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Abstract
We study one-term operator L acting in the space H1 = L2([0,∞);H) generated by the
operator-differential expression L = – d

dx (P(x)
d
dx ) and the boundary condition y(0) = 0.

We evaluate the asymptotic number of eigenvalues of the operator L under certain
conditions.
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1 Introduction
1.1 Related work
The theory of operator-differential equations with unbounded operator-coefficients is a
common tool for the study of infinite systems of ordinary differential equations, partial
differential equations and integro-differential equations. The main task in this theory is to
determine the behavior of the eigenvalues and eigenfunctions of the associated differential
operator. The first significant investigation in this direction belongs to Kostyuchenko and
Levitan []. They studied the asymptotic behavior of the spectrum of Sturm-Liouville op-
erator with operator coefficient. Later, the subject of investigation has been developed by
Gorbachuk [], Gorbachuk and Gorbachuk [, ], Otelbayev [], Solomyak [], Maksudov
et al. [], Adiguzelov et al. [] and Vladimirov [].

In recent years, Maslov [] has investigated the number of eigenvalues for a Gibbs en-
semble of self-adjoint operators. Muminov [] has studied the expression for the number
of eigenvalues of a Friedrichs model. Also, Vladimirov [] has calculated the eigenvalues
of the Sturm-Liouville problem with a fractal indefinite weight.

1.2 Formulation of the problem
Let L denote the differential operator in the space H = L([,∞); H) generated by the
operator-differential expression

L = –
d

dx

(
P(x)

d
dx

)
()

with the boundary condition

y() = , ()

where P(x) ( ≤ x < ∞) is a self-adjoint operator function in a Hilbert space H .
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In this paper, we suppose that the operator L has a discrete spectrum. For instance,
in [], the authors present some conditions under which the operator L has a discrete
spectrum.

The aim of the present paper is to study the asymptotic behavior of the eigenvalues of the
operator L. The existing methods still are not capable to evaluate the number of eigenval-
ues of the operator L directly. The reason is as follows. It is impossible to apply Courant’s
variational principle [] directly because on a finite interval the operator, generated by
the differential expression L and Neumann boundary conditions, has an infinite number
of eigenvalues. (For example,  is an eigenvalue of infinite multiplicity.) In order to avoid
this difficulty, we consider instead of the operator L its some relatively compact perturba-
tion Lα = L + Pα , where Pα is the αth power of the operator P(x). In this, we base on the
study of Marcus and Matsaev [], where under certain conditions the authors show that
the main terms of the asymptotics of the eigenvalues of the operator L and the unbounded
operator with a relatively compact perturbation Lα are the same.

2 Main results
Throughout the paper, we suppose that the operator-valued function P(x) satisfies the
following relative compactness (RC) conditions: There exist self-adjoint operators A ≥
E (here E denotes the identity operator) and B ≥ E with D(P(x)) ⊂ D(A) = D(B) and
A–, B– ∈ σ∞ (here σ∞ denotes the set of compact operators in H); local integral func-
tions q(x) ≥ , ϕ(x) ≥  and constants  < α ≤ /, β >  such that for any f ∈ D(P(x)) the
following inequalities are satisfied:

(a) q(x)(Af , f ) ≤ (P(x)f , f ) ≤ ϕ(x)(Bf , f );
(b) (Bαf , f ) ≤ (A–β f , f );
(c) limN→∞

∫ ∞
N


q(x)

∫ x
N ϕα(s) ds dx = .

Below we present a range of lemmas, based on which we prove two main theorems. In
Lemma , under certain conditions we prove that the operator Pα is compact with respect
to the operator L. In Lemmas - we evaluate the asymptotics of the eigenvalues of Lα =
L + Pα , which is the same as for the operator L.

First, we prove the following lemma.

Lemma  The operator Pα(x) in the space H is compact relative to operator L under RC-
conditions.

Proof Let us introduce the spaces L
(, N ; P) and L(, N ; Pα) as a closure of H-valued

smooth finite functions near x =  and x = N with metrics

‖y‖L
(,N ;P) =

∫ N



(
P(x)y′, y′)dx

and

‖y‖L(,N ;Pα ) =
∫ N



(
Pα(x)y, y

)
dx,

respectively.
We need to check the following two assertions to prove Lemma :
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. For any ε > , there exists a natural number N(ε) such that for any N ≥ N(ε) and any
y ∈ D(L) the following inequality holds:

∫ N



(
Pα(x)y, y

)
dx ≤

∫ N



(
P(x)y′, y′)dx.

