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Abstract
In the article, we present new bounds for the function et cot(t)–1 on the interval (0,π /2)
and find sharp estimations for the Sine integral and the Catalan constant based on a
new monotonicity criterion for the quotient of power series, which refine the
Redheffer and Becker-Stark type inequalities for tangent function.
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1 Introduction
The study of this paper is concerned with the following inequality:

sin t
t

≥ π – t

π + t , t ∈ (,π ), (.)

which was posted by Redheffer in [] and was proved by Williams []. Recently, Zhu and
Sun [] extended the Redheffer inequality (.) to the tangent function, and they estab-
lished the following inequalities:

(
π + t

π – t

)π/

<
tan t

t
<

π + t

π – t , t ∈ (,π/) (.)

with the best exponents π/ and . Zhu [] further refined the double inequality

(√
π + t

π – t

)/

<
tan t

t
<

(√
π + t

π – t

)π/

, t ∈ (,π/). (.)

It is worth noting that Becker and Stark [] in  showed the double inequality


π – t <

tan t
t

<
π

π – t , t ∈ (,π/), (.)

where  and π are the best constants. Later, Zhu and Hua [] gave a general refinement of
the Becker-Stark inequalities (.) by the power series expansion of the tangent function in
terms of the Bernoulli numbers. In particular, they proved that for t ∈ (,π/) the double
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inequality

π + (/π – )t

π – t <
tan t

t
<

π + (π/ – )t

π – t (.)

holds with the best constants (/π – ) and (π/ – ); also see []. Chen and Cheung
[] further presented an improvement of the left hand side inequality in (.), which states
that

(
π

π – t

)α

<
tan t

t
<

(
π

π – t

)β

(.)

holds for t ∈ (,π/) with the best exponents α = π/ and β =  (also cf. []). Another
improvement involving the left hand side one in (.) was made in [] by Nishizawa.
Very recently, Bhayo and Sándor [], Corollary , again proved the Becker-Stark inequal-
ities (.) by using Redheffer inequality (.), which reveals the implicit relation between
Redheffer’s and Becker-Stark’s inequalities. They in [], Corollaries , also stated that for
t ∈ (,π/) we have

π – t – πt/
π – t <

t
tan t

<
π – t

π – t . (.)

It is an important observation that Yang et al. [], (), in  considered the bounds
for function et cot t– and established a number of inequalities for trigonometric functions.
In particular, they in [], Corollary , showed that for t ∈ (,π/)

e–t/π < et cot t– < e–t/,

which can be written as

 –
t

π <
t

tan t
<  –

t


. (.)

Inspired by these results mentioned above, the aim of this paper is to determine the best
bounds for Y (t) = et cot t– in terms of

Bp(t) =

{
( – pt)/(p) if p ∈ (–∞, ) ∪ (, /π],
e–t/ if p = ,

(.)

on (,π/), that is to say, we will determine the best parameters p, q ∈ (–∞, /π] such
that the double inequality

(
 – pt)/(p) < exp

(
t

tan t
– 

)
<

(
 – qt)/(q) (.)

holds for all t ∈ (,π/). Inequalities (.) also can be rewritten as

 +


p
ln

(
 – pt) <

t
tan t

<  +


q
ln

(
 – qt),

which offers a new type of bounds being different of the previous papers for the tangent
function.
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2 Some useful lemmas
In order to prove the main Theorem  in the next section, we need some preliminary
lemmas. To this end, we first introduce a useful auxiliary function Hf ,g . For –∞ ≤ a < b ≤
∞, let f and g be differentiable on (a, b) and g ′ 	=  on (a, b). Then the function Hf ,g is
defined by

Hf ,g :=
f ′

g ′ g – f . (.)

The function Hf ,g has been investigated with some well properties in [], Properties , ,
which plays an important role in the proof of a monotonicity criterion for the quotient of
power series; also see [].

