Bai Boundary Value Problems (2016) 2016:212 DOI 10.1186/s13661-016-0715-3

RESEARCH

 Boundary Value Problems a SpringerOpen Journal

Open Access

Multiplicity results for a fractional Kirchhoff equation involving sign-changing weight function

Chuanzhi Bai*

*Correspondence: czbai8@sohu.com Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China

Abstract

In this paper, we prove the existence and multiplicity of solutions for a fractional Kirchhoff equation involving a sign-changing weight function which generalizes the corresponding result of Tsung-fang Wu (Rocky Mt. J. Math. 39:995-1011, 2009). Our main results are based on the method of a Nehari manifold.

MSC: 35J50; 35J60; 47G20

Keywords: fractional *p*-Laplacian; Kirchhoff type problem; sign-changing weight; Nehari manifold

1 Introduction

In this paper, we consider the following fractional elliptic equation with sign-changing weight functions:

$$\begin{cases} M(\int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy)(-\Delta)_p^s u = \lambda f(x)u^q + g(x)u^r, \quad x \in \Omega, \\ u = 0, \qquad \qquad x \in \mathbb{R}^N \setminus \Omega, \end{cases}$$
(1.1)

where Ω is a smooth bounded domain in \mathbb{R}^N , N > 2s, 0 < s < 1, $0 \le q < 1 < r < p_s^* - 1$ $(p_s^* = \frac{pN}{N-ps})$; $\lambda > 0$, $M(t) = a + bt^{p-1}$, $(-\Delta)_p^s$ is the fractional *p*-Laplacian operator defined as

$$(-\Delta)_{p}^{s}u(x) = 2\lim_{\varepsilon \searrow 0} \int_{B_{\varepsilon}(x)^{c}} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} \, dy, \quad x \in \mathbb{R}^{N}.$$

We may assume that the weight functions f(x) and g(x) are as follows:

(H1) $f^+ = \max\{f, 0\} \neq 0$, and $f \in L^{\mu_q}(\Omega)$ where $\mu_q = \frac{\mu}{\mu - (q+1)}$ for some $\mu \in (q+1, p_s^*)$, with in addition $f(x) \ge 0$ a.e. in Ω in the case q = 0;

(H2) $g^+ = \max\{g, 0\} \neq 0$, and $g \in L^{\nu_r}(\Omega)$ where $\nu_r = \frac{\nu}{\nu_{-(r+1)}}$ for some $\nu \in (r+1, p_s^*)$.

The fractional Kirchhoff type problems have been studied by many authors in recent years; see [2-6] and references therein. In the subcritical case, Pucci and Saldi in [5] stud-

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

ied the following Kirchhoff type problem in \mathbb{R}^N :

$$\begin{cases} M(\int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy)(-\Delta)_p^s u + V(x)|u|^{p-2}u \\ &= \lambda w(x)|u|^{q-2}u - h(x)|u|^{r-2}u, \qquad x \in \Omega, \\ u = 0, \qquad x \in \mathbb{R}^N \setminus \Omega, \end{cases}$$

with $n > ps, s \in (0, 1)$, and they established the existence and multiplicity of entire solutions using variational methods and topological degree theory for the above problem with a real parameter λ under the suitable integrability assumptions of the weights V, w, and h. In [7], Mishra and Sreenadh have studied the following Kirchhoff problem with sign-changing weights:

$$\begin{cases} M(\int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}} dx dy)(-\Delta)_p^s u = \lambda f(x)|u|^{q-2}u + |u|^{\alpha-2}u, \quad x \in \Omega, \\ u = 0, \qquad \qquad x \in \mathbb{R}^N \setminus \Omega, \end{cases}$$

and they obtained the multiplicity of non-negative solutions in the subcritical case $\alpha < p_s^*$ by minimizing the energy functional over non-empty decompositions of Nehari manifold.

When p = 2, s = 1, a = 1 and b = 0, problem (1.1) is reduced to the following semilinear elliptic equation:

$$\begin{cases} -\Delta u = \lambda f(x)u^{q} + g(x)u^{r}, & x \in \Omega, \\ u = 0, & x \in \partial \Omega. \end{cases}$$
(1.2)

In [1], Wu proved that equation (1.2) involving a sign-changing weight function has at least two solutions by using the Nehari manifold.

Motivated by the above work, in this paper, we investigate the existence and multiplicity of solutions for a fractional Kirchhoff equation (1.1) and extend the main results of Wu [1].

This article is organized as follows. In Section 2, we give some notations and preliminaries. Section 3 is devoted to the proof that problem (1.1) has at least two solutions for λ sufficiently small.

2 Preliminaries

.

For any $s \in (0, 1)$, 1 , we define

$$X = \left\{ u | u : \mathbb{R}^N \to \mathbb{R} \text{ is measurable, } u |_{\Omega} \in L^p(\Omega), \text{ and } \int_Q \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx \, dy < \infty \right\},$$

where $Q = \mathbb{R}^{2N} \setminus (\mathcal{C}\Omega \times \mathcal{C}\Omega)$ with $\mathcal{C}\Omega = \mathbb{R}^N \setminus \Omega$. The space *X* is endowed with the norm defined by

$$\|u\|_X = \|u\|_{L^p(\Omega)} + \left(\int_Q \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx \, dy\right)^{1/p}.$$

The functional space X_0 denotes the closure of $C_0^{\infty}(\Omega)$ in X. By [8], the space X_0 is a Hilbert space with scalar product

$$\langle u, v \rangle_{X_0} = \int_Q \frac{|u(x) - u(y)|^{p-1}(v(x) - v(y))}{|x - y|^{n + ps}} \, dx \, dy, \quad \forall u, v \in X_0,$$

and the norm

$$\|u\|_{X_0} = \left(\int_Q \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx \, dy\right)^{1/p}.$$

For further details on X and X_0 and also for their properties, we refer to [8] and the references therein.

