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Abstract
The paper studies the existence problem of periodic solutions of the nonlinear
dynamical systems in the singular case. We prove a certain generalization of the
Andronov-Hopf theorem. This generalization is based on an application of the
theorem on a modified p-factor operator. It also uses some other results and
constructions of the p-regularity theory. Moreover, we prove theorems on the
solution’s uniqueness. We illustrate our results by the example of a nonlinear
dynamical system of ordinary differential equations. Our purpose is to find periodic
solutions of such system with fixed period 2π . This is a new research in relation to
previous work, where the authors were looking for periodic solutions with period
near 2π .
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1 Introduction
In this paper we study the structure of periodic solutions of dynamical systems and bi-
furcation problems associated with such systems, i.e., we consider a nonlinear system of
differential equations of the form

u̇ = f (μ, u), u() = u(τ ), ()

where f ∈C
(R×R

n,Rn), τ ,μ ∈R, u ∈C
(R,Rn), and f (μ, ) = . Writing it as

F(μ, u) =
du
dt

– f (μ, u) = , ()

we apply to it the p-regularity theory [–].
Our applications refer to Andronov-Hopf bifurcations, which were considered by

Buchner et al. [], and by Tan []. In our paper the p-regularity theory will be applied
to finding periodic solutions with the fixed period τ = π . In the cited works the period is
near π .

The issues related to the so-called Andronov-Hopf bifurcation involve the study of the
bifurcation of periodic solutions of the dynamical systems (), where f (μ, u) =  for some
u ∈ R

n and any μ ∈ R. By the changing of variables μ and u in (), the above problem
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reduces to a study of the solutions in a neighborhood of the point (, ). Then the system
() has a family of equilibrium solutions {(μ, ) : μ ∈R}. Let L := ∂f

∂u (, ). The question is
whether (, ) is a point of bifurcation. In this case, the sufficient conditions for bifurcation
is the Andronov-Hopf result, which we can formulate as follows (see [–]): a bifurcation
of periodic solutions of system () (i.e., (, ) is a bifurcation point) in a finite dimensional
case occurs under the following assumptions:

. ±i are algebraically simple eigenvalues of L and ±ki do not belong to spectrum of
L for k = , , , . . . ;

. if α is an eigenvector of L with eigenvalue i, then there exist C functions β(μ) and
z(μ) defined by ∂f

∂u (μ, )z(μ) = β(μ)z(μ), β() = i, z() = α satisfying the
Andronov-Hopf condition

Reβ ′() �= , ()

i.e., the eigenvalues cross the imaginary axis transversally.
It means that the conditions  and  are sufficient for (, ) to be a point of bifurcation.
Our problem is to find periodic solutions of () with fixed period τ = π . We do not use

the classical Andronov-Hopf condition. Looking for methods of solving nonlinear equa-
tions we will show how we can modify the p-factor operator to provide sufficient condi-
tions for the existence of nontrivial solutions. It turns out that the apparatus of p-regularity
theory gives us the ability to construct a wide class of p-factor operators, by means of
which one can describe the tangent cone to the sets of solutions and consequently get the
solutions (see [, ]). We will call such operators modified or generalized.

In this paper we prove a new theorem on the modified p-factor operator which is some
generalization of the Andronov-Hopf theorem. In this generalization we do not require
that the Andronov-Hopf condition Reβ ′() �=  holds, i.e., we weaken this classical theo-
rem. Essential is the fact of surjectivity of the p-factor operator. Note also that the method
of proving will be based on the multimapping contraction principle. Moreover, the new
theorems on the solution’s uniqueness will be proved too. These results we can consider as
a contribution to and a novelty in nonlinear differential equations theory that we represent
in our paper.

2 Structure of the paper
The organization of the paper is as follows. We begin with some notations. Then we recall
the main concept of p-regularity theory and some important lemmas which will be used
later. In the next section we formulate and prove the theorems on solutions uniqueness.
The main result of the paper is a theorem, which we called a generalization of Andronov-
Hopf theorem. It is based on some modified (generalized) p-factor operator which allows
us to introduce a new method of solving differential equations. We illustrate the theorem
by an example including a nonlinear dynamical system of ordinary differential equations.

3 Notations
Suppose X and Y are Banach spaces and denote the space of all continuous linear op-
erators from X to Y by L(X, Y ). Let p be a natural number and let B : X × X × · · · ×
X (p copies of X) → Y be a continuous symmetric p-multilinear mapping. The p-form
associated to B is the mapping B[·]p : X → Y defined by B[x]p = B(x, x, . . . , x) for x ∈ X.
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Alternatively we may simply view B[·]p as a homogeneous polynomial Q : X → Y of de-
gree p, i.e., Q(αx) = αpQ(x). Throughout this paper, we assume that F ∈ Cp(X, Y ), i.e., the
mapping F : X → Y is p-times continuously Fréchet differentiable on X and its pth-order
derivative at x ∈ X will be denoted as F (p)(x) (a symmetric multilinear mapping of p copies
of X to Y ) and the associated p-form, also called a pth-order mapping, is

F (p)(x)[h]p = F (p)(x)[h, h, . . . , h].

In this paper we will write the vector h as the row or column vector, depending on the
situation.

We also use the notation

Kerp F (p)(x) =
{

h ∈ X : F (p)(x)[h]p = 
}

and refer to it as the p-kernel of the pth-order mapping. Note that this set is a (non-convex)
closed cone.

The set M = M(x∗) = {x ∈ X : F(x) = F(x∗) = } is called the solution set for the map-
ping F . We call h a tangent vector to the set M ⊆ X at x∗ ∈ M if there exist ε >  and a
function r : [, ε] → X with the property that for t ∈ [, ε] we have x∗ + th + r(t) ∈ M and
‖r(t)‖ = o(t). The set of all tangent vectors at x∗ is called the tangent cone to M at x∗ and
is denoted by Tx∗M (see []). A mapping F : X → Y is regular at x∗ ∈ X if Im F ′(x∗) = Y . In
the regular case, the tangent cone to the solution set coincides with the kernel of the first
derivative of the mapping F . Recall the following theorem.

Theorem  (Classical Lyusternik theorem []) Let X and Y be the Banach spaces and let
the mapping F : X → Y be regular at x∗ ∈ X. Then

Tx∗M = Ker F ′(x∗).

The notion of regularity is generalized to the notion of the so-called p-regularity.

4 Elements of p-regularity theory
Consider the nonlinear problem

F(x) = ,

where F is a sufficiently smooth mapping between Banach spaces X and Y . If a solution
x∗ of this equation is regular, i.e., the operator F ′(x∗) is surjective, then the above equation
describes a regular submanifold of X near the point x∗.

The p-regularity theory [–, –] deals with irregular cases. In [], it was shown that
the notions of nonlinearity and irregularity are strongly connected. The main idea of our
p-regularity construction is to replace the operator F ′(x∗) (which is not surjective) with
another linear operator (constructed by means of the first- and higher-order derivatives)
which is surjective. The latter operator is denoted by �p(x∗, h). Here the vector h belongs
to the tangent cone to the set {x ∈ X : F(x) = } at x∗ and p is taken so large (if it ever exists)
that the operator �p(x∗, h) turns out to be surjective (the so-called p-regularity condition).

