A note on the Von Staudt-Clausen?s theorem for the weighted q-Genocchi numbers

Byung Moon Kim¹ and Lee-Chae Jang ${ }^{2 *}$

Correspondence:
leechae.jang@kku.ac.kr
${ }^{2}$ General Education Institute,
Konkuk University, Chungju, 138-701, Korea
Full list of author information is available at the end of the article

Abstract

Recently, the Von Staudt-Clausen theorem for q-Euler numbers was introduced by Kim (Russ. J. Math. Phys. 20(1):33-38, 2013) and Araci et al. have also studied this theorem for q-Genocchi numbers (see Araci et al. in Appl. Math. Comput. 247:780-785, 2014) based on the work of Kim et al. In this paper, we give the corresponding Von Staudt-Clausen theorem for the weighted q-Genocchi numbers and also prove the Kummer-type congruences for the generated weighted q-Genocchi numbers. MSC: 11B68; 11S40 Keywords: Genocchi number; weighted q-Genocchi number; weighted q-Euler number; Von Staudt-Clausen theorem

1 Introduction and preliminaries

As is well known, a theorem including the fractional part of Bernoulli numbers, which is called the Von Staudt-Clausen theorem, was introduced by Karl Von Staudt and Thomas Clausen (see [1]). In [2], Kim has studied the Von Staudt-Clausen theorem for the q-Euler numbers and Araci et al. have introduced the Von Staudt-Clausen theorem associated with q-Genocchi numbers.

Let p be a fixed odd prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure \mathbb{Q}_{p}. Let us assume that q is an indeterminate in \mathbb{C}_{p} with $|1-q|_{p}<p^{-\frac{1}{1-p}}$ where $|\cdot|_{p}$ is a p-adic norm. The q-extension of x is defined by $[x]_{q}=\frac{1-q^{x}}{1-q}$. Note that $\lim _{q \rightarrow 1}[x]_{q}=x$. For $f \in C\left(\mathbb{Z}_{p}\right)=$ the space of all continuous functions on \mathbb{Z}_{p}, the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim to be

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x)(-q)^{x} \quad(\text { see }[2-6]) . \tag{1}
\end{equation*}
$$

From (1), we note that

$$
\begin{equation*}
q \int_{\mathbb{Z}_{p}} f(x+1) d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=[2]_{q} f(0) . \tag{2}
\end{equation*}
$$

From $n \in \mathbb{N}$, we have

$$
\begin{align*}
& q^{n} \int_{\mathbb{Z}_{p}} f(x+n) d \mu_{-q}(x)+(-1)^{n-1} \int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x) \\
& \quad=[2]_{q} \sum_{l=0}^{n-1} f(l)(-1)^{n-l-1} q^{l} \quad(\text { see }[4]) . \tag{3}
\end{align*}
$$

Let $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$ and $(p, d)=1$. Then we set

$$
x=x_{d}=\lim _{\overleftarrow{N}} \mathbb{Z} / d p^{N} \mathbb{Z}, \quad X^{*}=\bigcup_{0<a<d p,(a, p)=1} a+d p \mathbb{Z}_{p}
$$

and $a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\}$ where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$. It is well known that

$$
\begin{equation*}
\int_{X} f(x) d \mu_{-q}(x)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x), \quad \text { where } f \in C\left(\mathbb{Z}_{p}\right) \text { (see [2-6]). } \tag{4}
\end{equation*}
$$

Recently, the weighted q-Euler numbers were introduced by the generating function to be

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n, q}^{(\alpha)} \frac{t^{n}}{n!}=\int_{\mathbb{Z}_{p}} e^{[x]_{q^{\alpha}} t} d \mu_{-q}(x)=\sum_{n=0}^{\infty}\left(\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x)\right) \frac{t^{n}}{n!} \quad(\text { see }[5,7]) . \tag{5}
\end{equation*}
$$

Thus, by (5), we get

$$
E_{n, q}^{(\alpha)}(x)=\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x) \quad(\text { see }[5,8])
$$

where $\alpha \in \mathbb{C}_{p}$. Many researchers have studied the weighted q-Euler numbers and q Genocchi numbers in the recent decade (see [1-16]).