. Embedding operators from the space L
(, N ; P) to L(, N ; Pα) are completely

continuous.
To check assertion , we will use Lemma  from [].

Lemma [] For every finite function y, defined on [,∞) and taken from the domain D(L),
the following two inequalities hold:

∫ ∞



(∣∣(y, y′)∣∣/∫ ∞

x

dt
γ(t)

)
dx ≤ 

∫ ∞



(
P(x)y′, y′)dx,

∫ ∞


(y, y) dx ≤ C

∫ ∞



(
y(n–), y(n))xn– dx.

Let γ ≤ γ ≤ γ ≤ · · · ≤ γn ≤ · · · be the eigenvalues of the operator B. Then, using the
above lemma from [], under RC-conditions we obtain the following chain of inequalities:

∫ ∞

N

(
Pα(x)y, y

)
dx ≤

∫ ∞

N
ϕα(x)

(
Bαy, y

)
dx

=
∫ ∞

N

∞∑
k=

γ α
k ϕα(x)

∣∣yk(x)
∣∣ dx

=
∞∑

k=

γ α
k

∫ ∞

N
ϕα(x)

∣∣yk(x)
∣∣ dx

= 
∞∑

k=

γ α
k

∫ ∞

N
ϕα(x)

∣∣∣∣
∫ ∞

x
y′

k(s)yk(s) ds
∣∣∣∣dx

≤ 
∞∑

k=

γ α
k

∫ ∞

N
ϕα(x)

∫ ∞

x

|y′
k(s)yk(s)| ∫ ∞

s


q(t) dt∫ ∞
s


q(t) dt

ds dx

≤ 
∞∑

k=

∫ ∞

N
ϕα(x)

∫ ∞

x


q(t)

dt dx
∫ ∞

N
q(s)γ α

k
∣∣y′

k(s)
∣∣ ds

=
∫ ∞

N


q(x)

∫ x

N
ϕα(s) ds dt

∫ ∞

N
q(s)

(
Bαy′, y′)ds.

Since A ≥ E and –β < , by using condition (b) of relative compactness, we have (Bαf , f ) ≤
(A–β f , f ) ≤ (Af , f ). Then from the above chain of inequalities we obtain

∫ ∞

N

(
Pα(x)y, y

)
dx ≤

∫ ∞

N


q(x)

∫ x

N
ϕα(s) ds dt

∫ ∞

N
q(s)

(
Ay′, y′)ds

≤
∫ ∞

N


q(x)

∫ x

N
ϕα(s) ds dx

∫ ∞

N

(
P(x)y′, y′)dx.

From these inequalities and part (b) of the RC-conditions we get assertion .
To establish assertion , we use Lemma  from [].
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Lemma [] If the operator function Q(x) is Bochner integrable on the interval [, N] and
its values are the essence of completely continuous operators in H , then the embedding op-
erator from W 

 (, N) to L(, N ; Q) is completely continuous.

Since the operator ϕα(x)A–β is completely continuous for all  ≤ x < ∞, the above lemma
from [] implies that the embedding operator from L

(, N ; E) to L(, N ;ϕα(x)A–β ) is
completely continuous.

If function u is replaced by u = A 
 y, we establish the continuity of the embedding oper-

ator from L
(, N ; A) to L(, N ;ϕα(x)A–β ).

From parts (a) and (b) of the RC-conditions we have

∫ N



(
Ay′, y′)dx ≤

∫ N



(
P(x)y′, y′)dx,

∫ N



(
Pα(x)y, y

)
dx ≤

∫ N


ϕα(x)

(
Bαy, y

)
dx ≤

∫ N


ϕα(x)

(
A–βy, y

)
dx.

To finish the proof of Lemma , we use Theorem  from [].

Theorem [] If a symmetric operator K and a positive operator K are defined on DA and
the inequality |(Kf , f )| ≤ (Kf , f ) holds for all f ∈ DA, then the complete continuity of the
operator K with respect to A implies the complete continuity of the operator K with respect
to A. Here DA denotes the domain of definition of the operator A.

