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Abstract
In this paper we show how the Shannon entropy is connected to the theory of
majorization. They are both linked to the measure of disorder in a system. However,
the theory of majorization usually gives stronger criteria than the entropic
inequalities. We give some generalized results for majorization inequality using Csiszár
f -divergence. This divergence, applied to some special convex functions, reduces the
results for majorization inequality in the form of Shannon entropy and the
Kullback-Leibler divergence. We give several applications by using the
Zipf-Mandelbrot law.
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1 Introduction and preliminaries
Well over a century ago measures were derived for assessing the distance between two
models of probability distributions. Most relevant is Boltzmann’s [] concept of general-
ized entropy in physics and thermodynamics (see Akaike [] for a brief review). Shannon
[] employed entropy in his famous treatise on communication theory. Kullback-Leibler
[] derived an information measure that happened to be the negative of Boltzmann’s
entropy, now referred to as the Kullback-Leibler (K-L) distance. The motivation for the
Kullback-Leibler work was to provide a rigorous definition of information in relation to
Fisher’s sufficient statistics. The K-L distance has also been called the K-L discrepancy, di-
vergence, information and number. These terms are synonyms; we use the term ’distance’
in the material to follow.

A fundamental result related to the notion of the Shannon entropy is the following in-
equality (see []):

n∑

i=

pi log

pi

≤
n∑

i=

pi log

qi

, ()

for all positive real numbers pi and qi with

n∑

i=

pi =
n∑

i=

qi. ()
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Here, ‘log’ denotes the logarithmic function taken to a fixed base b > . Equality holds
in () if qi = pi for all i. For details, see [], p.-. This result, sometimes called the
fundamental lemma of information theory, has extensive applications (see for example
[]).

Matić et al. [, , ] and [] continuously worked on Shannon’s inequality and related
inequalities in the probability distribution and information science. They studied and dis-
cussed in [, ] several aspects of Shannon’s inequality in discrete as well as in integral
forms, by presenting upper estimates of the difference between its two sides. Applications
to the bounds in information theory were also given.

Now we introduce the main mathematical theory explored in the presented work, the
theory of majorization. It is a powerful and elegant mathematical tool which can be applied
to a wide variety of problems as well as in quantum mechanics. The theory of majorization
is closely related to the notions of randomness and disorder. It indeed allows us to compare
two probability distributions in order to know which one is more random. Let us now give
the most general definition of majorization.

For fixed n ≥  let

x = (x, . . . , xn), y = (y, . . . , yn)

denote two real n-tuples. Let

x[] ≥ x[] ≥ · · · ≥ x[n], y[] ≥ y[] ≥ · · · ≥ y[n],

x() ≤ x() ≤ · · · ≤ x(n), y() ≤ y() ≤ · · · ≤ y(n)

denote their ordered components.
The following definition is given in [], p..
Majorization: Let x = (x, . . . , xn), y = (y, . . . , yn) be n-tuples of real numbers. Then we

say that y is majorized by x or that x majorizes y, in symbol, x � y, if we have

j∑

i=

y[i] ≤
j∑

i=

x[i], ()

for j = , , . . . , n – , and

n∑

i=

x[i] =
n∑

i=

y[i]. ()

Note that () is equivalent to

n∑

i=n–j+

y(i) ≤
n∑

i=n–j+

x(i),

for j = , , . . . , n – .
The following theorem, called the classical majorization theorem, is given in the mono-

graph by Marshall et al. [], p. (see also [], p.):
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Theorem  (Classical majorization theorem) Let x = (x, . . . , xn), y = (y, . . . , yn) be two real
n-tuples such that xi, yi ∈ J ⊂ R for i = , . . . , n. Then x majorizes y if and only if for every
continuous convex function f : J →R, the following inequality holds:

n∑

i=

f (yi) ≤
n∑

i=

f (xi). ()

The following theorem is a generalization of Theorem , known as weighted majoriza-
tion theorem, and was proved by Fuchs in [] (see also [], p.):

Theorem  (Weighted majorization theorem) Let x = (x, . . . , xn), y = (y, . . . , yn) be two
decreasing real n-tuples such that xi, yi ∈ J for i = , . . . , n. Let w = (w, . . . , wn) be a real
n-tuple such that

j∑

i=

wiyi ≤
j∑

i=

wixi, ()

for j = , , . . . , n – , and

n∑

i=

wiyi =
n∑

i=

wixi. ()

Then, for every continuous convex function f : J →R, we have the following inequality:

n∑

i=

wif (yi) ≤
n∑

i=

wif (xi). ()

The following theorem is valid ([], p.).