Lemma  ([], Theorem ., [], Lemma ., and [], Lemma .) Let A(t) =
∑∞

k= aktk

and B(t) =
∑∞

k= bktk be two real power series converging on (–r, r) and bk >  for all k.
Suppose that, for certain m ∈ N, the non-constant sequence {ak/bk} is increasing (resp. de-
creasing) for  ≤ k ≤ m and decreasing (resp. increasing) for k ≥ m. Then the function
A/B is strictly increasing (resp. decreasing) on (, r) if and only if HA,B(r–) ≥ (resp. ≤) .
Moreover, if HA,B(r–) < (resp. >) , then there exists t ∈ (, r) such that the function A/B is
strictly increasing (resp. decreasing) on (, t) and strictly decreasing (resp. increasing) on
(t, r).

Lemma  ([], p. ) Let  < t < π . Then

cot t =

t

–
∞∑

n=

n

(n)!
|Bn|tn–, (.)


sin t

=

t +

∞∑
n=

(n – )n

(n)!
|Bn|tn–, (.)

where Bn is the Bernoulli number.

Lemma  ([]) Let Bn and Bn– be the even-indexed Bernoulli numbers. Then


(π )

n(n – )(n– – )
n– <

|Bn|
|Bn–| <


(π )

n(n – )n–

n– – 
. (.)

Consequently, we have

n(n – )
(n + )(n + )

(n+ – )(n– – )
n– <

|Bn|
|Bn–Bn+| <

n(n – )
(n + )(n + )

n–

(n– – ) .

Lemma  Let the function g be defined on (,π ) by

g(t) =
t –  cos t sin t – t sin t

t(t – sin t cos t)
. (.)

Then g is strictly increasing from (,π/) onto (/, /(π)) and decreasing from (π/,π )
onto (/π, /(π)).
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Proof To avoid complicated calculations, we here make use of Lemmas ,  and  to prove
this lemma. For this purpose, we write g(t) as

g(t) =
t

sin t – cos t
sin t – 

 t
t

sin t – t cos t
sin t

:=
g(t)
g(t)

,

then applying Lemma  yields

g(t) =
g(t)
g(t)

=
∑∞

n=
n+

(n+)! |Bn+|tn–

∑∞
n=

n
(n–)! |Bn|tn–

:=
∑∞

n= an+xn∑∞
n= bn+xn ,

where

an =
n+

(n + )!
|Bn+|, bn =

n

(n – )!
|Bn|, x = t ∈ (

,π).

We now prove that the sequence {an/bn} is increasing for  ≤ n ≤  and decreasing for
n ≥ . A simple check yields

a

b
=




>
a

b
=




<
a

b
=




<
a

b
=




,

and it remains to show that an–/bn– > an/bn for n ≥ . Indeed, we have

an–

bn–

/an

bn
=


(n – )(n – )

|Bn|
|Bn–|

/(


n(n + )
|Bn+|
|Bn|

)

=
n(n + )

(n – )(n – )
|Bn|

|Bn–|
|Bn|

|Bn+| .

Then by Lemma , we get

an–

bn–

/an

bn
–  >

n(n + )
(n – )(n – )

n(n – )
(n + )(n + )

(n+ – )(n– – )
n– – 

=
n

n – 
(n+ – )(n– – )

n– – 

=
(n+ – n)n + n

 × n(n – )(n + )
>  for n ≥ ,

where the inequality holds due to n+ – n >  for n ≥ . This proves the piecewise
monotonicity of {an/bn}n≥.

According to Lemma , we also have to check that Hg,g (π–) <  and Hg,g (π/) = . In
fact, we have

Hg,g (
√

x) =
g ′

(
√

x)
g ′

(
√

x)
g(

√
x) – g(

√
x)

=
( t

sin t – cos t
sin t – 

 t)′

( t

sin t – t cos t
sin t )′

(
t

sin t
– t cos t

sin t

)
–

(
t

sin t
–

cos t
sin t

–



t
)
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=


 sin t
t cos t sin t + t cos t + t(sin t – ) sin t cos t +  cos t sin t

t cos t – t sin t + cos t sin t

→ –∞ as t → π–,

then Lemma  leads to the result that there is a unique t ∈ (,π ) such that g is increasing
on (, t) and decreasing on (t,π ). Note that

g ′(t) =
g ′

(t)
g(t) Hg,g (t) =

g ′
(t)

g(t)