From the theorem and the last integral inequalities it follows that the embedding op-
erator from L

(, N ; P) to L(, N ; Pα) is completely continuous, which proves Lemma .
�

We now turn to the calculation of the asymptotics of the eigenvalues of operator Lα

generated by the operator-differential expression

Lα(y) = –
(
P(x)y′)′ + Pα(x)y ()

and the boundary condition

y() = . ()

Let γ(x) ≤ γ(x) ≤ · · · ≤ γn(x) ≤ · · · be the family of eigenvalues of the operator function
P(x). Suppose that the following conditions are satisfied:

(i) γ(x) ≥ Cx+δ for large x, where C >  and δ > .
(ii) P(x) ≤ P(x) for x < x.

(iii) There exists a positive number m >  such that 
+δ

+ m < 
 and P–α() ∈ σm, where

σm = {K ∈ σ∞ | tr((K∗K)m/) < ∞} and K∗ denotes the adjoint operator of K .
For our purpose we also need to consider the following operators:
. Operator L

α , acting in the space L([λ


+δ ,∞); H), generated by expression () and
the boundary condition

y′(λ 
+δ

)
= . ()
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. Operators LI
α and LII

α , acting in the space L([λ


+δ ,∞); H), generated by expression
() and the boundary conditions

y() = y
(
λ


+δ

)
= , ()

y′() = y′(λ 
+δ

)
= , ()

respectively.
. Operators LI

αi
and LII

αi
acting in the space L([xi–, xi]; H) and generated by expression

() and the boundary conditions

y(xi–) = y(xi) = , ()

y′(xi–) = y′(xi) = , ()

respectively.

Lemma  If the function γ(x) satisfies (i), the intersection of the set (interval) (,λ) with
the spectrum of the operator L

α is empty.

Proof After some algebra (one can find the details in [], in the proof of Lemma ), it can
be shown that

∫ N


(y, y) dx ≤ N

∫ N




γ(x)

dx
∫ N



(
P(x)y′, y′)dx.

From this inequality and condition (i) we obtain

∫ ∞

λ


+δ

(
P(x)y′, y′)dx ≥ C( + δ)λ+ 

+δ

∫ ∞

λ


+δ

(y, y) dx > λ

∫ ∞

λ


+δ

(y, y) dx.

The last inequality holds for large λ. Lemma  is proved. �

Let λ be some positive number. Denote by Nα(λ), N I
α(λ) and N II

α (λ) the numbers of eigen-
values of operators Lα , LI

α and LII
α , respectively, which are less than or equal to λ. Taking

into account Courant’s variation principles [], we find that

N I
α(λ) ≤ Nα(λ) ≤ N II

α (λ).

Let us split the interval [,λ


+δ ] into subintervals of equal length ω. Let M be the number
of the created subintervals, and  = x < x < · · · < xM = λ


+δ .

Lemma  If the operator function P(x) satisfies condition (ii) for any x < x, then for large
λ the following inequality is valid:

nII
αi

≤
∑

γ α
j (xi–)≤λ

{

π

∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx + 
}

, ()

where nII
αi

is the number of eigenvalues of LII
αi

, which are less than or equal to λ, and i =
, , . . . , M.
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Proof Since the operator function P(x) satisfies condition (ii), we have P(xi–) < P(x) for all
x ∈ (xi–, xi). Therefore, operator LII

αi
is not less than L∗∗

αi
, acting in the space L([xi–, xi]; H),

generated by the expression

–
(
P(xi–)y′)′ + Pα(xi–)y

and the boundary condition ().
Let n∗∗

αi
be the number of eigenvalues of the operator L∗∗

αi
, which are less than or equal

to λ. Then

nII
αi

< n∗∗
αi

. ()

Eigenvalues of the operator L∗∗
αi

are of the form

γj(xi–)
(

πk
xi – xi–

)

+ γ α
j (xi–) (k = , , , . . . , j = , , . . .).