Theorem  Let f : J → R be a continuous convex function on an interval J , w be a positive
n-tuple, and x, y ∈ Jn satisfy

k∑

i=

wiyi ≤
k∑

i=

wixi for k = , . . . , n – , ()

and

n∑

i=

wiyi =
n∑

i=

wixi. ()

(a) If y is a decreasing n-tuple, then

n∑

i=

wif (yi) ≤
n∑

i=

wif (xi). ()
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(b) If x is an increasing n-tuple, then

n∑

i=

wif (xi) ≤
n∑

i=

wif (yi). ()

If f is strictly convex and x �= y, then () and () are strict.

Matić et al. [, ] considered a discrete-valued random variable X with finite range
{xi}r

i=. Assume pi = P{X = xi}. The b-entropy of X is defined by

Hb(X) :=
r∑

i=

pi log(/pi). ()

In [], they proved that

Hb(X) ≤ log r, ()

which shows that the entropy function Hb(X) reaches its maximum value on the discrete
uniform probability distribution.

They introduced the idea by giving the general setting of the above inequality by us-
ing the classical majorization theorem for the function f (x) = x log x, which is convex and
continuous on R+. Suppose X and Y are discrete random variables with finite ranges and
probability distributions p = {pi}r

i= and q = {qi}r
i= (

∑r
i= pi =

∑r
i= qi = ), such that p � q.

Then by the majorization theorem

Hb(X) ≤ Hb(Y ). ()

By substituting p > (/r, . . . , /r) we get ().
It is generally common to take log with a base of  in the introduced notions, but in our

investigations this is not essential.
In Section , we present our main generalized results obtained from majorization in-

equality by using Csiszár f -divergence and then obtain corollaries in the form of Shannon
entropy and the K-L distance. In Section , we give several applications using the Zipf-
Mandelbrot law.

2 Csiszár f -divergence for majorization
Csiszár introduced in [] and then discussed in [] the following notion.

Definition  Let f : R+ → R+ be a convex function, and let p := (p, . . . , pn) and q :=
(q, . . . , qn) be positive probability distributions. The f -divergence functional is

If (p, q) :=
n∑

i=

qif
(

pi

qi

)
.

It is possible to use non-negative probability distributions in the f -divergence functional,
by defining

f () := lim
t→+

f (t); f
(




)
:= ; f

(
a


)
:= lim

t→+
tf

(
a
t

)
, a > .
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Horváth et al. [], p., considered functionality based on the previous definition.

Definition  Let J ⊂R be an interval, and let f : J → R be a function. Let p := (p, . . . , pn) ∈
R

n, and q := (q, . . . , qn) ∈ ],∞[n be such that

pi

qi
∈ J , i = , . . . , n. ()

Then we denote

Îf (p, q) :=
n∑

i=

qif
(

pi

qi

)
.

Motivated by the ideas in [] and [], in this paper we study and discuss the majorization
results in the form of divergences and entropies. The following theorem is a generalization
of the result given in [], i.e., ().

Assume p and q to be n-tuples, then we define

p
q

:=
(

p

q
,

p

q
, . . . ,

pn

qn

)
.

The following theorem is the connection between Csiszár f -divergence and weighted ma-
jorization inequality as one sequence is monotonic.

Theorem  Assume J ⊂R to be an interval, f : J →R to be a continuous convex function,
pi, ri (i = , . . . , n) to be real numbers and qi (i = , . . . , n) to be positive real numbers, such
that

k∑

i=

ri ≤
k∑

i=

pi, for k = , . . . , n – , ()

and

n∑

i=

ri =
n∑

i=

pi, ()

with pi
qi

, ri
qi

∈ J (i = , . . . , n).
(a) If r

q is decreasing, then

Îf (r, q) ≤ Îf (p, q). ()

(b) If p
q is increasing, then

Îf (r, q) ≥ Îf (p, q). ()

If f is a continuous concave function, then the reverse inequalities hold in () and
().
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Proof (a): We use Theorem (a) with substitutions xi := pi
qi

, yi := ri
qi

, wi := qi and qi > 
(i = , . . . , n). Then we get ().

We can prove part (b) with similar substitutions in Theorem (b). �

Theorem  Assume J ⊂R to be an interval, g : J →R to be a function, such that x → xg(x)
(x ∈ J) to be a continuous convex function, pi and ri (i = , . . . , n) to be real numbers and qi

(i = , . . . , n) to be positive real numbers satisfying () and () with

pi

qi
,

ri

qi
∈ J (i = , . . . , n).