Assume that x∗ ∈ U ⊆ X, U is a neighborhood of the element x∗. Let a mapping F : U →
Y be p-times Frechet differentiable in U (p > ) and Im F ′(x∗) �= Y (the regularity condition
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does not hold). To define the notion of p-regularity, let us first define the so-called p-factor
operator (see []). Assume that the space Y is decomposed into a direct sum

Y = Y ⊕ · · · ⊕ Yp, ()

where Y = cl(Im F ′(x∗)) (the closure of the image of the first derivative of F evaluated at x∗)
and the next spaces are defined as follows. Let Z be a closed complementary subspace to
Y, that is, Y = Y ⊕Z (we assume that such a closed complement exists), and let PZ : Y →
Z be the projection operator onto Z along Y. Let Y = cl(span Im PZ F ′′(x∗)[·]) ⊆ Z (the
closed linear span of the image of the quadratic mapping PZ F ′′(x∗)[·]). More generally,
define

Yi = cl
(
span Im PZi F

(i)(x∗)[·]i)⊆ Zi, i = , . . . , p – ,

where Zi is a closed complementary subspace to Y ⊕ · · · ⊕ Yi–, i = , . . . , p with respect
to Y , and PZi : Y → Zi is a projection operator onto Zi along Y ⊕ · · · ⊕ Yi–, i = , . . . , p
with respect to Y . Finally, let Yp = Zp. The order p is chosen as the minimal number (if it
exists) for which the above decomposition () holds.

Now, let us define the following mappings:

fi : U → Yi, fi(x) = 	iF(x), i = , . . . , p,

where 	i : Y → Yi is a projection operator along Y ⊕ · · · ⊕ Yi– ⊕ Yi+ ⊕ · · · ⊕ Yp. Then
the mapping F can be represented as

F(x) = f(x) + · · · + fp(x). ()

Sometimes it is more convenient to represent Y as a product Y × · · · × Yp instead of the
sum Y ⊕ · · · ⊕ Yp. Then

F(x) =
(
f(x), . . . , fp(x)

)
.

Let us recall some important definitions of p-regularity theory for the further considera-
tions.

Definition  The linear operator mapping X to Y ,

�p(h) = �p
(
x∗, h
)

= f ′

(
x∗) + f ′′


(
x∗)[h] + · · · + f (p)

p
(
x∗)[h]p–

such that

�p(h)x = �p
(
x∗, h
)
x = f ′


(
x∗)x + f ′′


(
x∗)[h]x + · · · + f (p)

p
(
x∗)[h]p–x, x ∈ X,

is called p-factor operator.

Here, by definition, f ′′
 (x∗)[h]x = f ′′

 (x∗)[h, x], etc.
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Sometimes it is convenient to use the following equivalent definition of p-factor opera-
tor:

�p(h) = �p
(
x∗, h
)

=
(
f ′

(
x∗), f ′′


(
x∗)[h], . . . , f (p)

p
(
x∗)[h]p–)

=
(
	F ′(x∗),	F ′′(x∗)[h], . . . ,	pF (p)(x∗)[h]p–)

for h ∈ X.
We say that F is completely degenerate at x∗ up to the order p if F (i)(x∗) = , i = , . . . , p – .

Remark  In the completely degenerate case the p-factor operator reduces to
F (p)(x∗)[h]p–.

Remark  For each mapping fi, i = , . . . , p we have ([], p.):

f (k)
i
(
x∗) = , k = , . . . , i – ,∀i = , . . . , p. ()

Remark  According to the Remark  the expressions

f (i)
i
(
x∗)[h]i– = 	iF (i)(x∗)[h]i–, i = , . . . , p,

are i-factor operators corresponding to completely degenerate mappings fi. So the general
degeneration of F can be reduced to the study of completely degenerated mappings fi.

Sometimes we will be write round brackets (·) instead of square ones [·].

Definition  The p-kernel of the operator �p(h) is a set

Hp
(
x∗) = Kerp �p(h) =

{
h ∈ X : �p(h)[h] = 

}

=
{

h ∈ X : f ′

(
x∗)[h] + f ′′


(
x∗)[h] + · · · + f (p)

p
(
x∗)[h]p = 

}
.

Note that the following relation holds:

Kerp �p(h) =

{ p⋂

i=

Kerif (i)
i
(
x∗)
}

.

Again, this set is a closed cone, in general non-convex.
Furthermore p-kernel of the operator F (p)(x∗) in the completely degenerate case is a set

Kerp F (p)(x∗) = {h ∈ X : F (p)(x∗)[h]p = }.

Definition  A mapping F is called p-regular at x∗ along h (p > ) if Im�p(h) = Y (i.e., the
operator �p(h) is surjective).

Definition  A mapping F is called p-regular at x∗ (p > ) if either it is p-regular along
every h ∈ Hp(x∗)\{} or Hp(x∗) = {}.

The following theorem gives the description of the tangent cone to the solution set M
in the degenerate case.
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Theorem  (Generalized Lyusternik theorem []) Let X and Y be the Banach spaces and
let the mapping F ∈ Cp(X, Y ) be p-regular at x∗ ∈ M. Then

Tx∗M = Hp
(
x∗),

where Tx∗M denotes the tangent cone to the set M at the point x∗.

The above apparatus of p-regularity is a new tool for studying nonlinear problems.

5 Some important lemmas
In this section we present some lemmas which play important roles in the further consid-
erations and will be used later.

Lemma  ([]) Let A, A, . . . , Ap ∈L(X, Y ), Y = Y ⊕ · · · ⊕ Yp. Let Im	kAk = Yk , where
	k : Y → Yk is a projection operator from the space Y onto Yk along Y ⊕ · · · ⊕ Yk– ⊕
Yk+ ⊕ · · · ⊕ Yp, k = , . . . , p, and 	A = A. Then

(	A + 	A + · · · + 	pAp)X = Y ⇔ (	pAp)

(p–⋂

i=

Ker	iAi

)

= Yp.

Let X and Y be Banach spaces. By the mapping 
 : X → Y we mean a multivalued map-
ping (multimapping) from X to the set of all subsets of a space Y . Let ρ(x, y) = ‖x – y‖ be
the distance between elements x and y in a Banach space and let ρ(x, M) = inf{‖x – z‖ :
z ∈ M} be the distance from element x to subset M in this space. By distH (M, M) =
max{sup{ρ(x, M) : x ∈ M}, sup{ρ(x, M) : x ∈ M}} we denote the Hausdorff distance be-
tween the sets M and M.

Lemma  (Multimapping contraction principle []) Let Z be a Banach space. Assume
that a multimapping


 : Uε(z) → Z

is given on a ball Uε(z) = {z ∈ Z : ρ(z, z) < ε} (ε > ), where the sets 
(z) are non-empty
and closed for any z ∈ Uε(z). Further, assume that there exists a number θ ,  < θ < , such
that

. distH (
(z),
(z)) ≤ θρ(z, z) for any z, z ∈ Uε(z),
. ρ(z,
(z)) < ( – θ )ε.