[
g ′

(t)
g ′

(t)
g(t) – g(t)

]
→  as t → π/,

we clearly see that the unique t = π/. A simple computation yields

g
(
+)

=



, g
(

π



)
=


π , g

(
π–)

=


π ,

which completes the proof. �

Remark  If we use an ordinary method to prove the piecewise monotonicity of g , then
it is very troublesome. For example, a direct computation yields

g(t) =



t –  sin t + t cos t
t(t – sin t)

u=t∈(,π )=



u –  sin u + u cos u
u(u – sin u)

:= g(u),

then differentiating g(u) gives

g ′
(u) = –




u sin u + ( + cos u)u – u( + cos u) sin u +  sin u
u(u – sin u) .

As a result, there are various approaches to showing the piecewise monotonicity of g on
(, π ), but it seems to be difficult. It thus can be seen that our method used previously is
relatively easy.

Lemma  For t ∈ (,π/), let p �−→ Bp(t) and p �−→ αp(t) be respectively defined on
(–∞, /π] by (.) and

αp(t) =
exp(t cot t – )
( – pt)/(p) if p 	= , and α(t) = exp

(
t cot t –  +

t



)
. (.)

Then p �−→ Bp(t) and p �−→ αp(π/)Bp(t) are strictly decreasing and increasing on
(–∞, /π], respectively. Moreover, there is a unique p ≈ . such that αp(π/) < 
for p ∈ (–∞, p) and αp(π/) >  for p ∈ (p, /π), where p is the unique solution of the
equation αp(π/) =  on (–∞, /π).

Proof Let p 	= . Logarithmic differentiation yields

∂ ln Bp(t)
∂p

= –


p r(t),

∂ ln[αp(π/)Bp(t)]
∂p

=


p

[
r
(

π



)
– r(t)

]
,
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where

r(t) = ln
(
 – pt) +


 – pt – .

Differentiation again leads to

r′(t) =
pt

( – pt) > 

for t ∈ (,π/), which means that  = r(+) < r(t) < r(π/). These together with B(t) =
limp→ Bp(t) and α(t) = limp→ αp(t) show that p �−→ Bp(t) and p �−→ αp((π/))Bp(t) are
strictly decreasing and increasing on (–∞, /π], respectively.

Note the increasing property of p �−→ lnαp(π/) = – – ln Bp(π/) on (–∞, /π] and

lnα(π/) = lim
p→

[
– –


p

ln

(
 –

pπ



)]
=

π


–  < ,

lnα/(π/) = – – ln

(
 –

π



)
> ,

which implies that there is a unique p ∈ (, /) such that lnαp <  for p ∈ (–∞, p) and
αp >  for p ∈ (p, /π). Solving the equation lnαp(π/) =  for p gives p = p ≈ ..
The proof is finished. �

3 Main results
This section is devoted to stating and proving the main results concerning some inequal-
ities for the tangent function. More precisely, we have the following.

Theorem  For p ∈ (–∞, /π], let Y (t) = exp(t cot t – ) and Bp(t) be defined on (,π/)
by (.).

(i) If p ≤ / ≈ ., then the function t �−→ Y (t)/Bp(t) is strictly decreasing on the
interval (,π/). Consequently, for all t ∈ (,π/)

αp(π/)
(
 – pt)/(p) < exp

(
t

tan t
– 

)
<

(
 – pt)/(p) (.)

with the best coefficients  and αp(π/) defined by (.).
(ii) If p ≥ /(π) ≈ ., then the function t �−→ Y (t)/Bp(t) is strictly increasing on

(,π/), and therefore, for all t ∈ (,π/),

(
 – pt)/(p) < exp

(
t

tan t
– 

)
< αp(π/)

(
 – pt)/(p) (.)