(a) If r
q is decreasing, then

Îg(r, q) :=
n∑

i=

rig
(

ri

qi

)
≤ Îg(p, q). ()

(b) If p
q is increasing, then

Îg(r, q) ≥ Îg(p, q). ()

If xg(x) is a continuous concave function, then the reverse inequalities hold in ()
and ().

Proof (a): We use Theorem (a) with substitutions xi = pi
qi

, yi = ri
qi

, wi = qi as qi >  (i =
, . . . , n), and f (x) := xg(x). Then we get ().

We can prove part (b) with similar substitutions in Theorem (b) for f (x) := xg(x). �

The theory of majorization and the notion of entropic measure of disorder are closely re-
lated. Based on this fact, the aim of this paper is to look for majorization relations with the
connection to entropic inequalities. This was interesting to do for two main reasons. The
first one is the fact that the majorization relations are usually stronger than the entropic
inequalities, in the sense that they imply these entropic inequalities, but the converse is
not true. The second reason is the fact that, when we dispose of majorization relations
between two different quantum states, we know that we can transform one of the states
into the other using some unitary transformation. The concept of entropy alone would
not allow us to prove such a property.

The Shannon entropy was introduced in the field of classical information. There are
two ways of viewing the Shannon entropy. Suppose we have a random variable X, and
we learn its value. In one point of view, the Shannon entropy quantifies the amount of
information as regards the value of X (after measurement). In another point of view, the
Shannon entropy tells us the amount of uncertainty about the variable of X before we learn
its value (before measurement).

We mention two special cases of the previous result.
The first case corresponds to the entropy of a discrete probability distribution.
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Definition  The Shannon entropy of a positive probability distribution p := (p, . . . , pn)
is defined by

H(p) := –
n∑

i=

pi log pi. ()

Note that there is no problem with the definition in the case of a zero probability, since

lim
x→

x log x = . ()

Corollary  Assume pi, ri and qi (i = , . . . , n) to be positive real numbers satisfying ()
and () with

pi

qi
,

ri

qi
∈ J (i = , . . . , n).

(a) If r
q is a decreasing n-tuple and the base of log is greater than , then the following

estimates for the Shannon entropy of q hold:

n∑

i=

qi log

(
ri

qi

)
≥ H(q). ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If p

q is an increasing n-tuple and the base of log is greater than , then the following
estimates for the Shannon entropy of q hold:

H(q) ≤
n∑

i=

qi log

(
pi

qi

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof (a): Substitute f (x) := log x and pi =  (i = , . . . , n) in Theorem (a). Then we get ().
We can prove the part (b) with similar substitutions for ri =  (i = , . . . , n). �

Corollary  Assume pi and ri (i = , . . . , n) to be positive real numbers satisfying () and
().

(a) If r is a decreasing n-tuple and the base of log is greater than , then for the
connection between the Shannon entropies of p and r

H(r) ≥ H(p). ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If p is an increasing n-tuple and the base of log is greater than , then for the

connection between Shannon entropies of p and r

H(r) ≤ H(p). ()

If the base of log is in between  and , then the reverse inequality holds in ().



Latif et al. Journal of Inequalities and Applications  (2017) 2017:197 Page 8 of 15

Proof (a): Substitute g(x) := log x and qi =  (i = , . . . , n) in Theorem (a). Then we get ().
We can prove part (b) with similar substitutions. �

The second case corresponds to the relative entropy or the K-L distance between two
probability distributions.

Definition  The K-L distance between the positive probability distributions p :=
(p, . . . , pn) and q := (q, . . . , qn) is defined by

L(p, q) :=
n∑

i=

pi log

(
pi

qi

)
.

Corollary  Assume J ⊂ R to be an interval, and pi, ri and qi (i = , . . . , n) to be positive
real numbers satisfying () and () with

pi

qi
,

ri

qi
∈ J (i = , . . . , n).

(a) If r
q is a decreasing n-tuple and the base of log is greater than , then

n∑

i=

qi log

(
ri

qi

)
≥

n∑

i=

qi log

(
pi

qi

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If p

q is an increasing n-tuple and the base of log is greater than , then

n∑

i=

qi log

(
ri

qi

)
≤

n∑

i=

qi log

(
pi

qi

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof (a): Substitute f (x) := log x in Theorem (a). Then we get ().
We can prove part (b) with substitution f (x) := log x in Theorem (b). �

Corollary  Let J ⊂R be an interval and assume pi, ri and qi (i = , . . . , n) be positive real
numbers satisfying () and () with

pi

qi
,

ri

qi
∈ J (i = , . . . , n).