From (5), Araci defined the weighted q-Genocchi numbers as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{n, q}^{(\alpha)} \frac{t^{n}}{n!}=t \int_{\mathbb{Z}_{p}} e^{[x]_{q^{\alpha}} t} d \mu_{-q}(x)=\sum_{n=0}^{\infty}\left(\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x)\right) \frac{t^{n+1}}{n!} \tag{6}
\end{equation*}
$$

By (6), we get

$$
\begin{equation*}
\frac{G_{n+1, q}^{(\alpha)}}{n+1}=\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x), \quad G_{0, q}^{(\alpha)}=0 \tag{7}
\end{equation*}
$$

The weighted q-Genocchi polynomials are also defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{n, q}^{(\alpha)}(x) \frac{t^{n}}{n!}=t \int_{\mathbb{Z}_{p}} e^{[x+y]]_{q^{\alpha}} t} d \mu_{-q}(x) \tag{8}
\end{equation*}
$$

Thus, by (8), we have

$$
\begin{equation*}
\frac{G_{n+1, q}^{(\alpha)}(x)}{n+1}=\int_{\mathbb{Z}_{p}}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y) \quad(n \geq 0) \tag{9}
\end{equation*}
$$

Let us assume that χ is a Dirichlet character with conductor $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Then we defined the generalized weighted q-Genocchi numbers attached to χ as follows:

$$
\begin{equation*}
\frac{G_{n+1, q, \chi}^{(\alpha)}}{n+1}=\int_{X} \chi(x)[x]_{q^{\alpha}}^{n} d \mu_{-q}(x) \tag{10}
\end{equation*}
$$

From (10), we have

$$
\begin{align*}
\frac{G_{n+1, q, \chi}^{(\alpha)}}{n+1} & =\int_{X} \chi(x)[x]_{q^{\alpha}}^{n} d \mu_{-q}(x) \\
& =\lim _{N \rightarrow \infty} \frac{1}{\left[d p^{N}\right]_{-q}} \sum_{x=0}^{d p^{N}-1} \chi(x)(-1)^{x}[x]_{q^{\alpha}}^{n} \\
& =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{k=0}^{d-1}(-1)^{k} \chi(k) q^{k}\left(\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q^{d}}} \sum_{x=0}^{p^{N}-1}\left[x+\frac{k}{d}\right]_{q^{d \alpha}}(-1)^{x} q^{d x}\right) \\
& =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{k=0}^{d-1}(-1)^{k} \chi(k) q^{k} \frac{G_{n+1, q^{d}}^{(\alpha)}\left(\frac{k}{d}\right)}{n+1} . \tag{11}
\end{align*}
$$

Theorem 1.1 Let χ be the Dirichlet character with conductor $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. For $n \in \mathbb{N}^{*}=\mathbb{N} \cup\{0\}$, we have

$$
G_{n, q, \chi}^{(\alpha)}=\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{k=0}^{d-1}(-1)^{k} \chi(k) q^{k} G_{n, q^{d}}^{(\alpha)}\left(\frac{k}{d}\right) .
$$

Next we give a familiar theorem, which is known as the Von Staudt-Clausen theorem.
Lemma 1.2 (Von Staudt-Clausen theorem) Let n be an even and positive integer. Then

$$
B_{n}+\sum_{p-1 \mid n, p: \text { prime }} \frac{1}{p} \in \mathbb{Z}
$$

Notice that $p B_{n}$ is a p-adic integer where p is an arbitrary prime number, n is an arbitrary integer and also B_{n} is a Bernoulli number as in [1]. The purpose of this paper is to show that the weighted q-Genocchi numbers can be described by a Von Staudt-Clausentype theorem. Finally, we prove a Kummer-type congruence for the generated weighted q-Genocchi numbers.

2 Von Staudt-Clausen theorems

From (10), we have

$$
\begin{equation*}
\frac{G_{n+1, q}^{(\alpha)}}{n+1}=\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x)=\frac{[2]_{q}}{2} \int_{\mathbb{Z}_{p}} q^{x}[x]_{q^{\alpha}}^{n} d \mu_{-1}(x) \tag{12}
\end{equation*}
$$

Thus, by (12), we have

$$
\lim _{q \rightarrow 1} \frac{G_{n+1, q}^{(\alpha)}}{n+1}=\frac{G_{n+1}}{n+1}=\int_{\mathbb{Z}_{p}} x^{n} d \mu_{-1}(x) \quad(\text { see }[2-6,15])
$$

In [2], Kim introduced the following inequality:

$$
\begin{equation*}
\left|\sum_{j=0}^{p-1}(-1)^{j}[j]_{q^{\alpha}} q^{j}\right| \leq 1 . \tag{13}
\end{equation*}
$$