with the best coefficients  and αp(π/) defined by (.).
(iii) If / < p < /(π), then there is a t ∈ (,π/) such that the function

t �−→ Y (t)/Bp(t) is strictly increasing on (, t) and decreasing on (t,π/), and
hence, for all t ∈ (,π/),

min
(
αp(π/), 

)(
 – pt)/(p) < exp

(
t

tan t
– 

)
< βp

(
 – pt)/(p) (.)
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with

βp =
t cot t – 

( – pt
)/(p) ,

where t is the unique solution of the equation

cos t
sin t

–
t

sin t
+

t
( – pt)

=  (.)

on (,π/).
When p ∈ [p, /(π)), the double inequality (.) still holds for all t ∈ (,π/). In partic-
ular, when p = p, we have

(
 – pt)/(p) < exp

(
t

tan t
– 

)
< βp

(
 – pt)/(p) (.)

with the best constants  and βp ≈ ..

Proof Let

f (t) = ln Y (t) – ln Bp(t) =

{ t
tan t –  – 

p ln( – pt) if p 	= ,
t

tan t –  + t

 if p = .
(.)

Differentiation yields

f ′(t) =
cos t
sin t

–
t

sin t
+

t
( – pt)

=
t(t – cos t sin t)
( – pt) sin t

(
p –

t –  cos t sin t – t sin t
t(t – sin t cos t)

)

=
t(t – cos t sin t)
( – pt) sin t

[
p – g(t)

]
,

where g(t) is defined by (.).
Noticing that (t – cos t sin t) = [t – sin(t)]/ >  for t ∈ (,π/) and ( – pt) >  for

p ∈ (–∞, /π] and t ∈ (,π/), we easily see that, for all t ∈ (,π/),

sgn f ′(t) = sgn
(
p – g(t)

)
. (.)

As shown in Lemma , the function g is strictly increasing from (,π/) onto
(/, /(π)). We are now in a position to distinguish three cases to prove the required
result.

Case : p ≤ mint∈(,π/) g(t) = /. Then we obtain f ′(t) ≤  for t ∈ (,π/), which means
that f is strictly decreasing on (,π/). Consequently, we can deduce the following obser-
vation:

lnαp

(
π



)
= f

(
π


–
)

< f (t) < f
(
+)

= ,



Lv et al. Journal of Inequalities and Applications  (2017) 2017:94 Page 8 of 17

which is equivalent to the double inequality (.) holding for all t ∈ (,π/) with the best
coefficients  and αp.

Case : p ≥ maxt∈(,π/) g(t) = /(π). Similarly, we have f ′(t) >  for t ∈ (,π/), which
implies that the double inequality (.) holds for all t ∈ (,π/) with the best coefficients
 and αp(π/).

Case : / < p < /(π). Since t �−→ p – g(t) := g(t) is strictly decreasing on (,π/)
with

g
(
+)

= p –



>  and g

(
π


–
)

= p –


π < ,

we find that there is t ∈ (,π/) such that g(t) >  for t ∈ (, t) and g(t) <  for t ∈
(t,π/). This indicates that f is strictly increasing on (, t) and decreasing on (t,π/).
Therefore, we deduce that

min
(
, lnαp(π/)

)
= min

(
f
(
+)

, f
(

π


–
))

< f (t) ≤ f (t) = lnβp

for all t ∈ (,π/), that is, (.) holds for all t ∈ (,π/), where βp = Y (t)/Bp(t).
When p ∈ [p, /(π)), by Lemma  we have αp ≥ , and it follows that

 < f (t) ≤ f (t) = lnβp,

that is, the double inequality (.) still holds for t ∈ (,π/).
In particular, for p = p ≈ ., solving equation (.) for t yields t ≈ ., and

hence βp ≈ .. Thus we complete the proof. �

Taking p = / ≈ ., /, /, , and → –∞, respectively. Then by part (i) of The-
orem  and the monotonicity of p �−→ Bp(t) and p �−→ αp(π/)Bp(t) given in Lemma , we
immediately obtain the following conclusion.