From here it directly implies that

n∗∗
αi

≤
∑

j
γ α

j (xi–)≤λ

{
ω

π

√
λ – γ α

j (xi–)
γj(xi–)

+ 
}

. ()

It follows from condition (ii) that all eigenvalues γj(x) are monotonically increasing. There-
fore, on the interval (xi–, xi–) we have

γj(x) ≤ γj(xi–).

Hence,

ω

√
λ – γ α

j (xi–)
γj(xi–)

≤
∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx.

From inequalities () and () and from the last inequality we obtain

nII
αi

≤
∑

j
γ α

j (xi–)≤λ

{

π

∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx + 
}

.

Lemma  is proved. �

We denote by ψj(λ) (j = , , . . .) the functions defined by the following equation:

ψj(λ) = min
{

sup
γ α

j (x)≤λ

(x),λ


+δ

}
. ()

We prove the next lemma.
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Lemma  Under conditions of Lemma , the following inequality holds:

N II
α (λ) ≤ nII

α +
∑

j
γ α

j (x)≤λ

{∫ ψj(λ)




π

√
λ – γ α

j (x)
γj(x)

dx +
ψj(λ)

ω

}
.

Proof According to Courant’s variation principle, we have

N II
α (λ) ≤

M∑
i=

nII
αi

.

By Lemma , from this inequality we obtain

N II
α (λ) ≤ nII

α +
∑
i≥

∑
j

γ α
j (xi–)≤λ

{∫ xi–

xi–


π

√
λ – γ α

j (x)
γj(x)

dx + 
}

. ()

Furthermore, we have

∑
i≥

∑
j

γ α
j (xi–)≤λ

∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx

=
∑

j

∑
i≥

∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx =
∑

γ α
j (x)≤λ

∫ x
j



√
λ – γ α

j (x)
γj(x)

dx,

where

x
j = min

{
max

γ α
j (xi–)≤λ

(xi–),λ


+δ

}
. ()

On the other hand, x
j ≤ ψj(λ), so

∑
i≥

∑
j

γ α
j (xi–)≤λ

∫ xi–

xi–

√
λ – γ α

j (x)
γj(x)

dx <
∑

j
γ α

j (x)≤λ

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx. ()

Taking into account (), we estimate the sum

∑
i≥

∑
j

γ α
j (xi–)≤λ

 =
∑

j

∑
i≥

γ α
j (xi–)≤λ



=

ω

∑
j

∑
i≥

γ α
j (xi–)≤λ

(xi– – xi–)

=

ω

∑
j

γ α
j (x)≤λ

x
j ≤ 

ω

∑
j

γ α
j (x)≤λ

ψj(λ).
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From inequalities (), () and the last inequality we obtain

N II
α (λ) ≤ nII

 +
∑

j
γ α

j (x)≤λ

{∫ ψj(λ)




π

√
λ – γ α

j (x)
γj(x)

dx +
ψj(λ)

ω

}
.

Lemma  is proved. �

Lemma  Under the conditions of Lemma  the following inequality holds:

nI
αi

≥
∑

γ α
j (xi)≤λ

{

π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx – 
}

,

where ϕi,j(λ) = min{xi+,ψj(λ)} and i = , , . . . , M.

Proof Since by our assumption the operator function P(x) increases, then P(x) < P(xi) on
the interval (xi–, xi), which implies that the operator LI

αi
is not greater than the operator

L∗
αi

acting in the space L([xi–, xi]; H) and generated by the expression

–
(
P(xi)y′)′ + Pα(xi)y

and boundary condition (). In this case

nI
αi

> n∗
αi

, ()

where n∗
αi

is the number of eigenvalues of the operator L∗
αi

, which are less than or equal
to λ. Eigenvalues of the operator L∗

αi
are of the form

γj(xi)
(

πk
xi – xi–

)

+ γ α
j (xi), where k = , , . . . and j = , , . . . .