(a) If r
q is a decreasing n-tuple and the base of log is greater than , then the following

comparison inequality between K-L distance of (r, q) and (p, q) holds:

L(r, q) :=
n∑

i=

ri log

(
ri

qi

)
≤ L(p, q) :=

n∑

i=

pi log

(
pi

qi

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
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(b) If p
q is an increasing n-tuple and the base of log is greater than , then the following

comparison inequality between K-L distance of (r, q) and (p, q) holds:

n∑

i=

ri log

(
ri

qi

)
≥

n∑

i=

pi log

(
pi

qi

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof (a): Substitute g(x) := log x in Theorem (a). Then we get ().
We can prove part (b) with substitution g(x) := log x in Theorem (b). �

Remark  We give the above results when one sequence is monotone by using Theorem ,
but we can give all the above results when both sequences are monotone by using the
weighted majorization theorem, Theorem , for wi >  (i = , . . . , n).

3 Applications to the Zipf-Mandelbrot entropy
The term Zipfian distribution refers to a distribution of probabilities of occurrence that
follows Zipf ’s law. Zipf ’s law is an experimental law, not a theoretical one; i.e. it describes
an occurrence rather than predicting it from some kind of theory: the observation that, in
many natural and man-made phenomena, the probability of occurrence of many random
items starts high and tapers off. Thus, a few occur very often while many others occur
rarely. The formal definition of this law is Pn = /na, where Pn is the frequency of occur-
rence of the nth ranked item and a is close to .

Converted to language, this means that the rank of a word (in terms of its frequency)
is approximately inversely proportional to its actual frequency, and so produces a hyper-
bolic distribution. To put Zipf ’s law in another way (see [, ]): fr = C, where r = the
rank of a word, f = the frequency of occurrence of that word, and C = a constant (the
value of which depends on the subject under consideration). Essentially this shows an in-
verse proportional relationship between a word’s frequency and its frequency rank. Zipf
called this curve the ‘standard curve’. Texts from natural languages do not, of course, be-
have with such absolute mathematical precision. They can not, because, for one thing,
any curve representing empirical data from large texts will be a stepped graph, since many
non-high-frequency words will share the same frequency. But the overall consensus is
that texts match the standard curve significantly well. Li [] writes ‘this distribution, also
called Zipf ’s law, has been checked for accuracy for the standard corpus of the present-day
English [Kućera and Francis] with very good results.’ See Miller [] for a concise summary
of the match between actual data and the standard curve.

Zipf also studied the relationship between the frequency of occurrence of a word and its
length. In The Psycho-Biology of Language, he stated that ‘it seems reasonably clear that
shorter words are distinctly more favored in language than longer words.’

Apart from the use of this law in information science and linguistics, Zipf ’s law is used
in economics. This distribution in economics is known as Pareto’s law, which analyzes the
distribution of the wealthiest members of the community [], p.. These two laws are
the same in the mathematical sense, but they are applied in different contexts [], p..
The same type of distribution that we have in Zipf ’s and Pareto’s law, also known as the
power law, can also be found in other scientific disciplines, such as physics, biology, earth
and planetary sciences, computer science, demography and the social sciences [].
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Benoit Mandelbrot in [] gave a generalization of Zipf ’s law, now known as the Zipf-
Mandelbrot law, which gave an improvement in the account for the low-rank words in a
corpus where k <  []:

f (k) =
C

(k + q)s ,

when q = , we get Zipf ’s law.
For n ∈ N, q ≥ , s > , k ∈ {, , . . . , n}, in a more clear form, the Zipf-Mandelbrot law

(probability mass function) is defined with

f (k, n, q, s) :=
/(k + q)s

Hn,q,s
, ()

where

Hn,q,s :=
n∑

i=


(i + q)s , ()

n ∈N, q ≥ , s > , k ∈ {, , . . . , n}.
Application of the Zipf-Mandelbrot law can also be found in linguistics [], information

sciences [, ] and ecological field studies [].
In probability theory and statistics, the cumulative distribution function (CDF) of a real-

valued random variable X, or just distribution function of X, evaluated at x, is the prob-
ability that X will take a value less than or equal to x and we often denote by CDF the
following ratio:

CDF :=
Hk,t,s

Hn,t,s
. ()

The cumulative distribution function is an important application of majorization.
In the case of a continuous distribution, it gives the area under the probability distribu-

tion functions, also used to specify the distribution of multivariable random variables.
There are various applications of CDF. For example, in learning to rank, the CDF arises

naturally as a probability measure over inequality events of the type {X ≤ x}. The joint CDF
lends itself to problems that are easily described in terms of inequality events in which sta-
tistical dependence relationships also exist among events. Examples of this type of prob-
lem include web search and document retrieval [–], predicting rating of movies []
or predicting multiplayer game outcomes with a team structure []. In contrast to the
canonical problems of classification or regression, in learning to rank we are required to
learn some mapping from inputs to inter-dependent output variables, so that we may wish
to model both stochastic orderings of variable states and statistical dependence relation-
ships between variables.

In the following application, we use two of the Zipf-Mandelbrot laws for different pa-
rameters.
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Application  Assume p and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t ≥  and s, s > , respectively, satisfying

Hk,t,s

Hn,t,s
≤ Hk,t,s

Hn,t,s
, k = , . . . , n – , ()

and also let qi >  (i = , , . . . , n).
(a) If (i+t)s

(i++t)s ≤ qi+
qi

(i = , . . . , n) and the base of log is greater than , then

n∑

i=


(i + t)s Hn,t,s

log

(


qi(i + t)s Hn,t,s

)

≤
n∑

i=


(i + t)s Hn,t,s

log

(


qi(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If (i+t)s

(i++t)s ≥ qi+
qi

(i = , . . . , n) and the base of log is greater than , then

n∑

i=


(i + t)s Hn,t,s

log

(


qi(i + t)s Hn,t,s

)

≥
n∑

i=


(i + t)s Hn,t,s

log

(


qi(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof (a) Assume pi := 
(i+t)s Hn,t,s

and ri := 
(i+t)s Hn,t,s

, then

k∑

i=

pi :=
k∑

i=


(i + t)s Hn,t,s

=


Hn,t,s

k∑

i=


(i + t)s

=
Hk,t,s

Hn,t,s
, k = , . . . , n – .

Similarly,
∑k

i= ri := Hk,t,s
Hn,t,s

, k = , . . . , n – .
This implies that

k∑

i=

ri ≤
k∑

i=

pi ⇔ Hk,t,s

Hn,t,s
≤ Hk,t,s

Hn,t,s
, k = , . . . , n – .

We can easily check that 
(i+t)s Hn,t,s

is decreasing over i = , . . . , n and similarly ri too.
Now, we investigate the behavior of r

q for qi >  (i = , , . . . , n); take

ri

qi
=


qi(i + t)s Hn,t,s

and
ri+

qi+
=


qi+(i +  + t)s Hn,t,s

,

ri+

qi+
–

ri

qi
=


Hn,t,s

[


qi+(i +  + t)s
–


qi(i + t)s

]
≤ 

⇔ (i + t)s

(i +  + t)s
≤ qi+

qi
,
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which shows that r
q is decreasing. So all the assumptions of Corollary (a) are true. Then

by using () we get ().
(b) If we switch the role of ri into pi, then by using () in Corollary (b) we get (). �

The following application is a special case of the above result.

Application  Assume p and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t ≥  and s, s > , respectively, satisfying ().

If the base of log is greater than , then

n∑

i=


(i + t)s Hn,t,s

log

(


(i + t)s Hn,t,s

)

≤
n∑

i=


(i + t)s Hn,t,s

log

(


(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof Substitute qi :=  (i = , , . . . , n) in (); we get (). �

Application  Assume p and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t ≥  and s, s > , respectively, satisfying () and also let qi >  (i =
, , . . . , n).

(a) If (i+t)s
(i++t)s ≤ qi+

qi
(i = , . . . , n) and the base of log is greater than , then

n∑

i=

qi log

(


qi(i + t)s Hn,t,s

)
≥

n∑

i=

qi log

(


qi(i + t)s H,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If (i+t)s

(i++t)s ≥ qi+
qi

(i = , . . . , n) and the base of log is greater than , then

n∑

i=

qi log

(


qi(i + t)s Hn,t,s

)
≤

n∑

i=

qi log

(


qi(i + t)s H,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof We can prove by a similar method as given in Application  with substitutions pi :=


(i+t)s Hn,t,s
and ri := 

(i+t)s Hn,t,s
in Corollary  instead of Corollary , to get the required

results. �

The following result is a special case of Application .