Then, for every number ε satisfying the inequality

ρ
(
z,
(z)

)
< ε < ( – θ )ε,

there exists z ∈ Bε/(–θ )(z) := {ω : ρ(ω, z) ≤ ε/( – θ )} such that

z ∈ 
(z). ()

Moreover, among the points satisfying (), there exists a point z such that

ρ(z, z) ≤ 
 – θ

ρ
(
z,
(z)

)
.
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For a linear surjective operator � : X → Y we denote by �– its right inverse, that is,
�– : Y → X , which takes an element y ∈ Y to its complete inverse image of the mapping
�, �–y = {x ∈ X : �x = y}, and of course ��– = IY . We set ‖�–y‖ = inf{‖x‖ : x ∈ �–y}.
By the ‘norm’ of such a right inverse operator we mean the number

∥∥�–∥∥ = sup
‖y‖=

∥∥�–y
∥∥. ()

By the Banach theorem on surjective linear operator, we have ‖�–‖ < ∞. Note that if �

is one-to-one, then ‖�–‖ is the usual norm of the operator �–. In our considerations,
by �– we shall mean just the right inverse multivalued operator with the norm defined
by ().

Lemma  ([]) Let X and Y be the Banach spaces, F : X → Y nonlinear operator, F ∈
Cp(X, Y ). Let Y = Y ⊕ · · · ⊕ Yp, where Yi, i = , . . . , p are the Banach spaces. Let y ∈ Y ,
y = y + · · · + yp, where yi ∈ Yi, i = , . . . , p, and let h ∈ X, ‖h‖ = . Assume that

∥∥{F ′(x∗) + 	F ′′(x∗)[h] + · · · + 	pF (p)(x∗)[h]p–}–∥∥ := c < ∞,

where 	k are as in Lemma . Then for all nonzero αi ∈ R, i = , . . . , p, and all nonzero
t ∈R we have

∥∥{αF ′(x∗) + α	F ′′(x∗)[th] + · · · + αp	pF (p)(x∗)[th]p–}–(y + · · · + yp)
∥∥

≤ c
(


α

‖y‖ +


αt
‖y‖ + · · · +


αptp– ‖yp‖

)
. ()

Lemma  (Mean value theorem []) Let X, Y be Banach spaces, U an open subset of the
space X, [x, x + �] a closed segment in U . If F : U → Y and F ∈ C([x, x + �]), then for any
� ∈L(X, Y ) we have

∥∥F(x + �) – F(x) – ��
∥∥≤ sup

θ∈[,]

∥∥F ′(x + θ�) – �
∥∥ · ‖�‖. ()

Lemma  Let X, Y be the vector spaces, B[·]p : X → Y be the homogeneous p-form defined
on the space X associated to a continuous, symmetric, p-multilinear mapping B : X ×· · ·×
X (p copies of X) → Y . Then

B(p)[h]p = p!B[h]p, ()

B(p)[h]p– = (p – )!
(
B[h]p)′, ()

where h ∈ X and B(p) denotes the pth-order derivative of the mapping B[·]p.

The proof of this lemma follows from the properties of a homogeneous p-form (see
[, ]).

Lemma  Let for any s ∈ (, δ), where δ >  is sufficiently small, the linear operator A + sB
be a surjection, then the linear operator A + PIm A⊥B is a surjection.

The proof of the above lemma is in [].
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6 Theorems on solution’s uniqueness
The generalized Lyusternik theorem ensures the existence of a tangent line from the
p-kernel of the p-factor operator �p(x∗, h), which determines a solution of the equation
F(x) = . In the completely degenerate case, where F (k)(x∗) =  for k = , . . . , p–, we under-
stand it in the following sense. If the element h ∈ Kerp F (p)(x∗), then there exists r(t) such
that ‖r(t)‖ = o(t) and x∗ + th + r(t) ∈ M, i.e., F(x∗ + th + r(t)) = . However, the guarantee
of the existence of a solution does not mean that the solution is unique. Below we show
that under additional conditions we can consider the problem of the solution’s uniqueness.
So, let us take into account the completely degenerate case and begin with the following
important remark. In this section will be considered only the finite dimensional case, i.e.,
X = R

n, Y = R
n–, and F ∈ Cp+(Rn,Rn–).

Remark  Let h ∈ Kerp F (p)(x∗). If the curve x(t) = x∗ + th + r(t) is a solution of the equa-
tion F(x) = , i.e., F(x∗ + th + r(t)) = , and ‖r(t)‖ = o(t) for t ∈ (–ε, ε), ε > , then r(t)
always can be regarded as an element belonging to the orthogonal subspace to the space
{th : t ∈R}.

Now we introduce the definition.

Definition  We say that a solution (or curve) x(t) = x∗ + th + r(t) of equation F(x) =  is
unique for some vector h ∈ Kerp F (p)(x∗), if there exists exactly one curve x(t) = x∗ + th+r(t)
(exactly unique function r(t)), such that F(x∗ +th+r(t)) =  and r(t) ⊥ h, where ‖r(t)‖ = o(t)
for t ∈ (–ε, ε) and ε >  is sufficiently small.

We shall prove the following lemma.

Lemma  Let F ∈ Cp+(Rn,Rn–) and F(x∗) = , F (k)(x∗) =  for k = , . . . , p – ,
F (p)(x∗)[h]p–(Rn) = R

n–, where h ∈ Kerp F (p)(x∗). Then there exists a unique curve x∗ +
th + r(t), r(t) ⊥ h, t ∈ (–ε, ε), ε >  such that

F
(
x∗ + th + r(t)

)
= ,

∥∥r(t)
∥∥ = o(t). ()

Proof Assume that h ∈ Kerp F (p)(x∗). Moreover, suppose that there exist a sequence
{tk}k∈N, tk →  and two solutions x∗ + tkh + r(tk), x∗ + tkh + r(tk) such that F(x∗ +
tkh + r(tk)) = F(x∗ + tkh + r(tk)) = , where r(tk) �= r(tk), r(t), r(t) ⊥ h, ‖r(tk)‖ = o(tk)
and ‖r(tk)‖ = o(tk), k = , , . . . . Next, for the sake of simplicity, let us denote r := r(t),
r := r(t), where t := tk .

We apply an expansion of the F(x∗ + th + r) by the Taylor formula. We have

 = F
(
x∗ + th + r

)

= F
(
x∗ + th + r

)
+ F ′(x∗ + th + r

)
(r – r)

+



F ′′(x∗ + th + r
)
(r – r) + · · · +


p!