Let us define the following equality: for $k \geq 1$,

$$
\begin{equation*}
L_{n-1}^{(\alpha)}(k)=[0]_{q^{\alpha}}^{n-1}-q[1]_{q^{\alpha}}^{n-1}+\cdots+\left[p^{k}-1\right]_{q^{\alpha}}^{n-1} q^{p^{k}-1} . \tag{14}
\end{equation*}
$$

From (3), we note that

$$
\begin{equation*}
q^{d} \frac{G_{n+1, q^{d}}^{(\alpha)}(d)}{n+1}+\frac{G_{n+1, q^{d}}^{(\alpha)}}{n+1}=[2]_{q} \sum_{l=0}^{d-1}[l]_{q^{d}}^{n}(-1)^{l} q^{l} \tag{15}
\end{equation*}
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. By (14) and (12), we get

$$
\lim _{k \rightarrow \infty} n L_{n-1}^{(\alpha)}(k)=\frac{2}{[2]_{q}} G_{n, q}^{(\alpha)} .
$$

By (14), we get

$$
\begin{aligned}
& L_{n-1}^{(\alpha)}(k+1) \\
& =\sum_{a=0}^{p^{k+1}-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \\
& =\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1}(-1)^{a+j p^{k}} q^{a+j p^{k}}\left[a+j p^{k}\right]_{q^{\alpha}}^{n-1} \\
& =\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1}(-1)^{a+j p^{k}} q^{a+j p^{k}}\left([a]_{q^{\alpha}}+q^{\alpha a}\left[j p^{k}\right]_{q^{\alpha}}\right)^{n-1} \\
& =\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1} \sum_{l=0}^{n-1}\binom{n-1}{l}[a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a \alpha l}\left[j p^{k}\right]_{q^{\alpha}}^{l} q^{a+j p k} \\
& =\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1} \sum_{l=0}^{n-1}\binom{n-1}{l}[a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+j p^{k}}\left[p^{k}\right]_{q^{\alpha}}^{l}[j]_{q^{\alpha} p^{k}}^{l} \\
& =\sum_{a=0}^{p^{k}-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \frac{[2]_{q^{p^{2} k}}}{[2]_{q^{p^{k}}}} \\
& +\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1} \sum_{l=1}^{n-1}\binom{n-1}{l}[a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+j p^{k}}\left[p^{k}\right]_{q^{\alpha}}^{l}[j]_{q^{\alpha p^{k}}}^{l} \\
& =\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1} \sum_{l=0}^{n-1}\binom{n-1}{l}[a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha+l)+j p^{k}}\left[p^{k}\right]_{q^{\alpha}}^{l}[j]_{q^{\alpha} p^{k}}^{l}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{a=0}^{p^{k}-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \frac{[2]_{q^{p^{2 k}}}}{[2]_{q^{k}}} \\
& \quad+\sum_{a=0}^{p^{k}-1} \sum_{j=0}^{p-1} \sum_{l=0}^{n-1}\binom{n-1}{l}[a]_{q^{\alpha}}^{n-1-l}(-1)^{a+j} q^{a(\alpha l+1)+j p^{k}}\left[p^{k}\right]_{q^{\alpha}}^{l}[j]_{q^{\alpha p^{k}}}^{l} . \tag{16}
\end{align*}
$$

Thus, by (16), we get

$$
\begin{equation*}
L_{n-1}^{(\alpha)}(k+1) \equiv \sum_{a=0}^{p^{k}-1}[a]_{q^{\alpha}}^{n-1}(-1)^{a} q^{a}\left(\bmod \left[p^{k}\right]_{q^{\alpha}}\right) \tag{17}
\end{equation*}
$$