From the inequality

γj(xi)
(

πk
xi – xi–

)

+ γ α
j (xi) ≤ λ,

it follows that

n∗
αi

=
∑

γ α
j (xi)≤λ

{
ω

π

√
λ – γ α

j (x)
γj(x)

}
≥

∑
j

γ α
j (xi)≤λ

{
ω

π

√
λ – γ α

j (xi)
γj(xi)

– 
}

, ()

where ω = xi – xi–.
Since the function γj(x) monotonically increases, it is clear that when γ α

j (xi+) < λ, in
other words, when xi+ < ψj(λ),

ω

√
λ – γ α

j (xi)
γj(xi)

=
∫ xi+

xi

√
λ – γ α

j (xi)
γj(xi)

dx ≥
∫ xi+

xi

√
λ – γ α

j (x)
γj(x)

dx
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and when xi ≤ ψj(λ) ≤ xi+,

ω

√
λ – γ α

j (xi)
γj(xi)

≥
∫ ψj(λ)

xi

√
λ – γ α

j (xi)
γj(xi)

dx ≥
∫ ψj(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx.

Thus, we see that, for γ α
j (xi+) ≤ λ,

ω

√
λ – γ α

j (xi)
γj(x)

≥
∫ ϕi,j(λ)

xi

√
λ – γ α

j (xi)
γj(x)

dx,

where ϕi,j(λ) = min{xi+,ψj(λ)}. From inequalities (), () and from the last inequality we
find

nI
αi

≥
∑

γ α
j (xi)≤λ

{

π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx – 
}

. ()

Lemma  is proved. �

Lemma  Let the operator function P(x) satisfy conditions (ii) and (iii) for any x < x.
Then the following inequality holds:

N I
α(λ) ≥

∑
j

{

π

∫ ψj(λ)

ϕ,j(λ)

√
λ – γ α

j (x)
γj(x)

dx –
ψj(λ)

ω

}
, ()

where ϕ,j(λ) = min{ω,ψj(λ)}.

Proof By Courant’s variation principles and Lemma , we have

N I
αi

≥
M∑
i=

nI
αi

≥
∑
i≥

∑
j

γ α
j (xi)≤λ

{

π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx – 
}

=
∑

j

∑
i≥

{

π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx – 
}

. ()

Let us estimate the first term on the right-hand side. Given that ϕi,j(λ) is of the form ϕi,j(λ) =
min{xi+,ψj(λ)}, we get

∑
j

∑
i≥


π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx

=

π

∑
j

{∫ x

x

√
λ – γ α

j (x)
γj(x)

dx +
∫ x

x

√
λ – γ α

j (x)
γj(x)

dx + · · · +
∫ ψj(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx
}

=
∑

ψj(λ)≥x


π

∫ ψj(λ)

x

√
λ – γ α

j (x)
γj(x)

dx, ()
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where xi satisfies the condition xi ≤ ψj(λ) ≤ xi+. Furthermore,

∑
ψj(λ)≥x


π

∫ ψj(λ)

x

√
λ – γ α

j (x)
γj(x)

dx

=

π

∑
ψj(λ)≥x

{∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx –
∫ x



√
λ – γ α

j (x)
γj(x)

dx
}

=

π

∑
j

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx –

π

∑
ψj(λ)≤x

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx

–

π

∑
ψj(λ)≥x

∫ x



√
λ – γ α

j (x)
γj(x)

dx

=

π

∑
j

{∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx –
∫ ϕ,j(λ)



√
λ – γ α

j (x)
γj(x)

dx
}

=

π

∑
j

∫ ψj(λ)

ϕ,j(λ)

√
λ – γ α

j (x)
γj(x)

dx. ()

From inequalities () and () we find

∑
j

∑
i≥


π

∫ ϕi,j(λ)

xi

√
λ – γ α

j (x)
γj(x)

dx

=

π

∫ ψj(λ)

ϕ,j(λ)

(∑
j

√
λ – γ α

j (x)
γj(x)

dx
)

. ()

For the second term on the right-hand side of (), as before (in the proof of Lemma ),
we have

∑
i≥

∑
j

 ≤ 
ω

∑
j

ψj(λ). ()

Finally, taking into account (), () and (), we obtain the desired inequality ().
Lemma  is proved. �

Corollary Under the conditions of Lemma , the following inequality holds:

N I
αi

≥ 
π

∑
j

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx –
√

λωc –
ψ(λ)

ω
lλ, ()

where c is a constant and lλ is the number of eigenvalues of the operator Pα(), which are
less than or equal to λ, i.e.,

lλ =
∑

γ α
j ()≤λ

.
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Proof In fact, by Lemma 

N I
α(λ) ≥ 

π

∑
j

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx

–

π

∑
j

∫ ϕ,j(λ)