F (p)(x∗ + th + r
)
(r – r)p

+ ξ (r – r), ()

where ξ : Rn →Rn– and ‖ξ (r – r)‖ = ORn– (‖r – r‖p+) (ORn– (t) denotes O large in the
space R

n–).
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Moreover,

F ′(x∗ + th + r
)

= F ′(x∗) + F ′′(x∗)(th + r) +



F ′′′(x∗)(th + r)

+ · · · +


(p – )!
F (p)(x∗)(th + r)p– + ORn–

(
tp) ()

and

F ′′(x∗ + th + r
)

= F ′′(x∗) + F ′′′(x∗)(th + r) +



F ()(x∗)(th + r)

+ · · · +


(p – )!
F (p)(x∗)(th + r)p– + ORn–

(
tp–), ()

and continuing

F (p)(x∗ + th + r
)

= F (p)(x∗) + ORn– (t). ()

Substituting (), (), and () into () and applying the conditions F (k)(x∗) =  for
k = , . . . , p – , we have
(


(p – )!

F (p)(x∗)(th + r)p– + ORn–
(
tp)
)

(r – r)

+
(


(p – )!

F (p)(x∗)(th + r)p– + ORn–
(
tp–)
)

(r – r) + · · ·

+
(


p!

F (p)(x∗) + ORn– (t)
)

(r – r)p + ξ (r – r) = .

Dividing two sides of this equation by tp–‖r – r‖, and introducing the notation A, we
obtain

A :=
(


(p – )!

F (p)(x∗)(th + r)p– + ORn–
(
tp)
)

(r – r)
tp–‖r – r‖

+
(


(p – )!

F (p)(x∗)(th + r)p– + ORn–
(
tp–)
)

(r – r)

tp–‖r – r‖ + · · ·

+
(


p!

F (p)(x∗) + ORn– (t)
)

(r – r)p

tp–‖r – r‖ +
ξ (r – r)

tp–‖r – r‖ = .

We can represent the above equation as


(p – )!

F (p)(x∗)(th + r)p– (r – r)
tp–‖r – r‖ + ω(t) = , ()

where ω : R →R
n–, ω(t) →  as t → .

This yields


(p – )!

F (p)(x∗)(th)p– (r – r)
tp–‖r – r‖ + σ (t) + ω(t) = , ()

where σ : R →R
n–, σ (t) →  as t → .

We need to consider two cases.
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. Assume that F (p)(x∗)(h)p– (r–r)
‖r–r‖ →  as t → , where r = r(t), r = r(t).

This implies that there exists an element η, such that ‖η‖ =  and

F (p)(x∗)(h)p–η = .

Moreover, η ⊥ span{h}.
This is contrary to the fact that the operator F (p)(x∗)(h)p– is a surjection, since the kernel

of F (p)(x∗)(h)p– is one-dimensional. More precisely, we obtained two elements h and η,
for which F (p)(x∗)(h)p–h =  and F (p)(x∗)(h)p–η = , then the kernel is two-dimensional,
which contradicts the surjectivity of F (p)(x∗)(h)p–.

. Assume now that F (p)(x∗)(h)p– (r–r)
‖r–r‖ �  as t → .

Therefore there is a subsequence {tki}i∈N of the sequence {tk}k∈N, such that
‖F (p)(x∗)(h)p– (r(tki )–r(tki ))

‖r(tki )–r(tki )‖‖ ≥ M >  as tki → .
Note that the conditions σ (tki ) →  and ω(tki ) →  give

 = ‖A‖ =
∥∥∥∥F

(p)(x∗)(h)p– (r(tki ) – r)(tki )
‖r(tki ) – r(tki )‖

+ σ (tki ) + ω(tki )
∥∥∥∥

≥
∥∥∥∥F

(p)(x∗)(h)p– (r(tki ) – r(tki ))
‖r(tki ) – r(tki )‖

∥∥∥∥ –
∥∥σ (tki )
∥∥ –
∥∥ω(tki )
∥∥≥ M


�= ,

which is impossible and the lemma is proved. �

The above lemma can be generalized as follows.

Lemma  Let F ∈ Cp+(Rn,Rn–), F(x∗) = , and �p(x∗, h)(Rn) = R
n–, where �p is

p-factor operator and h ∈ Kerp �p(x∗). Then there exists a unique curve x∗ + th + r(t) such
that

F
(
x∗ + th + r(t)

)
= 

and ‖r(t)‖ = o(t), r(t) ⊥ h for all t ∈ (–ε, ε), where ε >  is sufficiently small.

Proof Note that according to the definition of the p-factor operator, i.e.,

�p
(
x∗, h
)

=
(
	F ′(x∗),	F ′′(x∗)[h], . . . ,	pF (p)(x∗)[h]p–),

and Remark , the assumptions of Lemma  hold for the mapping of the form
	jF (j)(x∗)[h]j– : Rn on→ R

n–, j = , . . . , p. Each coordinate 	kF(x) is completely degener-
ate at the point x∗ and the p-factor operator is a surjection. Then analogously to the
completely degenerate case one can prove that there exists a unique element r(t) ⊥ h.
Therefore Lemma  is true. �

Remark  The curve x∗ + th + r(t) determined by the element h from the p-kernel of the
p-factor operator �p is a unique solution of the equation F(x) = , i.e., for a given h, such
a curve is unique.

7 Generalization of Andronov-Hopf theorem
We will prove Theorem  on a generalized (modified) p-factor operator, which is certain
generalization of Andronov-Hopf theorem [].
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Theorem  Let X and Y be Banach spaces, F ∈ C(X, Y ). Assume that there exists x∗ ∈ X,
such that F(x∗) = , F ′(x∗) =  and there exist vectors h and h in X, such that Y := Im F ′(x∗)
is closed and has a closed direct complement Y ⊥

 , Y := Im	Y⊥


F ′′(x∗)[h] is closed and has
a closed direct complement Y ⊥

 , and

Y ⊥
 = Im P(Y⊕Y)⊥

(
F ′′(x∗)[h] +




F ′′′(x∗)[h]
)

,

Y = Y ⊕ Y ⊕ Y ⊥
 .

Moreover, assume that

	Y F
(
x∗ + th + th

)
= o
(
t),

	Y F
(
x∗ + th + th

)
= o
(
t),

PY⊥


F
(
x∗ + th + th

)
= o
(
t),

as t → .
Assume that the operator

�
(
th, th
)

= 	Y F ′(x∗) + 	Y F ′′(x∗)[th]

+ PY⊥


(
F ′′(x∗)[th

]
+




F ′′′(x∗)[th]
)

, t �= ,

is surjective. Then there exists a curve x∗ + th + th + x(t), such that F(x∗ + th + th + x(t)) = 
and ‖x(t)‖ = o(t) (hence h ∈ Tx∗M).

Remark  The operator �(th, th) will be called the generalized or modified -factor
operator.

Proof Define a multivalued mapping


 : U(, ε) → Y , ()

∀x ∈ U(, ε), 
(x) = 
(t, x) = x –
{
�
(
th, th
)}–F
(
x∗ + th + th + x

)
, ()

where t ∈ (–δ, δ)\{}, δ > . We will show that, for any t small enough, there exists an
element r(t) such that ‖r(t)‖ = o(t) and r(t) ∈ 
(r(t)), i.e., r(t) is a fixed point of the map-
ping 
. It follows that

 ∈ {–{�
(
th, th
)}–F
(
x∗ + th + th + r(t)

)}
.

From this relation we will obtain F(x∗ + th + th + r(t)) =  and ‖r(t)‖ = o(t), hence h ∈
Tx∗M.