Throughout this section, we denote the best Sobolev constant by S_l for the embedding of X_0 into $L^l(\Omega)$, which is defined as

$$S_{l} = \inf_{X_{0} \setminus \{0\}} \frac{\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N + sp}} \, dx \, dy}{\left(\int_{\mathbb{R}^{N}} |u|^{l} \, dx\right)^{\frac{p}{T}}} > 0,$$

where $l \in [p, p_s^*]$.

A function $u \in X_0$ is a weak solution of problem (1.1) if

$$\begin{split} M\bigg(\int_{Q} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N + sp}} \, dx \, dy\bigg) \int_{Q} \frac{|u(x) - u(y)|^{p - 2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N + sp}} \, dx \, dy \\ &= \lambda \int_{\Omega} f(x)|u|^{q - 1} uv \, dx + \int_{\Omega} g(x)|u|^{r - 1} uv \, dx, \quad \forall v \in X_{0}. \end{split}$$

Associated with equation (1.1), we consider the energy functional $\mathcal{J}_{\lambda,M}$ in X_0

$$\mathcal{J}_{\lambda,M}(u) = \frac{1}{p} \hat{M} \big(\|u\|_{X_0}^p \big) - \frac{\lambda}{q+1} \int_{\Omega} f |u|^{q+1} dx - \frac{1}{r+1} \int_{\Omega} g |u|^{r+1} dx,$$

where $\hat{M}(t) = \int_0^t M(\mu) d\mu$.

It is easy to see that the solutions of equation (1.1) are the critical points of the energy functional $\mathcal{J}_{\lambda,M}$.

The Nehari manifold for $\mathcal{J}_{\lambda,M}$ is defined as

$$\mathcal{N}_{\lambda,M}(\Omega) = \left\{ u \in X_0 \setminus \{0\} : \left\langle \mathcal{J}_{\lambda,M}'(u), u \right\rangle = 0 \right\}$$
$$= \left\{ u \in X_0 \setminus \{0\} | M(\|u\|_{X_0}^p) \|u\|_{X_0}^p - \lambda \int_{\Omega} f|u|^{q+1} dx - \int_{\Omega} g|u|^{r+1} dx = 0 \right\}.$$

The Nehari manifold $\mathcal{N}_{\lambda,\mathcal{M}}(\Omega)$ is closely linked to the behavior of functions of the form $h_{\lambda,\mathcal{M}}: t \to \mathcal{J}_{\lambda,\mathcal{M}}(tu)$ for t > 0, named fibering maps [9]. If $u \in X_0$, we have

$$\begin{split} h_{\lambda,M}(t) &= \frac{1}{p} \hat{M} \Big(t^p \| u \|_{X_0}^p \Big) - \lambda \frac{t^{q+1}}{q+1} \int_{\Omega} f |u|^{q+1} \, dx - \frac{t^{r+1}}{r+1} \int_{\Omega} g |u|^{r+1} \, dx, \\ h_{\lambda,M}'(t) &= t^{p-1} M \Big(t^p \| u \|_{X_0}^p \Big) \| u \|_{X_0}^p - \lambda t^q \int_{\Omega} f |u|^{q+1} \, dx - t^r \int_{\Omega} g |u|^{r+1} \, dx, \end{split}$$

$$\begin{split} h_{\lambda,M}''(t) &= (p-1)t^{p-2}M\big(t^p \|u\|_{X_0}^p\big)\|u\|_{X_0}^p + pt^{2p-2}M'\big(t^p \|u\|_{X_0}^p\big)\|u\|_{X_0}^{2p} \\ &- q\lambda t^{q-1}\int_\Omega f|u|^{q+1}\,dx - rt^{r-1}\int_\Omega g|u|^{r+1}\,dx. \end{split}$$

Obviously,

$$th'_{\lambda,M}(t) = M(t^p ||u||_{X_0}^p) ||tu||_{X_0}^p - \lambda \int_{\Omega} f |tu|^{q+1} dx - \int_{\Omega} g |tu|^{r+1} dx$$
$$= \langle \mathcal{J}_{\lambda,M}(tu), tu \rangle,$$

which implies that for $u \in X_0 \setminus \{0\}$ and t > 0, $h_{\lambda,M}(t) = 0$ if and only if $tu \in \mathcal{N}_{\lambda,M}(\Omega)$, *i.e.*, positive critical points of $h_{\lambda,M}$ correspond to points on the Nehari manifold. In particular, $h_{\lambda,M}(1) = 0$ if and only if $u \in \mathcal{N}_{\lambda,M}(\Omega)$. Hence, we define

$$\begin{split} \mathcal{N}^+_{\lambda,M}(\Omega) &= \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h''_{u,M}(1) > 0 \right\}, \\ \mathcal{N}^0_{\lambda,M}(\Omega) &= \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h''_{u,M}(1) = 0 \right\}, \\ \mathcal{N}^-_{\lambda,M}(\Omega) &= \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h''_{u,M}(1) < 0 \right\}. \end{split}$$