√
λ – γ α

j (x)
γj(x)

dx –

ω

∑
j

ψj(λ). ()

Let us estimate the second term on the right-hand side of this inequality. Since all functions
γj(x) (j = , , . . .) monotonically increase on half axis [,∞), we have


π

∑
j

∫ ϕ,j(λ)



√
λ – γ α

j (x)
γj(x)

dx

<

π

∑
j

∫ ϕ,j(λ)



√
λ

γj(x)
dx ≤

√
λ

π

∑
γ α

j ()≤λ

∫ ω



√
γj(x)

dx

≤ ω
√

λ

π

∑
γ α

j ()≤λ

√
γj()

≤ cω
√

λ.

For the third term on the right-hand side of (), we find


ω

∑
j

ψj(λ) ≤ ψ(λ)
ω

∑
γ α

j ()≤λ

 =
ψ(λ)

ω
lλ. ()

From these inequalities, we obtain inequality (), which proves the corollary. �

Assume that P–α() ∈ σm, where m is some positive number satisfying the condition


+δ
+ m < 

 . Then we have

const ≥
∑

γ –α
j ()≥λ–

(
γ –α

j ()
)m ≥

∑
γ –α

j ()≥λ–

λ–m

≥ λ–m
∑

γ –α
j ()≥λ–

 = λ–m
∑

γ α
j ()≤λ

 = λ–mlλ.

Hence

lλ ≤ const · λm. ()

Now take the step ω as

ω =
λ


+δ

[λ


+δ
+θ ]

, where


 + δ
+ θ + m <




. ()

Using this form of ω, we estimate the numbers N I
α(λ) and N II

α (λ).



Hashimoglu Advances in Difference Equations  (2015) 2015:335 Page 12 of 15

From Lemma  it follows that

N II
α (λ) ≤ nII

α +
∑

j
γ α

j (x)≤λ

{∫ ψj(λ)




π

√
λ – γ α

j (x)
γj(x)

dx +
ψj(λ)

ω

}
. ()

Using inequality (), we estimate the number nII
α ,

nII
α ≤

∑
j

γ α
j ()≤λ

(
ω

π

√
λ – γ α

j ()
γj()

+
ψj(λ)

ω

)

≤ ω
√

λ

π

∑
j

γ α
j ()≤λ

√
γj()

+
∑

j
γ α

j ()≤λ

 ≤cλ

 –θ + cλ

m+θ , ()

where c ≥ 
π

tr(P– 
 ()) and c ≥ tr(P–αm()) (here, tr(A) denotes the trace of the opera-

tor A).
It follows from inequalities () and () and formula () that

N II
α (λ) ≤

∑
j


π

∫ ψj(λ)



√
λ

γj(x)
dx +

ψ(λ)
ω

lλ + cλ

 –θ + cλ

m

≤ √
λ

∑
j


π

∫ ψj(λ)



√
γj(x)

dx + cλ


+δ
+m+θ + cλ


 –θ + cλ

m. ()

Using the corollary to Lemma , inequality () and formula (), for N I
α(λ), we obtain the

following inequality:

N I
α(λ) ≥ 

π

∑
j

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx–cλ

 –θ – cλ


+δ

+m+θ . ()

Let us estimate the first term on the right-hand side:


π

∑
j

∫ ψj(λ)



√
λ – γ α

j (x)
γj(x)

dx

=

π

∑
j

∫ ψj(λ)



√√√√ (
√

λ) – γ α
j (x)

√
λ√
λ

+
γ α

j (x)
λ

–
γ α

j (x)
λ

+ γ α
j (x)

γj(x)
dx

≥ 
π

∑
j

∫ ψj(λ)



√√√√ (
√

λ) – γ α
j (x)

√
λ√
λ

+
γ α

j (x)
λ

γj(x)
dx

=

π

∑
j

∫ ψj(λ)



√
λ –

γ α
j (x)√

λ√
γj(x)

dx ≥ 
π

∑
j

√
λ

∫ ψj(λ)



√
γj(x)

dx – cψ(λ). ()
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From inequalities () and () we obtain

N I
α(λ) ≥

√
λ

π

∑
j

∫ ψj(λ)



√
γj(x)

dx – cI
λ


+δ –cI

λ

 –θ – cI

λ


+δ
+m+θ . ()

By Lemma  and inequalities () and (), we obtain


π

∑
j

∫ ψj(λ)



√
γj(x)

dx – cλ
– 

 + 
+δ

+m+θ

≤ Nα(λ)√
λ

≤ 
π

∑
j

∫ ψj(λ)



√
γj(x)

dx + cλ
– 

 + 
+δ

+m+θ .