First we will prove that

�
(
,
()

)
=
∥∥
()
∥∥ = o
(
t).
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Let us note that


() = –
{
�
(
th, th
)}–F
(
x∗ + th + th

)

= –
{
�
(
th, th
)}–(

	Y F
(
x∗ + th + th

)
+ 	Y F

(
x∗ + th + th

)

+ PY⊥


F
(
x∗ + th + th

))
.

From this, Lemma , and from the assumption we obtain

∥∥
()
∥∥ ≤ c
∥∥	Y F
(
x∗ + th + th

)∥∥ +
c
t
∥∥	Y F
(
x∗ + th + th

)∥∥

+
c
t

∥∥PY⊥


F
(
x∗ + th + th

)∥∥≤ co
(
t) +

c
t

o
(
t) +

c
t o
(
t) = o
(
t).

We next show that for all x, x ∈ U(, ε(t)), ε(t) = o(t) the following estimate holds:

distH
(

(x),
(x)

)≤ θ‖x – x‖,  < θ < . ()

Note that

�
(
th, th
)

(x) = �

(
th, th
)
x – F
(
x∗ + th + th + x

)
,

�
(
th, th
)

(x) = �

(
th, th
)
x – F
(
x∗ + th + th + x

)
.

Let z ∈ 
(x), z ∈ 
(x). Then we have

distH
(

(x),
(x)

)

= inf
{‖z – z‖ : zi ∈ 
(xi), i = , 

}

= inf
{‖z – z‖ : �

(
th, th
)
(z – z) = �

(
th, th
)
(x – x)

× [F(x∗ + th + th + x
)

– F
(
x∗ + th + th + x

)]}

= inf
{‖z‖ : �

(
th, th
)
(z) = �

(
th, th
)
(x – x)

–
[
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

)]}

= inf
{‖z‖ : �

(
th, th
)
(z) = �

(
th, th
)
(x – x)

–
[
	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

+ 	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

+ PY⊥


(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))]}

= inf

{
‖z‖ : z ∈ �

(
th, th
)–
{[

	Y F ′(x∗)(x – x)

+ 	Y F ′′(x∗)[th](x – x) + PY⊥


(
F ′′(x∗)[th

]
+




F ′′′(x∗)[th]
)

(x – x)
]

–
[
	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

+ 	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

+ PY⊥


(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))]}}
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= inf

{∥∥∥∥�
(
th, th
)–
{
	Y F ′(x∗)(x – x)

–
[
	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))]

+ 	Y F ′′(x∗)[th](x – x)

–
[
	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))]

+ PY⊥


(
F ′′(x∗)[th

]
+




F ′′′(x∗)[th]
)

(x – x)

–
[
PY⊥



(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))]}
∥∥∥∥

}
.

Further, by Lemma  we give the following estimate:

distH
(

(x),
(x)

)

≤ c
∥∥	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))
– 	Y F ′(x∗)(x – x)

∥∥

+
c
t
∥∥	Y

(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

– 	Y F ′′(x∗)[th](x – x)
∥∥

+
c
t

∥∥∥∥PY⊥


(
F
(
x∗ + th + th + x

)
– F
(
x∗ + th + th + x

))

– PY⊥


(
F ′′(x∗)[th

]
+




F ′′′(x∗)[th]
)

(x – x)
∥∥∥∥.

Now we apply the mean value theorem and the Taylor formula. We have

distH
(

(x),
(x)

)

≤ c sup
θ∈[,]

∥∥	Y F ′(x∗ + th + th + x + θ (x – x)
)

– 	Y F ′(x∗)∥∥‖x – x‖

+
c
t

sup
θ∈[,]

∥∥	Y F ′(x∗ + th + th + x + θ (x – x)
)

– 	Y F ′′(x∗)[th]
∥∥‖x – x‖

+
c
t sup

θ∈[,]

∥∥∥∥PY⊥


F ′(x∗ + th + th + x + θ (x – x)
)

– PY⊥


(
F ′′(x∗)[th

]
+




F ′′′(x∗)[th]
)∥∥∥∥‖x – x‖

= c sup
θ∈[,]

∥∥	Y F ′(x∗) + 	Y F ′′(x∗)[th + th + x + θ (x – x)
]

+ OY
(
t)

– 	Y F ′(x∗)∥∥‖x – x‖
+

c
t

sup
θ∈[,]

∥∥	Y F ′(x∗) + 	Y F ′′(x∗)[th + th + x + θ (x – x)
]

+ OY
(
t)

– 	Y F ′′(x∗)[th]
∥∥‖x – x‖

+
c
t sup

θ∈[,]

∥∥∥∥PY⊥


F ′(x∗) + PY⊥


F ′′(x∗)[th + th + x + θ (x – x)
]

+



PY⊥


F ′′′(x∗)[th + th + x + θ (x – x)
] + OY

(
t)
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– PY⊥


F ′′(x∗)[th
]

–



PY⊥


F ′′′(x∗)[th]
∥∥∥∥‖x – x‖

= c sup
θ∈[,]

∥∥	Y F ′′(x∗)[th + th + x + θ (x – x)
]

+ OY
(
t)∥∥‖x – x‖

+
c
t

sup
θ∈[,]

∥∥	Y F ′′(x∗)[th + x + θ (x – x)
]

+ OY
(
t)∥∥‖x – x‖

+
c
t sup

θ∈[,]

∥∥∥∥PY⊥


F ′′(x∗)[th] + PY⊥


F ′′(x∗)[th
]

+ PY⊥


F ′′(x∗)[x + θ (x – x)
]

+



PY⊥


F ′′′(x∗)[th] +



PY⊥


F ′′′(x∗)[th + x + θ (x – x)
]

+ OY
(
t) – PY⊥


F ′′(x∗)[th

]
–




PY⊥


F ′′′(x∗)[th]
∥∥∥∥‖x – x‖

≤
(

co(t) +
c
t

kt +
c
t ks(t)

)
‖x – x‖ ≤ θ (t)‖x – x‖,

where θ (t) →  if t → , t ∈ (, δ), and δ >  is sufficiently small. Moreover, ‖s(t)‖ = o(t).
Consequently the mapping 
 is a contraction on the set U(, o(t)).

According to the multivalued contraction principle we will next prove that

�
(
,
()

)
=
∥∥
()
∥∥ < ( – θ )ε(t),

where θ (t) →  and ε(t) = o(t). Indeed if t →  we can take θ (t) < 
 , and then

∥∥
()
∥∥ = o
(
t) <
(
 – θ (t)

)
o
(
t) =
(
 – θ (t)

)
ε(t)
(
since θ (t) → 

)
,

and this is the desired conclusion.
Therefore we have proved that the mapping 
 satisfies the conditions  and  of the

multivalued contraction principle (Lemma ). For z =  this principle implies that there
exists an element z = r(t), such that ‖r(t)‖ ≤ 

–θ
‖
()‖ ≤ ‖
()‖ ≤ o(t) or ‖r(t)‖ =

o(t) and r(t) ∈ 
(r(t)). Then r(t) is a fixed point of the mapping 
. Hence

 ∈ {–{�
(
th, th
)}–F
(
x∗ + th + th + r(t)

)}
.

