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Abstract
Recently, the Von Staudt-Clausen theorem for q-Euler numbers was introduced by
Kim (Russ. J. Math. Phys. 20(1):33-38, 2013) and Araci et al. have also studied this
theorem for q-Genocchi numbers (see Araci et al. in Appl. Math. Comput. 247:780-785,
2014) based on the work of Kim et al. In this paper, we give the corresponding Von
Staudt-Clausen theorem for the weighted q-Genocchi numbers and also prove the
Kummer-type congruences for the generated weighted q-Genocchi numbers.
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1 Introduction and preliminaries
As is well known, a theorem including the fractional part of Bernoulli numbers, which is
called the Von Staudt-Clausen theorem, was introduced by Karl Von Staudt and Thomas
Clausen (see []). In [], Kim has studied the Von Staudt-Clausen theorem for the q-Euler
numbers and Araci et al. have introduced the Von Staudt-Clausen theorem associated
with q-Genocchi numbers.

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of the
algebraic closure Qp. Let us assume that q is an indeterminate in Cp with | – q|p < p– 

–p

where | · |p is a p-adic norm. The q-extension of x is defined by [x]q = –qx

–q . Note that
limq→[x]q = x. For f ∈ C(Zp) = the space of all continuous functions on Zp, the fermionic
p-adic q-integral on Zp is defined by Kim to be

∫
Zp

f (x) dμ–q(x) = lim
N→∞


[pN ]–q

pN –∑
x=

f (x)(–q)x (see [–]). ()

From (), we note that

q
∫
Zp

f (x + ) dμ–q(x) +
∫
Zp

f (x) dμ–q(x) = []qf (). ()
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From n ∈N, we have

qn
∫
Zp

f (x + n) dμ–q(x) + (–)n–
∫
Zp

f (x) dμ–q(x)

= []q

n–∑
l=

f (l)(–)n–l–ql (see []). ()

Let d ∈N with d ≡  (mod ) and (p, d) = . Then we set

x = xd = lim←–N
Z/dpN

Z, X∗ =
⋃

<a<dp,(a,p)=

a + dpZp

and a + dpN
Zp = {x ∈ X|x ≡ a (mod dpN )} where a ∈ Z lies in  ≤ a < dpN . It is well known

that
∫

X
f (x) dμ–q(x) =

∫
Zp

f (x) dμ–q(x), where f ∈ C(Zp) (see [–]). ()

Recently, the weighted q-Euler numbers were introduced by the generating function to be

∞∑
n=

E(α)
n,q

tn

n!
=

∫
Zp

e[x]qα t dμ–q(x) =
∞∑

n=

(∫
Zp

[x]n
qα dμ–q(x)

)
tn

n!
(see [, ]). ()

Thus, by (), we get

E(α)
n,q(x) =

∫
Zp

[x]n
qα dμ–q(x) (see [, ]),

where α ∈ Cp. Many researchers have studied the weighted q-Euler numbers and q-
Genocchi numbers in the recent decade (see [–]).

From (), Araci defined the weighted q-Genocchi numbers as follows:

∞∑
n=

G(α)
n,q

tn

n!
= t

∫
Zp

e[x]qα t dμ–q(x) =
∞∑

n=

(∫
Zp

[x]n
qα dμ–q(x)

)
tn+

n!
. ()

By (), we get

G(α)
n+,q

n + 
=

∫
Zp

[x]n
qα dμ–q(x), G(α)

,q = . ()

The weighted q-Genocchi polynomials are also defined by

∞∑
n=

G(α)
n,q(x)

tn

n!
= t

∫
Zp

e[x+y]qα t dμ–q(x). ()

Thus, by (), we have

G(α)
n+,q(x)
n + 

=
∫
Zp

[x + y]n
qα dμ–q(y) (n ≥ ). ()
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Let us assume that χ is a Dirichlet character with conductor d ∈ N with d ≡  (mod ).
Then we defined the generalized weighted q-Genocchi numbers attached to χ as follows:

G(α)
n+,q,χ

n + 
=

∫
X

χ (x)[x]n
qα dμ–q(x). ()

From (), we have

G(α)
n+,q,χ

n + 
=

∫
X

χ (x)[x]n
qα dμ–q(x)

= lim
N→∞


[dpN ]–q

dpN –∑
x=

χ (x)(–)x[x]n
qα

=
[d]n

qα

[d]–q

d–∑
k=

(–)kχ (k)qk

(
lim

N→∞


[pN ]–qd

pN –∑
x=

[
x +

k
d

]
qdα

(–)xqdx

)

=
[d]n

qα

[d]–q

d–∑
k=

(–)kχ (k)qk
G(α)

n+,qd ( k
d )

n + 
. ()

Theorem . Let χ be the Dirichlet character with conductor d ∈ N with d ≡  (mod ).
For n ∈N

∗ = N∪ {}, we have

G(α)
n,q,χ =

[d]n
qα

[d]–q

d–∑
k=

(–)kχ (k)qkG(α)
n,qd

(
k
d

)
.

Next we give a familiar theorem, which is known as the Von Staudt-Clausen theorem.