From (16), we have

$$
\begin{align*}
& \sum_{a=0}^{p^{k+1}-1}(-1)^{a}[a]_{q^{\alpha}}^{n-1} q^{a} \\
& =\sum_{a=0}^{p-1} \sum_{j=0}^{p^{k}-1}(-1)^{a+p j}[a+p j]_{q^{\alpha}}^{n-1} q^{a+p j} \\
& =\sum_{a=0}^{p-1}(-1)^{a} q^{a} \sum_{j=0}^{p^{k}-1}(-1)^{j} q^{p j}\left([a]_{q^{\alpha}}+q^{\alpha a}[p]_{q^{\alpha}}[j]_{q^{\alpha p}}\right)^{n-1} \\
& =\sum_{a=0}^{p-1} \sum_{j=0}^{p^{k}-1} \sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{a+j} q^{a+p j}[a]_{q^{\alpha}}^{n-1-l} q^{\alpha a l}[p]_{q^{\alpha}}^{l}[j]_{q^{p \alpha}}^{l} \\
& =\sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \frac{[2]_{q^{p}}}{[2]_{q^{p}}} \\
& \quad+\sum_{a=0}^{p-1} \sum_{j=0}^{p^{k}-1} \sum_{l=1}^{n-1}\binom{n-1}{l}(-1)^{a+j} q^{a+p j+\alpha a l}[a]_{q^{\alpha}}^{n-1-l}[p]_{q^{\alpha}}^{l}[j]_{q^{p \alpha}}^{l} \\
& =\sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1}\left(\bmod [p]_{q^{\alpha}}\right) . \tag{18}
\end{align*}
$$

Therefore, by (17) and (18), we obtain the following theorem.
Theorem 2.1 $\operatorname{Let} L_{n-1}^{(\alpha)}(k)=\sum_{a=0}^{p^{k}-1}(-1)^{a}[a]_{q^{\alpha}}^{n-1}$. Then we have

$$
L_{n-1}^{(\alpha)}(k+1)=\sum_{a=0}^{p^{k}-1}[a]_{q^{\alpha}}^{n-1}(-1)^{a} q^{a} .
$$

Furthermore

$$
\sum_{a=0}^{p^{k}-1}[a]_{q^{a}}^{n-1}(-1)^{a} q^{a} \alpha\left(\bmod \left[p^{k}\right]_{q^{\alpha}}\right) \equiv \sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1}\left(\bmod [p]_{q^{\alpha}}\right)
$$

By Theorem 2.1, we get

$$
\begin{equation*}
\sum_{a=0}^{p-1}(-1)^{a} n[a]_{q^{\alpha}}^{n-1} q^{a}=\int_{X}[x]_{q^{\alpha}}^{n-1} d \mu_{-q}(x) \equiv G_{n, q}^{(\alpha)}\left(\bmod [p]_{q}\right) \tag{19}
\end{equation*}
$$

Therefore, by (19), we have the following theorem.

Theorem 2.2 For $n \geq 1$, we have

$$
\sum_{a=0}^{p-1}(-1)^{a} n[a]_{q^{\alpha}}^{n-1}=G_{n, q}^{(\alpha)}\left(\bmod [p]_{q}\right) .
$$

From (17) and (19), we note that

$$
G_{n+1, q}^{(\alpha)}+n \sum_{a=0}^{p-1}(-1)^{a+1}[a]_{q^{\alpha}}^{n-1} q^{a} \in \mathbb{Z}_{p} \quad(n \geq 1)
$$

Corollary 2.3 For $n \geq 1$, we have

$$
G_{n+1, q}^{(\alpha)}+n \sum_{a=0}^{p-1}(-1)^{a+1}[a]_{q^{\alpha}}^{n-1} q^{a} \in \mathbb{Z}_{p} .
$$

Let $n \geq 1$. Then we observe that

$$
\begin{align*}
\left|\frac{G_{n+1, q}^{(\alpha)}}{n+1}\right|_{p} & =\left|\frac{G_{n+1, q}^{(\alpha)}}{n+1}-\sum_{a=0}^{p-1}(-1)^{a}[a]_{q^{\alpha}}^{n} q^{a}+\sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n}\right|_{p} \\
& \leq \max \left\{\left|\frac{G_{n+1, q}^{(\alpha)}}{n+1}-\sum_{a=0}^{p-1}(-1)^{a}[a]_{q^{\alpha}}^{n}\right|_{p},\left|\sum_{a=0}^{p-1}(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n}\right|_{p}\right\} \leq 1 . \tag{20}
\end{align*}
$$

Therefore, we obtain the following theorem.