Thus we get F(x∗ + th + th + r(t)) =  and ‖r(t)‖ = o(t) or h ∈ Tx∗M and this finishes the
proof. �

In the next section, we apply the above theorem to a nonlinear dynamical system.

8 Applications of generalization of Andronov-Hopf theorem to nonlinear
dynamics

In this section we consider the following nonlinear dynamical system of ordinary differ-
ential equations:

du
dt

+ f (μ, u) =

⎡

⎢⎢⎢
⎣

u̇

u̇

u̇

u̇

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

–u + μu + ( + μ)(u + u + u + u)

u + μu + ( + μ)(u + u + u + u)

u + μu + ( + μ)(u + u + u + u)

–u + μu + ( + μ)(u + u + u + u)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣






⎤

⎥⎥⎥
⎦

, ()
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where

u =

⎡

⎢⎢⎢
⎣

u

u

u

u

⎤

⎥⎥⎥
⎦

, f (μ, u) =

⎡

⎢⎢⎢
⎣

f

f

f

f

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

–u + μu + ( + μ)(u + u + u + u)

u + μu + ( + μ)(u + u + u + u)

u + μu + ( + μ)(u + u + u + u)

–u + μu + ( + μ)(u + u + u + u)

⎤

⎥⎥⎥
⎦

,

and u() = u(π ), μ ∈R.
An equivalent representation to the above system is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇ – u + μu + ( + μ)(u + u + u + u) = ,
u̇ + u + μu + ( + μ)(u + u + u + u) = ,
u̇ + u + μu + ( + μ)(u + u + u + u) = ,
u̇ – u + μu + ( + μ)(u + u + u + u) = ,

()

where u̇l = dul
dt , ul() = ul(π ), l = , , , , μ ∈ R is the parameter. The problem is now to

find periodic solutions of the above system with period π .
Note that this example was studied by Tan in [] by an algebraic geometry method. It is

a particular case of the equation

du
dt

+ T(u) + λL(u) + H(λ, u) + K(λ, u) = , ()

where (λ, u) ∈ R × C
π (R,R) and

u =

⎡

⎢⎢⎢
⎣

u(t)
u(t)
u(t)
u(t)

⎤

⎥⎥⎥
⎦

, T =

⎡

⎢⎢⎢
⎣

– –  
 –  
  – 
  – –

⎤

⎥⎥⎥
⎦

, L =

⎡

⎢⎢⎢
⎣

   
   
   
   

⎤

⎥⎥⎥
⎦

,

H(λ, u) = λ

⎡

⎢⎢⎢
⎣

(u + u + u + u)

(u + u + u + u)

(u + u + u + u)

(u + u + u + u)

⎤

⎥⎥⎥
⎦

, K(λ, u) = .

Taking λ = μ + μ =  + μ, we turn to the equation

du
dt

+ T(u) + ( + μ)L(u) + H( + μ, u) = ,

or, considering the linearity of the mappings T and L, to the equation

du
dt

+ (T + L)(u) + μL(u) + H( + μ, u) = ,

i.e.,

⎡

⎢
⎢⎢
⎣

u̇

u̇

u̇

u̇

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

–u

u

u

–u

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

μu

μu

μu

μu

⎤

⎥⎥⎥
⎦

+ ( + μ)

⎡

⎢⎢⎢
⎣

(u + u + u + u)

(u + u + u + u)

(u + u + u + u)

(u + u + u + u)

⎤

⎥⎥⎥
⎦

= .
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Note also that for the parameter μ =  the matrix

T + L =

⎡

⎢⎢⎢
⎣

 –  
   
   
  – 

⎤

⎥⎥⎥
⎦

has twice eigenvalues ±i. This is also an equivalent of the matrix L = ∂f (,)
∂u in Buchner et

al. [] and in the present work, because further we will also denote the matrix T + L by L.
Therefore,

Ker(L – iI) = span(w, w), ()

where

w =

⎡

⎢⎢⎢
⎣


–i

i

⎤

⎥⎥⎥
⎦

and w =

⎡

⎢⎢⎢
⎣

i

–i


⎤

⎥⎥⎥
⎦

are linearly independent eigenvectors corresponding to the eigenvalue i [].
It is worth to emphasize that the authors of [, ] search periodic solutions with period

near π . Our purpose is to find solutions of the system () with a fixed period which is
equal to π .

Below we prove the following theorem.

Theorem  For sufficiently small α ∈ (–ε, ε) the system () has nontrivial solutions of
the form

x(α, t) =
(
–α + r(α), α cos t + r(α, t), –α sin t + r(α, t),

–α sin t + r(α, t), α cos t + r(α, t)
)
,

where ‖r(α)‖ = o(α) and ‖rl(α, t)‖ = o(α), l = , , , .

Proof The system () can be considered as

F(x) = F(μ, u)

= F(μ, u, u, u, u)

=
(
u̇ – u + μu + ( + μ)(u + u + u + u),

u̇ + u + μu + ( + μ)(u + u + u + u),

u̇ + u + μu + ( + μ)(u + u + u + u),

u̇ – u + μu + ( + μ)(u + u + u + u)) = , ()

where F ∈ C(R × C(R,R),C(R,R)) and ul() = ul(π ), l = , , , . Note that x∗ =
(, ) = (, , , , ) is a trivial solution of this system. Let us evaluate the first derivative
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of the mapping F at the point (, ),

F ′(, ) =

⎡

⎢⎢⎢
⎣

 d
dτ

–  
  d

dτ
 

   d
dτ


   – d

dτ

⎤

⎥⎥⎥
⎦

:=
(

,
d

dτ
+ L

)
, ()

where

L :=
∂f (, )

∂u
=

⎡

⎢⎢⎢
⎣

 –  
   
   
  – 

⎤

⎥⎥⎥
⎦

and
(

d
dτ

+ L

)
u :=

du
dτ

+ Lu.

From this we can describe the kernel of the first derivative:

Ker F ′(, ) = R ⊕ Ker

(
d

dτ
+ L

)
.

The problem is now to find the space Ker( d
dτ

+ L). To this end, one has to solve the
following system of equations:

du
dτ

+ Lu = ,

with condition u() = wk , k =  or  (see ()). The solution of the above system is the
following:

u(τ ) = e–Lτ u() = e–iτ u().