Lemma . (Von Staudt-Clausen theorem) Let n be an even and positive integer. Then

Bn +
∑

p–|n,p:prime


p

∈ Z.

Notice that pBn is a p-adic integer where p is an arbitrary prime number, n is an arbi-
trary integer and also Bn is a Bernoulli number as in []. The purpose of this paper is to
show that the weighted q-Genocchi numbers can be described by a Von Staudt-Clausen-
type theorem. Finally, we prove a Kummer-type congruence for the generated weighted
q-Genocchi numbers.

2 Von Staudt-Clausen theorems
From (), we have

G(α)
n+,q

n + 
=

∫
Zp

[x]n
qα dμ–q(x) =

[]q



∫
Zp

qx[x]n
qα dμ–(x). ()

Thus, by (), we have

lim
q→

G(α)
n+,q

n + 
=

Gn+

n + 
=

∫
Zp

xn dμ–(x) (see [–, ]).
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In [], Kim introduced the following inequality:

∣∣∣∣∣
p–∑
j=

(–)j[j]qα qj

∣∣∣∣∣ ≤ . ()

Let us define the following equality: for k ≥ ,

L(α)
n–(k) = []n–

qα – q[]n–
qα + · · · +

[
pk – 

]n–
qα qpk –. ()

From (), we note that

qd
G(α)

n+,qd (d)

n + 
+

G(α)
n+,qd

n + 
= []q

d–∑
l=

[l]n
qd (–)lql, ()

where d ∈N with d ≡  (mod ). By () and (), we get

lim
k→∞

nL(α)
n–(k) =


[]q

G(α)
n,q.

By (), we get

L(α)
n–(k + )

=
pk+–∑

a=

(–)aqa[a]n–
qα

=
pk –∑
a=

p–∑
j=

(–)a+jpk
qa+jpk [

a + jpk]n–
qα

=
pk –∑
a=

p–∑
j=

(–)a+jpk
qa+jpk (

[a]qα + qαa[jpk]
qα

)n–

=
pk –∑
a=

p–∑
j=

n–∑
l=

(
n – 

l

)
[a]n––l

qα (–)a+jqaαl[jpk]l
qα qa+jpk

=
pk –∑
a=

p–∑
j=

n–∑
l=

(
n – 

l

)
[a]n––l

qα (–)a+jqa(αl+)+jpk [
pk]l

qα [j]l
qαpk

=
pk –∑
a=

(–)aqa[a]n–
qα

[]qpk

[]qpk

+
pk –∑
a=

p–∑
j=

n–∑
l=

(
n – 

l

)
[a]n––l

qα (–)a+jqa(αl+)+jpk [
pk]l

qα [j]l
qαpk

=
pk –∑
a=

p–∑
j=

n–∑
l=

(
n – 

l

)
[a]n––l

qα (–)a+jqa(α+l)+jpk [
pk]l

qα [j]l
qαpk
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=
pk –∑
a=

(–)aqa[a]n–
qα

[]qpk

[]qpk

+
pk –∑
a=

p–∑
j=

n–∑
l=

(
n – 

l

)
[a]n––l

qα (–)a+jqa(αl+)+jpk [
pk]l

qα [j]l
qαpk . ()

Thus, by (), we get

L(α)
n–(k + ) ≡

pk –∑
a=

[a]n–
qα (–)aqa (

mod
[
pk]

qα

)
. ()

From (), we have

pk+–∑
a=

(–)a[a]n–
qα qa

=
p–∑
a=

pk –∑
j=

(–)a+pj[a + pj]n–
qα qa+pj

=
p–∑
a=

(–)aqa
pk –∑
j=

(–)jqpj([a]qα + qαa[p]qα [j]qαp
)n–

=
p–∑
a=

pk –∑
j=

n–∑
l=

(
n – 

l

)
(–)a+jqa+pj[a]n––l

qα qαal[p]l
qα [j]l

qpα

=
p–∑
a=

(–)aqa[a]n–
qα

[]qpk+

[]qp

+
p–∑
a=

pk –∑
j=

n–∑
l=

(
n – 

l

)
(–)a+jqa+pj+αal[a]n––l

qα [p]l
qα [j]l

qpα

=
p–∑
a=

(–)aqa[a]n–
qα

(
mod [p]qα

)
. ()

Therefore, by () and (), we obtain the following theorem.

Theorem . Let L(α)
n–(k) =

∑pk –
a= (–)a[a]n–

qα . Then we have

L(α)
n–(k + ) =

pk –∑
a=

[a]n–
qα (–)aqa.

Furthermore

pk –∑
a=

[a]n–
qa (–)aqaα

(
mod

[
pk]

qα

) ≡
p–∑
a=

(–)aqa[a]n–
qα

(
mod [p]qα

)
.
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By Theorem ., we get

p–∑
a=

(–)an[a]n–
qα qa =

∫
X

[x]n–
qα dμ–q(x) ≡ G(α)

n,q
(
mod [p]q

)
. ()

Therefore, by (), we have the following theorem.

Theorem . For n ≥ , we have

p–∑
a=

(–)an[a]n–
qα = G(α)

n,q
(
mod [p]q

)
.