For each $u \in \mathcal{N}_{\lambda,M}(\Omega)$, we have

$$\begin{aligned} h_{\lambda,M}''(1) &= (p-1)M\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^p + pM'\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^{2p} \\ &- q\lambda \int_{\Omega} f|u|^{q+1} \, dx - r \int_{\Omega} g|u|^{r+1} \, dx \\ &= (p-r-1)M\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^p + pM'\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^{2p} - \lambda(q-r) \int_{\Omega} f|u|^{q+1} \, dx \quad (2.1) \\ &= (p-q-1)M\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^p + pM'\big(\|u\|_{X_0}^p\big)\|u\|_{X_0}^{2p} - (r-q) \int_{\Omega} g|u|^{r+1} \, dx. \quad (2.2) \end{aligned}$$

Let $M(t) = a + bt^{p-1}$, where a > 0, $b \ge 0$ and p > 1. If $u \in \mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega)$, then $h''_{\lambda,\mathcal{M}}(1) = 0$, and we have by (2.1) and (2.2)

$$a(p-r-1)\|u\|_{X_0}^p + b(p^2-r-1)\|u\|_{X_0}^{p^2} - \lambda(q-r)\int_{\Omega} f|u|^{q+1}\,dx = 0,$$
(2.3)

$$a(p-q-1)\|u\|_{X_0}^p + b(p^2-q-1)\|u\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u|^{r+1}\,dx = 0.$$
(2.4)

For convenience, we let

(H3)
$$0 < q < 1, p > 1 + q \text{ and } p_s^* - 1 > r \begin{cases} > p^2 - 1, & b \neq 0, \\ > p - 1, & b = 0. \end{cases}$$

Lemma 2.1 *If* (H1) *and* (H3) *hold, then the energy functional* $\mathcal{J}_{\lambda,M}$ *is coercive and bounded below on* $\mathcal{N}_{\lambda,M}(\Omega)$.

Proof For $u \in \mathcal{N}_{\lambda,M}(\Omega)$, we have by the Hölder and Sobolev inequalities

$$\begin{aligned} \mathcal{J}_{\lambda,M}(u) &= a \left(\frac{1}{p} - \frac{1}{r+1} \right) \| u \|_{X_0}^p + b \left(\frac{1}{p^2} - \frac{1}{r+1} \right) \| u \|_{X_0}^{p^2} \\ &- \lambda \left(\frac{1}{q+1} - \frac{1}{r+1} \right) \int_{\Omega} f |u|^{q+1} \, dx \\ &= a \left(\frac{1}{p} - \frac{1}{r+1} \right) \| u \|_{X_0}^p + b \left(\frac{1}{p^2} - \frac{1}{r+1} \right) \| u \|_{X_0}^{p^2} \end{aligned}$$

$$\begin{split} &-\lambda \frac{r-q}{(q+1)(r+1)} \int_{\Omega} f |u|^{q+1} dx \\ &\geq a \bigg(\frac{1}{p} - \frac{1}{r+1} \bigg) \|u\|_{X_0}^p + b \bigg(\frac{1}{p^2} - \frac{1}{r+1} \bigg) \|u\|_{X_0}^{p^2} \\ &-\lambda \frac{r-q}{(q+1)(r+1)} \|f\|_{L^{\mu_q}} S^{q+1}_{\mu} \|u\|_{X_0}^{q+1}, \end{split}$$

where $\mu_q = \frac{\mu}{\mu - (q+1)}$, $\mu \in (q+1, p_s^*)$. Thus $\mathcal{J}_{\lambda,M}$ is coercive and bounded below on $\mathcal{N}_{\lambda,M}(\Omega)$.

Lemma 2.2 Let (H1)-(H3) hold. There exists $\lambda_1 > 0$ such that for any $\lambda \in (0, \lambda_1)$, we have $\mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega) = \emptyset$.

Proof If not, that is, $\mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega) \neq \emptyset$ for each $\lambda > 0$, then by (2.3) and the Hölder and Sobolev inequalities, we have for $u_0 \in \mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega)$

.

$$\begin{aligned} a(r-p+1) \|u_0\|_{X_0}^p &\leq a(r-p+1) \|u_0\|_{X_0}^p + b(r-p^2+1) \|u_0\|_{X_0}^{p^2} \\ &= \lambda(r-q) \int_{\Omega} f |u_0|^{q+1} \, dx, \end{aligned}$$

which implies that

$$\begin{aligned} \|u_0\|_{X_0}^p &\leq \frac{\lambda(r-q)}{a(r-p+1)} \int_{\Omega} f |u_0|^{q+1} \, dx \\ &\leq \frac{\lambda(r-q)}{a(r-p+1)} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u_0\|_{X_0}^{q+1} \end{aligned}$$

and so

$$\|u_0\|_{X_0} \le \left(\frac{\lambda(r-q)}{a(r-p+1)} \|f\|_{L^{\mu_q}} S^{q+1}_{\mu}\right)^{\frac{1}{p-q-1}}.$$
(2.5)

Similarly, we obtain by (2.4) and the Hölder and Sobolev inequalities

$$\|u_0\|_{X_0}^p \leq \frac{r-q}{a(p-q+1)} \|g\|_{L^{\nu_r}} S_{\nu}^{r+1} \|u_0\|_{X_0}^{r+1},$$

which implies that

$$\|u_0\|_{X_0} \ge \left(\frac{a(p-q+1)}{r-q} \|g\|_{L^{\nu_r}}^{-1} S_{\nu}^{-(r+1)}\right)^{\frac{1}{r-p+1}}.$$
(2.6)

But (2.5) contradicts (2.6) if λ is sufficiently small. Hence, we conclude that there exists $\lambda_1 > 0$ such that $\mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega) = \emptyset$ for $\lambda \in (0, \lambda_1)$.