Application  Assume p and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t ≥  and s, s > , respectively, satisfying (). If the base of log is greater
than , then

n∑

i=

log

(


(i + t)s Hn,t,s

)
≥

n∑

i=

log

(


(i + t)s H,t,s

)
. ()
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If the base of log is in between  and , then the reverse inequality holds in ().

Proof Substitute qi :=  (i = , , . . . , n) in (); we get (). �

Application  Assume p and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t ≥  and s, s > , respectively, satisfying (), and also let qi >  (i =
, , . . . , n).

(a) If (i+t)s
(i++t)s ≤ qi+

qi
(i = , . . . , n) and the base of log is greater than , then

n∑

i=

qi log

(


qi(i + t)s Hn,t,s

)
≥ H(q). ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If (i+t)s

(i++t)s ≥ qi+
qi

(i = , . . . , n) and the base of log is greater than , then

H(q) ≤
n∑

i=

qi log

(


qi(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().

Proof (a) We can prove (), by a similar method to that given in Application , with sub-
stitutions pi :=  and ri := 

(i+t)s Hn,t,s
, in Corollary (a) instead of Corollary (a).

(b) For this part, switch the role of p and r in part (a), like pi := 
(i+t)s Hn,t,s

and ri := 
(i = , , . . . , n), and applying Corollary (b) instead of Corollary (b), we get (). �

At the end, in the following application, we use three of the Zipf-Mandelbrot laws for
different parameters.

Application  Assume p, q and r to be the Zipf-Mandelbrot laws with parameters n ∈
{, , . . .}, t, t, t ≥  and s, s, s > , respectively, satisfying ().

(a) If (i++t)s
(i++t)s ≤ (i+t)s

(i+t)s (i = , . . . , n) and the base of log is greater than , then

n∑

i=


(i + t)s Hn,t,s

log

(
(i + t)s Hn,t,s

(i + t)s Hn,t,s

)

≤
n∑

i=


(i + t)s Hn,t,s

log

(
(i + t)s Hn,t,s

(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
(b) If (i++t)s

(i++t)s ≥ (i+t)s
(i+t)s (i = , . . . , n) and the base of log is greater than , then

n∑

i=


(i + t)s Hn,t,s

log

(
(i + t)s Hn,t,s

(i + t)s Hn,t,s

)

≥
n∑

i=


(i + t)s Hn,t,s

log

(
(i + t)s Hn,t,s

(i + t)s Hn,t,s

)
. ()

If the base of log is in between  and , then the reverse inequality holds in ().
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Proof (a) Let pi := 
(i+t)s Hn,t,s

, qi := 
(i+t)s Hn,t,s

and ri := 
(i+t)s Hn,t,s

. Here pi, qi and ri are
decreasing over i = , . . . , n. Now, we investigate the behavior of r

q .
Take

ri

qi
=

(i + t)s Hn,t,s

(i + t)s Hn,t,s
and

ri+

qi+
=

(i +  + t)s Hn,t,s

(i +  + t)s Hn,t,s
,

ri+

qi+
–

ri

qi
=

(i +  + t)s Hn,t,s

(i +  + t)s Hn,t,s
–

(i + t)s Hn,t,s

(i + t)s Hn,t,s
,

ri+

qi+
–

ri

qi
=

Hn,t,s

Hn,t,s

[
(i +  + t)s

(i +  + t)s
–

(i + t)s

(i + t)s

]
;

the R.H.S. is non-positive by using the assumption, which shows that r
q is decreasing,

therefore using Corollary (a) we get ().
(b) If we replace r

q with p
q in part (a) and use Corollary (b), we get (). �

4 Conclusions
In this paper we show how the Shannon entropy is connected to the theory of majoriza-
tion. They are both linked to the measure of disorder in a system. However, the theory of
majorization usually gives stronger criteria than the entropic inequalities. The theory of
majorization and the notion of entropic measure of disorder are closely related. Based on
this fact, the aim of this paper is to look for majorization relations with entropic inequali-
ties. We give some generalized results for Csiszár f -divergence of majorization inequality.
We mention two special cases of these generalized results; the first case corresponds to
the entropy of a discrete probability distribution, and the second case corresponds to the
relative entropy or the Kullback-Leibler distance between two probability distributions.
The cumulative distribution function (CDF) is an important application of majorization.
We give several applications by using the Zipf-Mandelbrot law with (CDF).
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