From () and (), we note that

G(α)
n+,q + n

p–∑
a=

(–)a+[a]n–
qα qa ∈ Zp (n ≥ ).

Corollary . For n ≥ , we have

G(α)
n+,q + n

p–∑
a=

(–)a+[a]n–
qα qa ∈ Zp.

Let n ≥ . Then we observe that

∣∣∣∣
G(α)

n+,q

n + 

∣∣∣∣
p

=

∣∣∣∣∣
G(α)

n+,q

n + 
–

p–∑
a=

(–)a[a]n
qα qa +

p–∑
a=

(–)aqa[a]n
qα

∣∣∣∣∣
p

≤ max

{∣∣∣∣∣
G(α)

n+,q

n + 
–

p–∑
a=

(–)a[a]n
qα

∣∣∣∣∣
p

,

∣∣∣∣∣
p–∑
a=

(–)aqa[a]n
qα

∣∣∣∣∣
p

}
≤ . ()

Therefore, we obtain the following theorem.

Theorem . For n ≥ , we have

G(α)
n+,q

n + 
∈ Zp.

Let χ be the Dirichlet character d ∈ N with d ≡  (mod ). The generalized weighted
q-Genocchi numbers attached to χ are introduced as follows:

∞∑
n=

G(α)
n,q,χ

tn

n!
= []qt

∞∑
m=

(–)mχ (m)e[m]qα t

= t
∫

X
χ (x)e[x]qα t dμ–q(x). ()

Let f = [f , p] be the least common multiple of the conductor f of χ and p. By (), we get

G(α)
n,q,χ = n

∫
X

χ (x)[x]n–
qα dμ–q(x) = n lim

n→∞

fpN –∑
x=

χ (x)(–)x[x]n–
qα . ()
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Thus, we have

G(α)
n,q,χ = n lim

ρ→∞
∑

≤a≤f pρ ,(a,p)=

χ (a)(–)aqa[a]n–
qα

+ n[p]n–
qα χ (p) lim

ρ→∞

f pρ–∑
≤a≤f pρ ,(a,p)=

χ (a)(–)aqap[a]n–
qαp

= n lim
ρ→∞

∑
≤a≤f pp ,(a,p)=

χ (a)(–)aqa[a]n–
qα + a[p]n–

qα χ (p)G(α)
n,qp ,χ . ()

Therefore, by (), we obtain the following theorem.

Theorem . For n ≥ , we have

n lim
ρ→∞

∑
≤a≤f pρ ,(a,p)=

χ (a)(–)aqa[a]n–
qα = G(α)

n,q,χ – [p]n–
qα χ (p)G(α)

n,qp ,χ . ()

Assume that w is the Teichmüller character by mod p. For a ∈ X∗, set 〈a〉α = 〈a : q〉α =
[a]qα

w(a) . Note that |〈a〉α – |p < p


p– , where 〈a〉s = exp(s log〈a〉) for s ∈ Zp. For s ∈ Zp, we define
the weighted p-adic l-function associated with G(α)

n,q,χ as follows:

l(α)
p,q(s,χ ) = lim

ρ→∞
∑

≤a≤f pρ ,(a,p)=

χ (a)(–)a〈a〉–s
α qa =

∫
X∗

χ (x)〈x〉–s
α dμ–q(x).

For k ≥ ,

klp,q
(
 – k,χwk–)

= k lim
ρ→∞

∑
≤a≤f pρ

χ (a)(–)aqa[a]k–
qα

= k
∫

X
χ (x)[x]k–

qα dμ–q(x) – k
∫

pX
χ (x)[x]k–

qα dμ–q(x)

= k
∫

X
χ (x)[x]k–

qα dμ–q(x) –
k[]qχ (p)

[]qp
[p]k–

qα

∫
X

χ (x)[x]k–
qαp dμ–qp (x)

= G(α)
x,q,χ –

[]q

[]qp
χ (p)[p]k–

qα G(α)
k,qp ,χ .

It is easy to show that

〈a〉pn
α = exp

(
pn log〈a〉α

)

=  + pn log〈a〉α +
(pn logp〈a〉α)

!
+ · · ·

≡ 
(
mod pn).
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So, by the definition of l(α)
p,q( – k, x), we get

l(α)
p,q(–k,χ ) = lim

ρ→∞
∑

≤a≤f pρ ,(a,p)=

χ (a)(–)aqa〈a〉k
α

≡ lim
ρ→∞

∑
≤a≤f pρ ,(a,p)=

χ (a)(–)aqa〈a〉k′
α

(
mod pn),

where k ≡ k′ (mod pn(p – )). Namely, we have

l(α)
p,q

(
–k,χwk) ≡ l(α)

p,q
(
–k′,χwk′) (

mod pn).

Theorem . For k ≡ k′ (mod pn(p – )), we have

G(α)
k+,q,χ

k + 
–

[]q

[]qp

G(α)
k+,qp ,χ

k + 
≡ G(α)

k′+,q,χ

k′ + 
–

[]q

[]qp

G(α)
k′+,qp ,χ

k′ + 
(
mod pn).
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