Theorem 2.4 For $n \geq 1$, we have

$$
\frac{G_{n+1, q}^{(\alpha)}}{n+1} \in \mathbb{Z}_{p}
$$

Let χ be the Dirichlet character $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. The generalized weighted q-Genocchi numbers attached to χ are introduced as follows:

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n, q, \chi}^{(\alpha)} \frac{t^{n}}{n!} & =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} \chi(m) e^{[m]_{q^{\alpha}} t} \\
& =t \int_{X} \chi(x) e^{[x]_{q^{\alpha}} \alpha} d \mu_{-q}(x) . \tag{21}
\end{align*}
$$

Let $\bar{f}=[f, p]$ be the least common multiple of the conductor f of χ and p. By (21), we get

$$
\begin{equation*}
G_{n, q, \chi}^{(\alpha)}=n \int_{X} \chi(x)[x]_{q^{\alpha}}^{n-1} d \mu_{-q}(x)=n \lim _{n \rightarrow \infty} \sum_{x=0}^{f p^{N}-1} \chi(x)(-1)^{x}[x]_{q^{\alpha}}^{n-1} . \tag{22}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
G_{n, q, \chi}^{(\alpha)}= & n \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1} \chi(a)(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1} \\
& +n[p]_{q^{\alpha}}^{n-1} \chi(p) \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1}^{\bar{f} p^{\rho}-1} \chi(a)(-1)^{a} q^{a p}[a]_{q^{\alpha} p}^{n-1} \\
= & n \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p p^{p},(a, p)=1} \chi(a)(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1}+a[p]_{q^{\alpha}}^{n-1} \chi(p) G_{n, q^{p}, \chi}^{(\alpha)} . \tag{23}
\end{align*}
$$

Therefore, by (23), we obtain the following theorem.

Theorem 2.5 For $n \geq 1$, we have

$$
\begin{equation*}
n \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1} \chi(a)(-1)^{a} q^{a}[a]_{q^{\alpha}}^{n-1}=G_{n, q, \chi}^{(\alpha)}-[p]_{q^{\alpha}}^{n-1} \chi(p) G_{n, q^{p}, \chi}^{(\alpha)} . \tag{24}
\end{equation*}
$$

Assume that w is the Teichmüller character by $\bmod p$. For $a \in X^{*}$, set $\langle a\rangle_{\alpha}=\langle a: q\rangle_{\alpha}=$ $\frac{[a]^{\alpha}}{}{ }_{(a)}$. Note that $\left|\langle a\rangle_{\alpha}-1\right|_{p}<p^{\frac{1}{p-1}}$, where $\langle a\rangle^{s}=\exp (s \log \langle a\rangle)$ for $s \in \mathbb{Z}_{p}$. For $s \in \mathbb{Z}_{p}$, we define the weighted p-adic l-function associated with $G_{n, q, x}^{(\alpha)}$ as follows:

$$
l_{p, q}^{(\alpha)}(s, \chi)=\lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1} \chi(a)(-1)^{a}\langle a\rangle_{\alpha}^{-s} q^{a}=\int_{X^{*}} \chi(x)\langle x\rangle_{\alpha}^{-s} d \mu_{-q}(x)
$$

For $k \geq 1$,

$$
\begin{aligned}
& k l_{p, q}\left(1-k, \chi w^{k-1}\right) \\
& \quad=k \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho}} \chi(a)(-1)^{a} q^{a}[a]_{q^{\alpha}}^{k-1} \\
& \quad=k \int_{X} \chi(x)[x]_{q^{\alpha}}^{k-1} d \mu_{-q}(x)-k \int_{p X} \chi(x)[x]_{q^{\alpha}}^{k-1} d \mu_{-q}(x) \\
& \quad=k \int_{X} \chi(x)[x]_{q^{\alpha}}^{k-1} d \mu_{-q}(x)-\frac{k[2]_{q} \chi(p)}{[2]_{q^{p}}}[p]_{q^{\alpha}}^{k-1} \int_{X} \chi(x)[x]_{q^{\alpha}}^{k-1} d \mu_{-q^{p}}(x) \\
& \quad=G_{x, q, \chi}^{(\alpha)}-\frac{[2]_{q}}{[2]_{q^{p}}} \chi(p)[p]_{q^{\alpha}}^{k-1} G_{k, q^{p}, \chi}^{(\alpha)} .
\end{aligned}
$$

It is easy to show that

$$
\begin{aligned}
\langle a\rangle_{\alpha}^{p^{n}} & =\exp \left(p^{n} \log \langle a\rangle_{\alpha}\right) \\
& =1+p^{n} \log \langle a\rangle_{\alpha}+\frac{\left(p^{n} \log _{p}\langle a\rangle_{\alpha}\right)^{2}}{2!}+\cdots \\
& \equiv 1\left(\bmod p^{n}\right) .
\end{aligned}
$$