Corollary  For t ∈ (,π/), the inequalities

e– < αe–t/ < α/

(
 –

t



)

< α/

(
 –

t



)/

(.)

< α/

(
 –

t



)/

< exp

(
t

tan t
– 

)
<

(
 –

t



)/

<
(

 –
t



)/

<
(

 –
t



)

< e–t/ < 

holds with the best coefficients

α/ = e–
(

 –
π



)–/

≈ ., α/ = e–
(

 –
π



)–/

≈ .,

α/ = e–
(

 –
π



)–

≈ ., α = eπ/– ≈ ..
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Likewise, taking p = /(π) ≈ ., /, /, /, and /π, respectively, we have the
following.

Corollary  For t ∈ (,π/), the inequalities

(
 –

t

π

)π/

<
(

 –
t



)
<

(
 –

t



)

<
(

 –
t



)/

<
(

 –
t

π

)π/

< exp

(
t

tan t
– 

)
< α/(π)

(
 –

t

π

)π/

< α/

(
 –

t



)/

< α/

(
 –

t



)

< α/

(
 –

t



)
(.)

hold with the best coefficients

α/(π) = e–
(




)π/

≈ ., α/ = e–
(

 –
π



)–/

≈ .,

α/ = e–
(

 –
π



)–

≈ ., α/ = e–
(

 –
π



)–

≈ ..

Theorem  Let p, q ∈ (–∞, /π]. Then the double inequality

(
 – pt)/(p) < exp

(
t

tan t
– 

)
<

(
 – qt)/(q) (.)

holds for all t ∈ (,π/) if and only if p ≥ p ≈ . and q ≤ / ≈ ., where p

is defined in Lemma .

Proof Clearly, the sufficiency easily follows by Theorem . The necessary condition for the
right hand side inequality in (.) to hold for t ∈ (,π/) follows from the limit relation

lim
t→+

ln Y (t) – ln Bq(t)
t =




(q – ) ≤ .

The necessary condition for the left hand side inequality in (.) to hold for t ∈ (,π/)
can be obtained from the inequality

lim
t→π/

Y (t)
Bp(t)

= e–
(

 –
pπ



)–/(p)

= αp ≥ .

It follows from Lemma  that p ≥ p, which completes the proof. �

4 Comparisons and remarks
By Theorem , we have

 +


p
ln

(
 – pt) <

t
tan t

<  +



ln

(
 –




t
)

, (.)

where p ≈ ..
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We denote the lower bounds for t/ tan t given in the inequalities (.), (.), (.), (.),
(.), and (.), respectively, by

LY (t) =  +


p
ln

(
 – pt), ZS(t) =

π – t

π + t , Z(t) =
(

π – t
√

π + t

)π/

,

BS(t) =  –

π t, ZH(t) =

π – t

π + (π/ – )t , BS(t) =
π – t – πt/

π – t .

Proposition  The comparison inequalities

LY (t) > ZH(t) > BS(t) > max
(
ZS(t), Z(t), BS(t)

)
(.)

hold for t ∈ (,π/). Moreover, ZS(t), Z(t) and BS(t) are not comparable with each other
for all t ∈ (,π/).

Proof (i) We first prove

D(x) = LY (
√

x) – ZH(
√

x) =  +


p
ln( – px) –

π – x
π + (π/ – )x

> 

for x ∈ (,π/). Differentiation yields

D′
(x) = –

( – π)x
( – xp)(π + (π/ – )x)

(
x –

π – π – πp

( – π)

)
,

which shows that D is increasing on (, x) and decreasing on (x,π/), where

x =
π – π – πp

( – π) ≈ ..

Then we conclude that D(x) > min(D(), D(π/)) =  with D(π/) =  due to p sat-
isfying αp (π/) =  shown in Lemma .