Let

$$c_{\lambda} = \inf_{u \in \mathcal{N}_{\lambda,M}(\Omega)} \mathcal{J}_{\lambda,M}(u).$$

From Lemma 2.2, for $\lambda \in (0, \lambda_1)$, we write $\mathcal{N}_{\lambda, \mathcal{M}}(\Omega) = \mathcal{N}^+_{\lambda, \mathcal{M}}(\Omega) \cup \mathcal{N}^-_{\lambda, \mathcal{M}}(\Omega)$ and define

$$c_{\lambda}^{+} = \inf_{u \in \mathcal{N}_{\lambda, \mathcal{M}}^{+}(\Omega)} \mathcal{J}_{\lambda, \mathcal{M}}(u) \text{ and } c_{\lambda}^{-} = \inf_{u \in \mathcal{N}_{\lambda, \mathcal{M}}^{-}(\Omega)} \mathcal{J}_{\lambda, \mathcal{M}}(u).$$

Lemma 2.3 (i) If $u \in \mathcal{N}^+_{\lambda,M}(\Omega)$, then $\int_{\Omega} f|u|^{q+1} dx > 0$. (ii) If $u \in \mathcal{N}^-_{\lambda,M}(\Omega)$, then $\int_{\Omega} g|u|^{r+1} dx > 0$.

The proof is immediate from (2.3) and (2.4). Define the function $k_u : \mathbb{R}^+ \to \mathbb{R}$ as follows:

$$k_{u}(t) = t^{p-q-1} M(t^{p} ||u||_{X_{0}}^{p}) ||u||_{X_{0}}^{p} - t^{r-q} \int_{\Omega} g|u|^{r+1} dx \quad t > 0.$$

$$(2.7)$$

Obviously, $tu \in \mathcal{N}_{\lambda,M}(\Omega)$ if and only if $k_u(t) = \lambda \int_{\Omega} f|u|^{q+1} dx$. Moreover,

$$k'_{u}(t) = (p-q-1)t^{p-q-2}M(t^{p}||u||_{X_{0}}^{p})||u||_{X_{0}}^{p} + pt^{2p-q-2}M'(t^{p}||u||_{X_{0}}^{p})||u||_{X_{0}}^{2p}$$

- $(r-q)t^{r-q-1}\int_{\Omega}g|u|^{r+1}dx,$ (2.8)

which implies that $t^q k'_u(t) = h''_{\lambda,M}(t)$ for $tu \in \mathcal{N}_{\lambda,M}(\Omega)$. That is, $u \in \mathcal{N}^+_{\lambda,M}(\Omega)$ (or $\mathcal{N}^-_{\lambda,M}(\Omega)$) if and only if $k'_u(t) > 0$ (or < 0).

Set

$$A = \frac{a(r-p+1)}{r-q} \left(\frac{a(p-q-1)}{(r-q) \|g\|_{L^{\nu_r}} S_{\nu}^{r+1}} \right)^{\frac{p-q-1}{r-p+1}} + \frac{b(r-p^2+1)}{r-q} \left(\frac{a(p-q-1)}{(r-q) \|g\|_{L^{\nu_r}} S_{\nu}^{r+1}} \right)^{\frac{p^2-q-1}{r-p+1}}.$$
(2.9)

Lemma 2.4 Assume that (H1)-(H3) hold. Let $\lambda_2 = \frac{A}{\|f\|_L \mu_q S^{q+1}_{\mu}}$. Then, for each $u \in X_0 \setminus \{0\}$ and $\lambda \in (0, \lambda_2)$, we have:

(1) If $\int_{\Omega} f|u|^{q+1} dx \leq 0$, then there exists a unique $t^- = t^-(u) > t_{\max}(u)$ such that $t^-u \in \mathcal{N}_{\lambda,M}^-(\Omega)$ and

$$\mathcal{J}_{\lambda,\mathcal{M}}(t^{-}u) = \sup_{t \ge 0} \mathcal{J}_{\lambda,\mathcal{M}}(tu) > 0.$$
(2.10)

(2) If $\int_{\Omega} f |u|^{q+1} dx > 0$, then there exists a unique $0 < t^+ = t^+(u) < t_{\max}(u) < t^-$ such that $t^+ u \in \mathcal{N}^+_{\lambda,\mathcal{M}}(\Omega)$, $t^- u \in \mathcal{N}^-_{\lambda,\mathcal{M}}(\Omega)$ and

$$\mathcal{J}_{\lambda,\mathcal{M}}(t^+u) = \inf_{0 \le t \le t_{\max}(u)} \mathcal{J}_{\lambda,\mathcal{M}}(tu), \qquad \mathcal{J}_{\lambda,\mathcal{M}}(t^-u) = \sup_{t \ge 0} \mathcal{J}_{\lambda,\mathcal{M}}(tu).$$
(2.11)