Given that – 
 + 

+δ
+ m + θ < , we finally obtain the following relation for the number of

eigenvalues of the operator Lα :

lim
λ−→∞

Nα(λ)√
λ

=

π

∑
j

∫ ∞



√
γj(x)

dx. ()

Thus we have proved the following theorem.

Theorem  Let the operator L have discrete spectrum. Then under RC-conditions and (i)-
(iii), the number Nα(λ) of eigenvalues of operator Lα satisfies relation ().

The next theorem is Theorem . in [] which has been proved by Marcus and Matsaev.

Theorem [] Let M be a normal operator with discrete spectrum; and all its eigenvalues,
which lie in the corner ψθ = {λ : |ϕ| < θ} ( < θ ≤ π

 ), are positive and their number is
infinite. Also let B be an operator, which is compact with respect to M, and A = M + B. If
limr→∞;ε→

N+(r(+ε),M)
N+(r,M) = , then N(r, θ , A) ∼ N+(r, M). Here, N+(r, M) denotes the number

of positive eigenvalues of M, which are less than or equal to r.

Operator Pα is compact relative to operator Lα and all the conditions of the above the-
orem are satisfied for operators M = Lα , B = –Pα and A = Lα – Pα . Then

Nλ(Lα) ∼ Nλ(L).

By taking into account Lemma  and Theorem . from [], we obtain the following main
theorem.

Theorem  Under the conditions of Theorem , the following relation is satisfied for the
asymptotics of the eigenvalues of the operator L when λ → ∞:

Nλ(L) =
√

λ

π

∑
j

(∫ ψj(λ)



√
γj(x)

dx + o()
)

.

3 Example
Example Consider the operator L generated by the differential expression

Lu = (–)k+ ∂k+

∂x ∂yk

(
a(x, y)

∂k+u
∂yk ∂x

)
()
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and the boundary and initial conditions

∂ ju
∂yj (x,±) = , i = , , . . . , k – ;

u(, y) = ,
()

where a(x, y) ≥  for all  ≤ x ≤ ∞, – ≤ y ≤ .
This operator can be reduced to the operator generated by the operator-differential ex-

pression

Lu = –
d

dx

(
P(x)

d
dx

u
)

and the boundary condition

u() = ,

where

P(x)f =
{

(–)k+ dk

dyk

(
a(x, y)

dkf
dyk

)
;

dif
dyi (±) = , i = , , . . . , k – 

}
.

The operator function P(x) acts in the space L(–, ) for all x.
Consider the following functions:

a(x) = min
–≤y≤

a(x, y),

a(x) = max
–≤y≤

a(x, y).

Assume that there exists such a number  < α ≤ 
 for which the following condition is

satisfied:
() limN→∞

∫ ∞
N


a(x)

∫ x
N aα

 (s) ds dx = .
Then the RC-conditions are satisfied, where operators A and B and functions q(x) and
ϕ(x) are defined as follows:

Af = Bf =
{

(–)k dk

dyk f ;
dif
dyi (±) = , i = , , . . . , k – 

}
,

q(x) = a(x), ϕ(x) = a(x).

Let the function a(x, y) and the order k of differential operator P(x) satisfy the following
conditions:

() a(x) ≥ cx+δ .
() The function a(x, y) is monotonically increasing with respect to the variable x.
() The order k of differential operator P(x) is such that the condition

∑∞
n=


nmαk < ∞

is satisfied for some number m, where 
+δ

+ m < 
 .
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Then, for the asymptotics of the number of eigenvalues of the operator L, we have the
following formula:

Nλ(L) =
√

λ

π

∞∑
n=

(∫ ∞



√
αn(x)

dx + o()
)

,

where αn(x) are eigenvalues of the operator P(x).
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