(ii) The second inequality directly follows from

ZH(t) – BS(t) =
π – t

π + (π/ – )t –
(

 –

π t

)

=



t( – π)(π – t)
π(π + (π/ – )t)

> 

for t ∈ (,π/).
(iii) The third one is deduced by

BS(t) – ZS(t) =
(

 –

π t

)
–

π – t

π + t =
t(π – t)
π(π + t)

> ,

BS(t) – Z(t)
π – t =


π –

(π – t)π/–

(
√

π + t)π/
>


π –

(π)π/–

(
√

π)π/
= ,

BS(t) – BS(t) =
(

 –

π t

)
–

π – t – πt/
π – t =


π

t(t + π – π)
(π – t)

> ,

for t ∈ (,π/).
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(iv) Finally, we prove that ZS(t), Z(t) and BS(t) are not comparable with each other for
all t ∈ (,π/). Simple computations yield

lim
t→+

ZS(t) – Z(t)
t = lim

t→+
t–

(
π – t

π + t –
(

π – t
√

π + t

)π/)
=




π – 
π < ,

lim
t→(π/)–

ZS(t) – Z(t)
π – t = lim

t→(π/)–

(


π + t –
(π – t)π/–

(
√

π + t)π/

)
=


π > ,

lim
t→+

Z(t) – BS(t)
t = lim

t→+
t–

((
π – t

√
π + t

)π/

–
π – t – πt/

π – t

)

= –
π – 

π < ,

lim
t→(π/)–

[
Z(t) – BS(t)

]
= lim

t→(π/)–

((
π – t

√
π + t

)π/

–
π – t – πt/

π – t

)

=


π > ,

ZS(t) – BS(t) =
π – t

π + t –
π – t – πt/

π – t

=



t (π + )
(π – t)(π + t)

(
t –

π( – π)
( + π)

)

⎧⎨
⎩

<  if  < t < π


√
–π

+π ,

>  if π


√
–π

+π < t < π
 .

This completes the proof. �

Remark  From the above proposition we see that the sharp lower bound in (.) is su-
perior to those ones given in (.), (.), (.), (.), and (.).

Remark  Analogously, by comparing the limits at t =  and t = π/, we find the sharp
upper bound in (.) is not comparable with those ones given in (.), (.), (.), (.), and
(.). Here we omit all the details.

Remark  We claim that the result stated in Theorem  is stronger than the inequality
(.), that is, for t ∈ (,π/), we have the inequalities

 –

π t <  +


p

ln
(
 – pt) <

t
tan t

<  +



ln

(
 –




t
)

<  –
t


. (.)

Indeed, the right hand side for this inequality in (.) follows from Corollary , while the
left hand side one is the inequality connecting the first and third bounds in (.).

Remark  Lemma  tells us that




<
t –  cos t sin t – t sin t

t(t – sin t cos t)
<


π for t ∈ (,π/), (.)


π <

t –  cos t sin t – t sin t
t(t – sin t cos t)

<


π for t ∈ (π/,π ). (.)
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Then from equation (.) we find that for f ′(t) <  for t ∈ (,π ) when p = /π, and so
f (t) < f (+) = . This gives the following inequality:

t cos t
sin t

–  –
π


ln

(
 –

t

π

)
< 

for all t ∈ (,π ), which can be stated as the following proposition.

Proposition  For all t ∈ (,π ), we have

t
tan t

<  +
π


ln

(
 –

t

π

)
.

Remark  The inequality

sin t
t

<
 + cos t


, t ∈

(
,

π



)
,

is true due to Cusa and Huygens’ paper (see, e.g. []), which is now known as Cusa’s
inequality (see e.g. [, –]). Some refinements and generalizations of Cusa’s inequality
can be found in [, , , –]. Now by letting t = x/ and simplifying, inequalities (.)
and (.) can be written as

x(x – sin x)


<
 + cos x


–

sin x
x

<
x(x – sin x)

π for x ∈ (,π ),

x(x – sin x)
π <

 + cos x


–
sin x

x
<

x(x – sin x)
π for x ∈ (π , π ),

which give stronger versions of Cusa’s inequality.

Proposition  We have

 + cos x


–
x(x – sin x)

π <
sin x

x
<

 + cos x


–
x(x – sin x)


for x ∈ (,π ), (.)