Proof From (2.7) and (2.8), we have

$$k_{u}(t) = at^{p-q-1} \|u\|_{X_{0}}^{p} + bt^{p^{2}-q-1} \|u\|_{X_{0}}^{p^{2}} - t^{r-q} \int_{\Omega} g|u|^{r+1} dx \quad t \geq 0,$$

$$k'_{u}(t) = t^{-q-1} \bigg[a(p-q-1)t^{p-1} \|u\|_{X_{0}}^{p} + b(p^{2}-q-1)t^{p^{2}-1} \|u\|_{X_{0}}^{p^{2}} - (r-q)t^{r} \int_{\Omega} g|u|^{r+1} dx \bigg],$$

which implies that $k_u(0) = 0$, $k_u(t) \to -\infty$ as $t \to \infty$, $\lim_{t\to 0^+} k'_u(t) > 0$ and $\lim_{t\to\infty} k'_u(t) < 0$. Thus there exists a unique $t_{\max}(u) := t_{\max} > 0$ such that $k_u(t)$ is increasing on $(0, t_{\max})$, decreasing on (t_{\max}, ∞) and $k'_u(t_{\max}) = 0$. Moreover, t_{\max} is the root of

$$a(p-q-1)t_{\max}^{p-1}\|u\|_{X_0}^p + b(p^2-q-1)t_{\max}^{p^2-1}\|u\|_{X_0}^p - (r-q)t_{\max}^r \int_{\Omega} g|u|^{r+1} dx = 0.$$
(2.12)

From (2.12), we obtain

$$t_{\max} \ge \left(\frac{a(p-q-1)\|u\|_{X_0}^p}{(r-q)\int_{\Omega}g|u|^{r+1}dx}\right)^{\frac{1}{r-p+1}} \ge \frac{1}{\|u\|_{X_0}} \left(\frac{a(p-q-1)}{(r-q)\|g\|_{L^{v_r}}S_v^{r+1}}\right)^{\frac{1}{r-p+1}} := t_*.$$
 (2.13)

Hence, we have by (2.12), (2.13), and the Hölder and Sobolev inequalities

$$\begin{aligned} k_{u}(t_{\max}) &= t_{\max}^{p-q-1} \left[a \| u \|_{X_{0}}^{p} + b t_{\max}^{p(p-1)} \| u \|_{X_{0}}^{p^{2}} - t_{\max}^{r-p+1} \int_{\Omega} g | u |^{r+1} dx \right] \\ &= \frac{a(r-p+1)}{r-q} t_{\max}^{p-q-1} \| u \|_{X_{0}}^{p} + \frac{b(r-p^{2}+1)}{r-q} t_{\max}^{p^{2}-q-1} \| u \|_{X_{0}}^{p^{2}} \\ &\geq \frac{a(r-p+1)}{r-q} t_{*}^{p-q-1} \| u \|_{X_{0}}^{p} + \frac{b(r-p^{2}+1)}{r-q} t_{*}^{p^{2}-q-1} \| u \|_{X_{0}}^{p^{2}} \\ &\geq \frac{a(r-p+1)}{r-q} \left(\frac{a(p-q-1)}{(r-q) \| g \|_{L^{v_{r}}} S_{v}^{r+1}} \right)^{\frac{p-q-1}{r-p+1}} \| u \|_{X_{0}}^{q+1} \\ &+ \frac{b(r-p^{2}+1)}{r-q} \left(\frac{a(p-q-1)}{(r-q) \| g \|_{L^{v_{r}}} S_{v}^{r+1}} \right)^{\frac{p^{2}-q-1}{r-p+1}} \| u \|_{X_{0}}^{q+1} \\ &= A \| u \|_{X_{0}}^{q+1}. \end{aligned}$$

$$(2.14)$$

Case (1): $\int_{\Omega} f|u|^{q+1} dx \leq 0$. Then $k_u(t) = \lambda \int_{\Omega} f|u|^{q+1} dx$ has unique solution $t^- > t_{\max}$ and $k'_u(t^-) < 0$. On the other hand, we have

$$\begin{aligned} a(p-q-1) \|t^{-}u\|_{X_{0}}^{p} + b(p^{2}-q-1) \|t^{-}u\|_{X_{0}}^{p^{2}} - (r-q) \int_{\Omega} g|t^{-}u|^{r+1} dx \\ &= (t^{-})^{2+q} \bigg[a(p-q-1)(t^{-})^{p-q-2} \|u\|_{X_{0}}^{p} + b(p^{2}-q-1)(t^{-})^{p^{2}-q-2} \|u\|_{X_{0}}^{p^{2}} \\ &- (r-q)(t^{-})^{r-q-1} \int_{\Omega} g|u|^{r+1} dx \bigg] \\ &= (t^{-})^{2+q} k'_{u}(t^{-}) < 0 \end{aligned}$$

$$\begin{aligned} \langle \mathcal{J}_{\lambda,M}'(t^{-}u), t^{-}u \rangle \\ &= a(t^{-})^{p} \|u\|_{X_{0}}^{p} + b(t^{-})^{p^{2}} \|u\|_{X_{0}}^{p^{2}} - \lambda(t^{-})^{q+1} \int_{\Omega} f|u|^{q+1} dx - (t^{-})^{r+1} \int_{\Omega} g|u|^{r+1} dx \\ &= (t^{-})^{q+1} \bigg[k_{u}(t^{-}) - \lambda \int_{\Omega} f|u|^{q+1} dx \bigg] = 0. \end{aligned}$$