Thus we obtain

Ker

(
d

dτ
+ L

)
= span(φ,φ,φ,φ),

where φk–(τ ) = Re(e–iτ wk), φk(τ ) = Im(e–iτ wk), k = ,  (see []).
Hence for the vector h = [hμ, hu , hu , hu , hu ] ∈ R× C(R,R), taking into account that

 · hμ =  and solving the following system of differential equations:

F ′(, )[h] =
(

dhu

dτ
– hu ,

dhu

dτ
+ hu ,

dhu

dτ
+ hu ,

dhu

dτ
– hu

)
= , ()

subject to the conditions hul () = hul (π ), l = , , , , we obtain

Ker F ′(, ) = R× span(φ,φ,φ,φ) = R× Ker F ′
u(, ), ()

where

φ =

⎡

⎢
⎢⎢
⎣

cos τ

– sin τ

cos τ

sin τ

⎤

⎥⎥⎥
⎦

, φ =

⎡

⎢
⎢⎢
⎣

– sin τ

– cos τ

– sin τ

cos τ

⎤

⎥⎥⎥
⎦

, φ =

⎡

⎢
⎢⎢
⎣

sin τ

cos τ

– sin τ

cos τ

⎤

⎥⎥⎥
⎦

, φ =

⎡

⎢
⎢⎢
⎣

cos τ

– sin τ

– cos τ

– sin τ

⎤

⎥⎥⎥
⎦

. ()
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Define now the space Y = Im( d
dτ

+ L) = (Ker( d
dτ

+ L)∗)⊥. Note that the adjoint operator
has the form ( d

dτ
+ L)∗ = – d

dτ
+ L∗

 = – d
dτ

+ L�
 . A basis {ψ,ψ,ψ,ψ} of the space Ker( d

dτ
+

L)∗ can be found with 〈ψl,φj〉 = δlj, where 〈g, h〉 =
∫ π

 (g(τ ), h(τ )) dτ and (g(τ ), h(τ )) is the
standard scalar product in R

. Then

Y =
{

g ∈ Cπ

(
R,R) : 〈g,ψl〉 = , l = , , , 

}

=
{

g ∈ Cπ

(
R,R) :

∫ π



(
g(τ ),ψl

)
dτ = , l = , , , 

}
. ()

Easy computations show that ψl = 
π

φl , for l = , , , , and we have the following iden-
tity of subspaces:

span(ψ,ψ,ψ,ψ) = span(φ,φ,φ,φ).

Therefore, we obtain the relation

Y = Im F ′(, ) =
(
Ker F ′

u(, )∗
)⊥ =
(
Ker F ′

u(, )
)⊥ and

Y =
{

g ∈ Cπ

(
R,R) : 〈g,φl〉 = , l = , , , 

}
()

=
{

g ∈ Cπ

(
R,R) :

∫ π



(
g(τ ),φl

)
dτ = , l = , , , 

}
.

Now choose the vectors

h = [,φ + φ + φ + φ] = [, cos τ , – sin τ , – sin τ , cos τ ],

h = [ε, , , , ].

We proceed to show that all assumptions of Theorem  hold, i.e.,

	Y F
(
x∗ + αh + αh

)
= o
(
α),

	Y F
(
x∗ + αh + αh

)
= o
(
α),

PY⊥


F
(
x∗ + αh + αh

)
= o
(
α),

where

Y = Im F ′(x∗), Y = Im	Y⊥


F ′′(x∗)[h],

Y ⊥
 = Im P(Y⊕Y)⊥

(
F ′′(x∗)[h] +




F ′′′(x∗)[h]
)

, Y = Y ⊕ Y ⊕ Y ⊥
 .

Note that

F
(
αh + αh

)

= F
(
αε, α cos τ , –α sin τ , –α sin τ , α cos τ

)

=
(
αε cos τ + A, –αε sin τ + A, –αε sin τ + A, αε cos τ + A

)
,
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where A = α( + αε)(cos τ – sin τ ). Therefore, F(αh + αh) = o(α) and from this, we
have 	Y F(αh + αh) = o(α).

Next we show that

PY⊥


F
(
αh + αh

)
= o
(
α) ()

for h = [–, , , , ], where Y ⊥
 = Ker F ′

u(, ).
The projection PY⊥


F(αh + αh) has the following form:

PY⊥


F
(
αε, α cos τ , –α sin τ , –α sin τ , α cos τ

)

=
∑

i=

〈
F
(
αε, α cos τ , –α sin τ , –α sin τ , α cos τ

)
,φi
〉
φi

= φ

∫ π



[(
αε cos τ + A

)
cos τ +

(
–αε sin τ + A

)
(– sin τ )

+
(
–αε sin τ + A

)
cos τ +

(
αε cos τ + A

)
sin τ
]

dτ

+ φ

∫ π



[(
αε cos τ + A

)
(– sin τ ) +

(
–αε sin τ + A

)
(– cos τ )

+
(
–αε sin τ + A

)
(– sin τ ) +

(
αε cos τ + A

)
cos τ
]

dτ

+ φ

∫ π



[(
αε cos τ + A

)
sin τ +

(
–αε sin τ + A

)
cos τ

+
(
–αε sin τ + A

)
(– sin τ ) +

(
αε cos τ + A

)
cos τ
]

dτ

+ φ

∫ π



[(
αε cos τ + A

)
cos τ +

(
–αε sin τ + A

)
(– sin τ )

+
(
–αε sin τ + A

)
(– cos τ ) +

(
αε cos τ + A

)
(– sin τ )

]
dτ .

The last expression can be represented as

PY⊥


F
(
αε, α cos τ , –α sin τ , –α sin τ , α cos τ

)

= φ

∫ π



[
αε + α( + αε

)(
 cos τ +  cos τ sin τ

)]
dτ

+ φ

∫ π



[
αε + α( + αε

)(
 sin τ +  cos τ sin τ

)]
dτ

+ φ

∫ π



[
αε + α( + αε

)(
 cos τ +  cos τ sin τ

)]
dτ

+ φ

∫ π



[
αε + α( + αε

)(
 sin τ +  cos τ sin τ

)]
dτ

and condition () holds, if

φ

∫ π



[
αε + α( cos τ +  cos τ sin τ

)]
dτ

+ φ

∫ π



[
αε + α( sin τ +  cos τ sin τ

)]
dτ
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+ φ

∫ π



[
αε + α( cos τ +  cos τ sin τ

)]
dτ

+ φ

∫ π



[
αε + α( sin τ +  cos τ sin τ

)]
dτ = o
(
α).

Therefore, we have to solve the following equation:

πε + 
(


π


+ 

π



)
= ,

and we obtain ε = –. From this we have h = [–, , , , ] and condition () is satis-
fied.

By Y ⊂ Y ⊥
 (while Y ⊥

 = Ker F ′
u(, )), we have

	Y F
(
αh + αh

)
= o
(
α)

and

PY⊥


F
(
αh + αh

)
= o
(
α).

In the next step we verify that the operator

�(h, h) = 	Y F ′(, ) + 	Y F ′′(, )[h]

+ PY⊥


(
F ′′(, )[h] +




F ′′′(, )[h]
)

is a surjection. Of course, this operator is

�(h, h) = F ′(, ) + 	Y F ′′(, )[h]

+ PY⊥


(
F ′′(, )[h] +




F ′′′(, )[h]
)

. ()

Let us note that a consequence of Lemma  is the following remark. If, for any s ∈
(, δ), where δ >  is sufficiently small, the operator 	Y F ′′(, )[h] + sPY⊥


F ′′(, )[h] is a

surjection, where 	Y : Y → Y is the projection operator from the space Y onto Y along
Y and PY⊥


is the projection operator from the space Y onto Y ⊥

 along Y, then the operator
	Y F ′′(, )[h] + PY⊥


F ′′(, )[h] is a surjection too.