 + cos x


–
x(x – sin x)

π <
sin x

x
<

 + cos x


–
x(x – sin x)

π for x ∈ (π , π ). (.)

Moreover, the two double inequalities are sharp.

Remark  In [], Corollary , Yang et al. proved that, for t ∈ (,π/),

√
exp

(
t

tan t
– 

)
<

sin t
t

< exp

(
t

tan(t/)
– 

)
.

Then by inequalities (.) for p = /(π) and q = /, we obtain

(
 –

t

π

)π/

<

√
exp

(
t

tan t
– 

)
<

sin t
t

< exp
(

t/
tan(t/)

– 
)

<
(

 –
t



)

for t ∈ (,π/). Further, the right hand side inequalities can be improved as follows.
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Proposition  The inequalities

ρr
(
 – rt)/(r) < λs exp

(
st

tan(st)
– 

)

<
sin t

t
< exp

(
st

tan(st)
– 

)
<

(
 – rt)/(r) (.)

hold for t ∈ (,π/) with the best constants s = /
√

, r = / and

λs =


π exp(
√

π cot(
√

π/) – )
≈ .,

ρr =


π ( – π/)/ ≈ ..

Proof Let

h(t) =
st cos(st)

sin(st)
–  – ln

sin t
t

,

where s = /
√

. Differentiation yields

h′(t) =

t

–
cos t
sin t

+ s
cos st
sin st

– s t
sin st

.

Expanding in power series leads to

h′(t) =
∞∑

n=

(
 – nsn) n

(n)!
|Bn|tn– =

∞∑
n=

(
n – n

) n

(n – )!
|Bn|tn– > .

This indicates that h(π/) > h(t) > h(+) =  for t ∈ (,π/), which proves the second and
third inequalities of (.). Considering the limit

lim
t→

h(t)
t = lim

t→

st cos(st)
sin(st) –  – ln sin t

t

t =



(



– s
)

,

it is seen that s = /
√

 and λs are the best possible constants.
The first and fourth ones are derived from the decreasing property of f (st) ≡ f (u) for

u ∈ (, sπ/) ⊂ (,π/) proved in Theorem  for p = r/s = /, and then r = / and ρr

are also the best. This completes the proof. �

5 Applications
In this section, we give some precise estimations for the Sine integral and Catalan constant.
The Sine integral is defined by

Si(x) =
∫ x



sin t
t

dt.

There are many interesting results concerning the Sine integral; see [, –] and the
references therein. Now we shall give more accurate estimations.
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Proposition  For x ∈ (,π ], we have

x + sin x


–
x + x cos x –  sin x

π < Si(x) <
x + sin x


–

x + x cos x –  sin x


. (.)

In particular, we have

. ≈ π


+

π – π + 
π

√
 < Si

(
π



)
<

π ( – π)


+
 – π


√

 ≈ .,

. ≈ π + π + 
π < Si

(
π



)
<

 + π – π


≈ .,

. ≈ π + 
π

< Si(π ) <
π ( – π)


≈ ..

Proof Indeed, integrating both sides over [, x] for double inequality (.) easily yields
(.). Direct computations give the approximation values of Si(x) for x = π/,π/,π . �

Note that

∫ π/


ln(sin x) dx = –

π


ln  ≈ –.

and
∫ x



t
tan t

dt = x ln(sin x) –
∫ x


ln(sin t) dt. (.)

We are now in the position to evaluate the integral
∫ x

 ln(sin t) dt for x ∈ (,π/).

Proposition  Let x ∈ (,π/). Then, for p ∈ (, /), we have

Lp(x) <
∫ x


ln(sin t) dt < Up(x), (.)

where

Lp(x) = x ln(sin x) –
p – 

p
x –


p

x ln
(
 – px) –


p/ ln

√px + 
 – √px

,

Up(x) = x ln(sin x) –
x

tan x
+


p

x –


p/ ln
√px + 
 – √px

.