$$\begin{split} a(p-q-1)\|tu\|_{X_0}^p + b(p^2-q-1)\|tu\|_{X_0}^{p^2} - (r-q)\int_{\Omega}g|tu|^{r+1}\,dx < 0, \\ \frac{d^2}{dt^2}\mathcal{J}_{\lambda,M}(tu) < 0, \\ \frac{d}{dt}\mathcal{J}_{\lambda,M}(tu) = at^{p-1}\|u\|_{X_0}^p + bt^{p^2-1}\|u\|_{X_0}^{p^2} - \lambda t^q \int_{\Omega}f|u|^{q+1}\,dx - t^r \int_{\Omega}g|u|^{r+1}\,dx = 0, \end{split}$$

for $t = t^-$. Thus, $\mathcal{J}_{\lambda,\mathcal{M}}(u) = \sup_{t \ge 0} \mathcal{J}_{\lambda,\mathcal{M}}(tu)$. Furthermore, we have

$$\mathcal{J}_{\lambda,M}(u) \geq \mathcal{J}_{\lambda,M}(tu) \geq \frac{a}{p} t^p \|u\|_{X_0}^p + \frac{b}{p^2} t^{p^2} \|u\|_{X_0}^{p^2} - \frac{1}{r+1} t^{r+1} \int_{\Omega} g |u|^{r+1} dx, \quad t \geq 0.$$

Let

$$h_{u}(t) = \frac{a}{p}t^{p}||u||_{X_{0}}^{p} + \frac{b}{p^{2}}t^{p^{2}}||u||_{X_{0}}^{p^{2}} - \frac{1}{r+1}t^{r+1}\int_{\Omega}g|u|^{r+1}dx, \quad t \geq 0.$$

Similar to the argument in the function $k_u(t)$, we see that $h_u(t)$ achieves its maximum at $t_m \ge (\frac{a \|u\|_{X_0}^p}{\int_{\Omega} g|u|^{r+1} dx})^{\frac{1}{r-p+1}}$. Thus, we have

$$\mathcal{J}_{\lambda,M}(u) \ge h_u(t_m) \ge \frac{ap(r+1-p) + b(r+1-p^2)}{p^2(r+1)} \left(\frac{a \|u\|_{X_0}^{r+1}}{\int_\Omega g |u|^{r+1} dx}\right)^{\frac{p}{r-p+1}} > 0.$$

Case (2): $\int_{\Omega} f |u|^{q+1} dx > 0$. By (2.14) and

$$\begin{aligned} k_{u}(0) &= 0 < \lambda \int_{\Omega} f |u|^{q+1} \, dx \leq \lambda \|f\|_{L^{\mu_{q}}} S_{\mu}^{q+1} \|u\|_{X_{0}}^{q+1} \\ &< \lambda_{2} \|f\|_{L^{\mu_{q}}} S_{\mu}^{q+1} \|u\|_{X_{0}}^{q+1} = A \|u\|_{X_{0}}^{q+1} \leq k_{u}(t_{\max}), \quad \text{for } \lambda \in (0, \lambda_{2}). \end{aligned}$$

Then there exist t^+ and t^- such that $0 < t^+ < t_{max} < t^-$,

$$k_u(t^+) = \lambda \int_{\Omega} f|u|^{q+1} dx = k_u(t^-).$$

Moreover, we have $k'_u(t^+) > 0$ and $k'_u(t^-) < 0$. Thus, there are two multiples of u lying in $\mathcal{N}_{\lambda,\mathcal{M}}(\Omega)$, that is, $t^+u \in \mathcal{N}^+_{\lambda,\mathcal{M}}(\Omega)$ and $t^-u \in \mathcal{N}^-_{\lambda,\mathcal{M}}(\Omega)$, and $\mathcal{J}_{\lambda,\mathcal{M}}(t^-u) \ge \mathcal{J}_{\lambda,\mathcal{M}}(tu) \ge \mathcal{J}_{\lambda,\mathcal{M}}(t^+u)$ for each $t \in [t^+, t^-]$ and $\mathcal{J}_{\lambda,\mathcal{M}}(t^+u) \le \mathcal{J}_{\lambda,\mathcal{M}}(tu)$ for each $t \in [0, t^+]$. Hence, $t^- = 1$ and

$$\mathcal{J}_{\lambda,M}(u) = \sup_{t \ge 0} \mathcal{J}_{\lambda,M}(tu), \qquad \mathcal{J}_{\lambda,M}(t^+u) = \inf_{0 \le t \le t_{\max}} \mathcal{J}_{\lambda,M}(tu).$$

Lemma 2.5 If (H3) holds, then we have $c_{\lambda} \leq c_{\lambda}^+ < 0$.