To begin, note that for the vector H = [hμ, hu , hu , hu , hu ] we obtain (see Lemma )

F ′′(, )[H] = !(hμhu , hμhu , hμhu , hμhu ),

and, in matrix form, we get the following representation of the operator F ′′(, )[H]:

F ′′(, )[H] =

⎡

⎢
⎢⎢
⎣

hu hμ   
hu  hμ  
hu   hμ 
hu    hμ

⎤

⎥⎥⎥
⎦

.
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It follows that

F ′′(, )[h] =

⎡

⎢⎢⎢
⎣

 cos τ    
– sin τ    
– sin τ    
 cos τ    

⎤

⎥⎥⎥
⎦

and

F ′′(, )[h] =

⎡

⎢⎢⎢
⎣

 –   
  –  
   – 
    –

⎤

⎥⎥⎥
⎦

.

We apply Lemma  to examine the surjectivity of operator () on the kernel of the first
derivative at the point (, ).

Take an arbitrary vector [λ, v, v, v, v] ∈ Ker F ′(, ). We have λ ∈R and

⎡

⎢⎢⎢
⎣

v

v

v

v

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

a cos τ – b sin τ + c sin τ + d cos τ

–a sin τ – b cos τ + c cos τ – d sin τ

a cos τ – b sin τ – c sin τ – d cos τ

a sin τ + b cos τ + c cos τ – d sin τ

⎤

⎥⎥⎥
⎦

,

where a, b, c, d ∈R. From this, we obtain

F ′(, )

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

= , F ′′(, )[h]

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

= λ

⎡

⎢⎢⎢
⎣

cos τ

– sin τ

– sin τ

cos τ

⎤

⎥⎥⎥
⎦

.

Next we have

	Y F ′′(, )[h](λ, v, v, v, v) = πλ(φ + φ + φ + φ) = πλ

⎡

⎢⎢⎢
⎣

 cos τ

– sin τ

– sin τ

 cos τ

⎤

⎥⎥⎥
⎦

(the calculations are analogous to ()).
Note that the element

πλ

⎡

⎢⎢⎢
⎣

 cos τ

– sin τ

– sin τ

 cos τ

⎤

⎥⎥⎥
⎦

belongs to Ker F ′
u(, ) = Y ⊥

 .
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Hence

PY⊥


F ′′(, )[h](λ, v, v, v, v) = F ′′(, )[h](λ, v, v, v, v)

and 	Y F ′′(, )[h](λ, v, v, v, v) = F ′′(, )[h](λ, v, v, v, v), because Y ⊂ Y ⊥
 .

Consider now

F ′′(, )[h]

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

–v

–v

–v

–v

⎤

⎥⎥⎥
⎦

.

Obviously

F ′′(, )[h]

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

∈ Ker F ′
u(, ) = Y ⊥

 .

Hence

PY⊥


F ′′(, )[h]

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

= F ′′(, )[h]

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ

v

v

v

v

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Therefore the operator

	Y F ′′(, )[h] + sPY⊥


F ′′(, )[h]

= F ′′(, )[h] + sF ′′(, )[h] =

⎡

⎢⎢⎢
⎣

cos τ s   
– sin τ  s  
– sin τ   s 
cos τ    s

⎤

⎥⎥⎥
⎦

is a surjection onto Y ⊥
 and the operator 	Y F ′′(, )[h] + PY⊥


F ′′(, )[h] is also a surjec-

tion. From this and by Lemma  the operator () is a surjection. Note that the examina-
tion of the operator PY⊥


( 

 F ′′′(, )[h]) is not necessary.
We verified all assumptions of Theorem . Hence there exist nontrivial solutions of

system (). We can write them in the form x(α, t) = x∗ + αh + αh + r(α), with ‖r(α)‖ =
o(α), i.e.,

x(α, t) =
(
–α + r(α), α cos t + r(α, t), –α sin t + r(α, t),

–α sin t + r(α, t), α cos t + r(α, t)
)
,

where ‖r(α)‖ = o(α) and ‖rl(α, t)‖ = o(α), l = , , , , which proves Theorem . �
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Remark  For μ = –α + r(α) such that μ <  and ‖r(α)‖ = o(α) the solutions can
be written as follows:

u(μ, t) =
(




√
–

μ


cos t + r(μ, t), –




√
–

μ


sin t + r(μ, t),

–



√
–

μ


sin t + r(μ, t),




√
–

μ


cos t + r(μ, t)

)
,

where ‖rl(μ, t)‖ = o(μ), l = , , , .

From Theorem  it follows that there are no solutions in the case μ > .

9 Comparison with other results
In the literature many publications are known where the authors consider the classical
Andronov-Hopf theorem (see, for example, Marsden and McCracken [] or Kielhöfer [])
and describe the bifurcation of periodic solutions from the equilibrium point of a nonlin-
ear differential equation (or nonlinear dynamical system)

u̇ = f (μ, u), u() = u(τ ), ()

where f : R × R
n → R

n. The Lyapunov-Schmidt reduction is often applied to this case
(see Golubitsky and Langford [], and Buchner et al. []). The authors seek a periodic
solution near the point (, ) with period π

+τ
for small τ . Golubitsky et al. in [] apply

the so-called constrained Liapunov-Smidt procedure to study the bifurcation structure
of periodic orbits near k : l resonance for both reversible and Hamiltonian systems. The
authors assume that ±ki and ±li are simple eigenvalues of the matrix L = ∂f (,)

∂u ( < k < l
are coprime integers) and ±mi is not an eigenvalue of L where m �= k, l is any nonnegative
integer.

In our paper the p-regularity theory (see the work of Izmailov, Tret’yakov and Marsden
[–]) is applied to find periodic solutions with the fixed period π and we do not use
the classical Andronov-Hopf condition. Moreover, the problem of multivalued eigenval-
ues of matrix L is studied. For example, the Hopf bifurcation at multiple eigenvalues was
studied by Tan in his work [] by algebraic geometry method. Our article presents some
generalization of Andronov-Hopf theorem to solve a similar problem but in a different
way. It is a continuation of work by Medak and Tret’yakov [], where the authors pre-
sented a different modification of the theorem, which gives an effective method to analyze
the existence of periodic solutions of nonlinear dynamical systems. The article is also a
continuation of work by Grzegorczyk et al. []. Compared with the latter paper, where
only special cases of boundary value problems were studied, the results of the present pa-
per allow one to study the general case of a nonlinear dynamical system. It is also worth
noting that the p-regularity theory can be applied to the study of periodic solutions in the
case of k : l resonance.

10 Conclusion
The paper is devoted to the problem of the existence of periodic solutions of a dynamical
system which can be investigated by means of p-regularity theory. Important results of
this theory are Lemmas  and . They allow us to study the existence and uniqueness of
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solutions, each of which is determined by a vector belonging to the p-kernel of the p-factor
operator. The main result is Theorem , on the modified p-factor operator, which is a
certain generalization of the Andronov-Hopf theorem. We illustrate our results by finding
periodic solutions of the dynamical system of ordinary differential equations with period
π .
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