So, by the definition of $l_{p, q}^{(\alpha)}(1-k, x)$, we get

$$
\begin{aligned}
l_{p, q}^{(\alpha)}(-k, \chi) & =\lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1} \chi(a)(-1)^{a} q^{a}\langle a\rangle_{\alpha}^{k} \\
& \equiv \lim _{\rho \rightarrow \infty} \sum_{1 \leq a \leq \bar{f} p^{\rho},(a, p)=1} \chi(a)(-1)^{a} q^{a}\langle a\rangle_{\alpha}^{k^{\prime}}\left(\bmod p^{n}\right),
\end{aligned}
$$

where $k \equiv k^{\prime}\left(\bmod p^{n}(p-1)\right)$. Namely, we have

$$
l_{p, q}^{(\alpha)}\left(-k, \chi w^{k}\right) \equiv l_{p, q}^{(\alpha)}\left(-k^{\prime}, \chi w^{k^{\prime}}\right)\left(\bmod p^{n}\right) .
$$

Theorem 2.6 For $k \equiv k^{\prime}\left(\bmod p^{n}(p-1)\right)$, we have

$$
\frac{G_{k+1, q, \chi}^{(\alpha)}}{k+1}-\frac{[2]_{q}}{[2]_{q^{p}}} \frac{G_{k+1, q^{p}, \chi}^{(\alpha)}}{k+1} \equiv \frac{G_{k^{\prime}+1, q, \chi}^{(\alpha)}}{k^{\prime}+1}-\frac{[2]_{q}}{[2]_{q^{p}}} \frac{G_{k^{\prime}+1, q^{p}, \chi}^{(\alpha)}}{k^{\prime}+1}\left(\bmod p^{n}\right) .
$$

Competing interests

The authors declare that they have no competing interests.
Authors? contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mechanical System Engineering, Dongguk University, Gyeongju, 780-714, Korea. ${ }^{2}$ General Education Institute, Konkuk University, Chungju, 138-701, Korea.

Acknowledgements

This paper was supported by Konkuk University in 2015.
Received: 3 December 2014 Accepted: 22 December 2014 Published online: 14 January 2015

References

1. Araci, S, Acikgoz, M, Sen, E: On the von Staudt-Clausen?s theorem associated withq-Genocchi numbers. Appl. Math Comput. 247, 780-785 (2014)
2. Kim, T: On the von Staudt-Clausen theorem for q-Euler numbers. Russ. J. Math. Phys. 20(1), 33-38 (2013)
3. Kim, T, Jang, L-C, Kim, Y-H: Some properties on the p-adic invariant integral on \mathbb{Z}_{p} associated with Genocchi and Bernoulli polynomials. J. Comput. Anal. Appl. 13(7), 1201-1207 (2011)
4. Kim, T: New approach to q-Euler polynomials of higher order. Russ. J. Math. Phys. 17(2), 218-225 (2010)
5. Kim, T : Identities on the weighted q-Euler numbers and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 7-12 (2012)
6. Kim, T, Kim, Y-H, Ryoo, CS: Some identities on the weighted q-Euler numbers and q-Bernstein polynomials. J. Inequal. Appl. 2011, 64 (2011)
7. Park, J-W: New approach to q-Bernoulli polynomials with weight or weak weight. Adv. Stud. Contemp. Math. 24(1), 39-44 (2014)
8. Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. 21(1), 47-54 (2011)
9. Araci, S, Acikgoz, M, Jolany, H, Seo, J: A unified generating function of the q-Genocchi polynomials with their interpolation functions. Proc. Jangjeon Math. Soc. 15(2), 227-233 (2012)
10. Bayad, A, Kim, T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(2), 247-253 (2010)
11. Gaboury, S, Tremblay, R, Fugere, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)
12. Jang, LC, Bell, ET: A study on the distribution of twisted q-Genocchi polynomials. Adv. Stud. Contemp. Math. 18(2), 181-189 (2009)
13. Jeong, J-H, Park, J-W, Rim, S-H: New approach to the analogue of Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on \mathbb{Z}_{p}. J. Comput. Anal. Appl. 15(7), 1310-1316 (2013)
14. Kim, DS, Kim, T: q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 57(9), 1867-1874 (2014)
15. Kim, T, Kim, DS, Dolgy, DV, Rim, SH: Some identities on the Euler numbers arising from Euler basis polynomials. Ars Comb. 109, 433-446 (2013)
16. Pak, HK, Rim, SH, Jeong, J: A note on the analogue of Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on \mathbb{Z}_{p}. J. Inequal. Appl. 2013, 15 (2013)