Proof For $u \in \mathcal{N}_{\lambda,M}^+$, we get

$$(r-q)\lambda\int_{\Omega}f|u|^{q+1}\,dx>a(r-p+1)\|u\|_{X_{0}}^{p}+b(r-p^{2}+1)\|u\|_{X_{0}}^{p^{2}}.$$

Thus, we have

$$J_{\lambda,M}(u) = \frac{a(r-p+1)}{p(r+1)} \|u\|_{X_0}^p + \frac{b(r-p^2+1)}{p^2(r+1)} \|u\|_{X_0}^{p^2} - \frac{\lambda(r-q)}{(q+1)(r+1)} \int_{\Omega} f|u|^{q+1} dx$$

$$< \frac{a(r-p+1)}{r+1} \left[\frac{1}{p} - \frac{1}{q+1}\right] \|u\|_{X_0}^p + \frac{b(r-p^2+1)}{r+1} \left[\frac{1}{p^2} - \frac{1}{q+1}\right] \|u\|_{X_0}^{p^2} < 0,$$

which implies that $c_{\lambda} \leq c_{\lambda}^+ < 0$.

3 Main results

Using the idea of Ni-Takagi [10], we have the following.

Lemma 3.1 For each $u \in \mathcal{N}_{\lambda,M}(\Omega)$, there exist $\epsilon > 0$ and a differentiable function $\xi : B(0;\epsilon) \subset X_0 \to \mathbb{R}^+$ such that $\xi(0) = 1$, the function $\xi(v)(u-v) \in \mathcal{N}_{\lambda,M}(\Omega)$ and

$$\left\langle \xi'(0), \nu \right\rangle = \frac{W}{a(p-q-1)\|u\|_{X_0}^p + b(p^2-q-1)\|u\|_{X_0}^{p^2} - (r-q)\int_\Omega g|u|^{r+1}\,dx},\tag{3.1}$$

for all $v \in X_0$, where

$$W = ap \int_{Q} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N + sp}} dx dy$$

+ $bp^{2} \int_{Q} \frac{|u(x) - u(y)|^{p^{2} - 2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N + sp^{2}}} dx dy$
- $(q + 1)\lambda \int_{\Omega} f|u|^{q-1} uv dx - (r + 1) \int_{\Omega} g|u|^{r-1} uv dx.$ (3.2)

Proof For $u \in \mathcal{N}_{\lambda,M}(\Omega)$, we define a function $\mathcal{F} : \mathbb{R} \times X_0 \to \mathbb{R}$ by

$$\begin{aligned} \mathcal{F}_{u}(\xi,w) &= \left\langle \mathcal{J}_{\lambda,M}'(\xi(u-w)), \xi(u-w) \right\rangle \\ &= \xi^{p} M \left(\xi^{p} \| u - w \|_{X_{0}}^{p} \right) \| u - w \|_{X_{0}}^{p} \\ &- \xi^{q+1} \lambda \int_{\Omega} f | u - w |^{q+1} \, dx - \xi^{r+1} \int_{\Omega} g | u - w |^{r+1} \, dx \\ &= a \xi^{p} \| u - w \|_{X_{0}}^{p} + b \xi^{p^{2}} \| u - w \|_{X_{0}}^{p^{2}} \\ &- \xi^{q+1} \lambda \int_{\Omega} f | u - w |^{q+1} \, dx - \xi^{r+1} \int_{\Omega} g | u - w |^{r+1} \, dx. \end{aligned}$$

Then $\mathcal{F}_u(1,0) = \langle \mathcal{J}'_{\lambda,M}(u), u \rangle = 0$ and

$$\begin{split} \frac{d}{d\xi}\mathcal{F}_{u}(1,0) &= ap\|u\|_{X_{0}}^{p} + bp^{2}\|u\|_{X_{0}}^{p^{2}} - (q+1)\lambda\int_{\Omega}f|u|^{q+1}\,dx - (r+1)\int_{\Omega}g|u|^{r+1}\,dx \\ &= a(p-q-1)\|u\|_{X_{0}}^{p} + b(p^{2}-q-1)\|u\|_{X_{0}}^{p^{2}} - (r-q)\int_{\Omega}g|u|^{r+1}\,dx \neq 0. \end{split}$$

From the implicit function theorem, we know that there exist $\epsilon > 0$ and a differentiable function $\xi : B(0; \epsilon) \subset X_0 \to \mathbb{R}$ such that $\xi(0) = 1$,

$$\langle \xi'(0), \nu \rangle = \frac{W}{a(p-q-1) \|u\|_{X_0}^p + b(p^2-q-1) \|u\|_{X_0}^{p^2} - (r-q) \int_{\Omega} g|u|^{r+1} dx},$$

where W is as in (3.2), and

$$\mathcal{F}_u(\xi(v), v) = 0$$
 for all $v \in B(0; \epsilon)$

which is equivalent to

$$\langle \mathcal{J}'_{\lambda,M}(\xi(v)(u-v)), \xi(v)(u-v) \rangle = 0 \text{ for all } v \in B(0;\epsilon),$$

which implies that $\xi(v)(u-v) \in \mathcal{N}_{\lambda,M}(\Omega)$.

Similar to the argument in Lemma 3.1, we can obtain the following lemma.

Lemma 3.2 For each $u \in \mathcal{N}_{\lambda,M}^{-}(\Omega)$, there exist $\epsilon > 0$ and a differentiable function ξ^{-} : $B(0;\epsilon) \subset X_0 \to \mathbb{R}^+$ such that $\xi^{-}(0) = 1$, the function $\xi^{-}(v)(u-v) \in \mathcal{N}_{\lambda,M}^{-}(\Omega)$ and

$$\left\langle \left(\xi^{-}\right)'(0), \nu \right\rangle = \frac{W}{a(p-q-1)\|u\|_{X_{0}}^{p} + b(p^{2}-q-1)\|u\|_{X_{0}}^{p^{2}} - (r-q)\int_{\Omega}g|u|^{r+1}dx},$$

for all $v \in X_0$, where W is as in (3.2).

