUT = 1400 m (d)
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of the SCR, for a normalized Doppler of 0.1 and PFA of
10−2; thus, the threshold values contained in Table 4
were utilized. As the NSCM estimator seems to give
better performance, it was chosen for the comparison
between single-channel and multichannel detectors.
Synthetic clutter samples were also generated, with

similar statistical properties as the analysed real data.
Clutter samples were generated according to the K-
plus-noise distribution, whose parameters were esti-
mated from real data through the Method of Moments
[30]. For the HH data, shape parameter ν is 0.047 for
bistatic data and 0.057 for monostatic data, whereas for
VV data, ν = 0.064 for bistatic and ν = 0.091 for mono-
static data.
The clutter autocorrelation was also estimated for each

analysed dataset, where the symbol (.)* indicates the
complex conjugate. The clutter samples were generated
with the extracted correlation properties.
Figure 11 shows the “PD-vs-SCR” curves of the single-

channel NAMF and of the multichannel NAMF, applied
to real and simulated data.
For the real data, Fig. 11a shows that, for a PD of 0.8,

the multichannel NAMF gives a SCR gain of about 1.5
and 6 dB over the single-channel NAMF applied on
bistatic and monostatic data, respectively. The corre-
sponding values for VV data (Fig. 11b) are 1 and 4 dB.
The behaviour of PD is more flat for simulated data

with respect to real ones, which means that the SCR has
a higher impact when real clutter is processed. Relative
to the single-channel detector, the gap between bistatic
and monostatic data is similar to real and simulated
data. On the other hand, we note a large deviation in
the detection performance of the multichannel de-
tector, between real and simulated data. In the case

of real data, the PD values achieved by the multichan-
nel detector are not far from the ones obtained by
using the single-channel detector on bistatic data. In
the simulated data, a large gap is noticeable between
the multichannel and the single-channel curves. In
other words, the gain achieved by using a multichan-
nel detection scheme is larger for simulated data with
respect to real ones. One of the factors that could in-
fluence this different behaviour is that real bistatic
and monostatic data show (Fig. 6) to be correlated,
whereas simulated data are generated independently
(i.e. they are uncorrelated). As the detection scheme
is derived by assuming that the channels are uncorre-
lated, its performance is expected to be generally
higher if this assumption is verified.

5 Conclusions
This work concerns suboptimum radar detection tech-
nique that combines the signal received by the nodes of
a multistatic radar, in the case of non-Gaussian disturb-
ance. The adopted multichannel detection scheme,
called multichannel normalized adaptive matched filter,
is able to keep constant the probability of false alarm,
for different clutter conditions associated with the nodes
of the system.
A derivation of the multichannel NAMF has been il-

lustrated, as an alternative to the one already provided
by authors in [23]. The performance of the multichannel
NAMF has been evaluated, showing that clutter statis-
tical diversity influences the detection performance. We
have studied the behaviour of the PD values as a function
of the couple of shape parameters, associated with the
two channels of the simulated system. The results have
shown that, in the case of two channels, the contour

(a) (b)

Fig. 11 PD as a function of SCR of the single-channel NAMF, on monostatic (blue marked) and bistatic (red marked) data, and of the multichannel
NAMF (black marked), obtained by utilizing the NSCM covariance estimate, compared with PD values obtained on simulated data fixed PFA = 10−2.
HH (a) and VV (b) polarization, β = 30°, rCUT = 1400 m
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plots of PD as a function of the clutter shape parameters
are similar to hyperbolas, meaning that the same value
of PD can be obtained for different couples of shape pa-
rameters. The performance analysis has been carried out
also on real sea clutter data, combining the bistatic and
monostatic clutter data collected by the nodes of the
NetRAD system. The false alarm regulation performance
of the multichannel NAMF seem to be slightly lower
than the one of the single-channel NAMF, applied separ-
ately on bistatic and monostatic data. In particular, the
behaviour of the PFA values of the multichannel NAMF,
for each Doppler bin, seems to adapt to the less
favourable between the two system nodes. This behav-
iour is not desirable; thus, it should be better studied in
future research steps.
The detection performance evaluation has shown that

the multichannel NAMF gives a gain over the single-
channel one, which is larger in the horizontally polarized
data than in vertically polarized ones. If the multichannel
detector is employed, the PD values are higher in the
case of simulated data with respect to real ones. A
possible reason is that, in real data, the channels are not
uncorrelated, whereas the multichannel NAMF has been
derived from the assumption of independent channels.
In future research steps, this assumption will be possibly
removed, in order to derive a detection scheme that
exploits the whole information carried on by the radar
channels, by processing them jointly and not separately.
In [37], the authors remove the aforementioned assump-
tion and derive a detection scheme in the case of
Gaussian clutter. It would be of interest to consider the
case where the clutter samples are compound Gaussian
distributed and correlated across channels.

6 Endnotes
1It should be noted that another possible representa-

tion adopts MN ×MN-sized blocks, whose total number
is L2.

2The PFA versus threshold plots for the single-channel
detector, applied separately to monostatic and bistatic
data, are not shown for lack of space.
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