The double inequality (.) is reversed for p ∈ [/(π), /π]. In particular, we have

x ln(sin x) – x +



x <
∫ x


ln(sin t) dt < x ln(sin x) –

x

tan x
–




x. (.)

Proof By the proof of Theorem  we see that the function

t → ln Y (t) – ln Bp(t) =
t

tan t
–  –


p

ln
(
 – pt)
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is strictly decreasing on (,π/) if p ≤ / and increasing on (,π/) if /(π) ≤ p ≤
/π. Then, for t ∈ (, x] ⊂ (,π/), we have, for p ≤ /,

x
tan x

–  –


p
ln

(
 – px) ≤ t

tan t
–  –


p

ln
(
 – pt) < ,

that is,

x
tan x

–


p
ln

(
 – px) +


p

ln
(
 – pt) ≤ t

tan t
<  +


p

ln
(
 – pt),

which is the reverse for /(π) ≤ p ≤ /π.
Integrating both sides over [, x] gives, for p ∈ (, /),

x

tan x
–

x
p

ln
(
 – px) +


p

(
x ln

(
 – px) +

√p
ln

√px + 
 – √px

– x
)

≤
∫ x



t
tan t

dt < x +


p

(
x ln

(
 – px) +

√p
ln

√px + 
 – √px

– x
)

.

Combining with equation (.) gives the double inequality (.) for p ∈ (, /].
Moreover, it is clear that the double inequality (.) is reversed if /(π) ≤ p ≤ /π.
Letting p → + in (.) yields (.), which completes the proof. �

Remark  Taking p = /(π) and x = π/,π/ in the double inequality (.) and com-
puting give

L/(π)

(
π



)
= –π

π ln  – π ln  +
√

π ln( +
√

) – π + 


≈ –.,

U/(π)

(
π



)
= –π

√
 ln(

√
 + ) – 


≈ –.,

L/(π)

(
π



)

= –π

√

π ln( + 
√

) – π ln  – π(
√

 – ) ln  – π +  ln  + 


≈ –.,

U/(π)

(
π



)
= –π


√

π ln(
√

 + ) – 
√

π ln  – π + π +  ln 


≈ –..

Then we obtain

–. ≈ U/(π)

(
π



)
<

∫ π/


ln(sin t) dt < L/(π)

(
π



)
≈ –., (.)

–. ≈ U/(π)

(
π



)
<

∫ π/


ln(sin t) dt < L/(π)

(
π



)
≈ –.. (.)

Clearly, the absolute errors of the two approximations are less than . and ..
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It is well known that the Catalan constant appearing in [–]

G =
∞∑

n=

(–)n

(n + ) = . . . .

is a famous mysterious constant appearing in many places in mathematics and physics. Its
integral representations [] include the following:

G =
∫ 



arctan x
x

dx =



∫ π/



x
sin x

dx

= –
∫ π/


ln( sin x) dx =

π


–

π


ln  +

∫ π/



x

sin x
dx.

Now, by using the third integral representation for G and (.), we easily obtain a very
accurate approximation for G, the absolute error of which is less than ..

Proposition  We have

. ≈ –
π


ln  – L/(π)

(
π



)
< G < –

π


ln  – U/(π)

(
π



)
≈ ..

Remark  Clearly, the above estimate for G is superior to Yang’s presentation in [],
Proposition , [], Remark ..

6 Conclusions
Rather than using classical approaches, we in this paper presented the new upper and
lower bounds of tan t

t on the interval (,π/) by way of the monotonicity criterion for the
quotient of power series. Our conclusions have not only refined the Redheffer and Becker-
Stark type inequalities concerning the tangent function, but they also showed some more
precise estimations to the Sine integral and the Catalan constant. More precisely, our con-
clusion is that the sharp lower bound of tan t

t is superior to all given results as showed by
Proposition  in Section , although its sharp upper bound is not comparable with those
given ones. In addition, we also derived a stronger version of Cusa’s inequality, and a very
accurate approximation of the Catalan constant with the absolute error being less than
..
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