Let (H4) $p < 2 + \frac{(r-1)q}{r}$. Moreover, we let

$$p^* = \frac{(p-2)r}{r-1} - q$$

and

$$\begin{split} \lambda_3 &= \left(\frac{a(p-q-1)(r-p^2+1)}{(r-q)(p^2-q-1)}\right) \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{(p-q-1)}{(p-q-1-p^*)(r-1)}} \\ &\times \left(\frac{1}{\|f\|_{L^{\mu_q}} S_{\mu}^{q+1}}\right) \left(\frac{1}{\|g\|_{L^{\nu_r}} S_{\nu}^{r+1}}\right)^{\frac{(p-q-1)}{(r-1)(p-q-1-p^*)}}. \end{split}$$

Remark 3.1 By (H4) we know that $p^* < 0$.

Lemma 3.3 Assume that (H1)-(H4) hold. Let $\Gamma_0 = \min\{\lambda_1, \lambda_2, \lambda_3\}$, then for $\lambda \in (0, \Gamma_0)$: (i) There exists a minimizing sequence $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$ such that

$$\mathcal{J}_{\lambda,M}(u_n)=c_\lambda+o(1),\qquad \mathcal{J}_{\lambda,M}'(u_n)=o(1)\quad in\;(X_0)^*.$$

(ii) There exists a minimizing sequence $\{u_n\} \subset \mathcal{N}^-_{\lambda,M}(\Omega)$ such that

$$\mathcal{J}_{\lambda,M}(u_n) = c_{\lambda}^- + o(1), \qquad \mathcal{J}_{\lambda,M}'(u_n) = o(1) \quad in \ (X_0)^*.$$

Proof By the Ekeland variational principle [11] and Lemma 2.2, there exists a minimizing sequence $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$ such that

$$\mathcal{J}_{\lambda,M}(u_n) < c_{\lambda} + \frac{1}{n} \tag{3.3}$$

and

$$\mathcal{J}_{\lambda,\mathcal{M}}(u_n) < \mathcal{J}_{\lambda,\mathcal{M}}(w) + \frac{1}{n} \|w - u_n\|_{X_0} \quad \forall w \in \mathcal{N}_{\lambda,\mathcal{M}}(\Omega).$$
(3.4)

Let *n* large enough, by Lemma 2.5, we obtain

$$\begin{aligned} \mathcal{J}_{\lambda,\mathcal{M}}(u_n) &= \frac{a(r-p+1)}{p(r+1)} \|u_n\|_{X_0}^p + \frac{b(r-p^2+1)}{p^2(r+1)} \|u_n\|_{X_0}^{p^2} - \frac{\lambda(r-q)}{(q+1)(r+1)} \int_{\Omega} f |u_n|^{q+1} dx \\ &< c_{\lambda} + \frac{1}{n} < \frac{c_{\lambda}}{2}, \end{aligned}$$

which implies that

$$\|f\|_{L^{\mu_q}}S^{q+1}_{\mu}\|u_n\|^{q+1}_{X_0} \ge \int_{\Omega} f|u_n|^{q+1} dx > -\frac{(q+1)(r+1)}{\lambda(r-q)}\frac{c_{\lambda}}{2} > 0.$$
(3.5)

This implies $u_n \neq 0$ and by using (3.4), (3.5), and the Hölder inequality, we get

$$\|u_n\|_{X_0} > \left[-\frac{(q+1)(r+1)}{\lambda(r-q)} \frac{c_{\lambda}}{2} \|f\|_{L^{\mu_q}}^{-1} S_{\mu}^{-(q+1)} \right]^{\frac{1}{q+1}}$$
(3.6)

and

$$\|u_n\|_{X_0} < \left[\frac{\lambda p(r-q)(r+1)}{a(q+1)(r+1)(r-p+1)} \|f\|_{L^{\mu_q}} S^{q+1}_{\mu}\right]^{\frac{1}{p-q-1}}.$$
(3.7)

In the following, we will prove that

$$\|\mathcal{J}_{\lambda,M}'(u_n)\|_{(X_0)^*}\to 0 \quad \text{as } n\to\infty.$$

By using Lemma 3.1 with u_n we get the functions $\xi_n : B(0; \epsilon_n) \to \mathbb{R}^+$ for some $\epsilon_n > 0$, such that $\xi_n(w)(u_n - w) \in \mathcal{N}_{\lambda,M}(\Omega)$. For fixed $n \in \mathbb{N}$, we choose $0 < \rho < \epsilon_n$. Let $u \in X_0$ with $u \neq 0$ and let $w_\rho = \frac{\rho u}{\|u\|_{X_0}}$. Set $\eta_\rho = \xi_n(w_\rho)(u_n - w_\rho)$, since $\eta_\rho \in \mathcal{N}_{\lambda,M}(\Omega)$, we deduce from (3.4) that

$$\mathcal{J}_{\lambda,\mathcal{M}}(\eta_{\rho}) - J_{\lambda,\mathcal{M}}(u_n) \geq -\frac{1}{n} \|\eta_{\rho} - u_n\|_{X_0} \quad \forall w \in \mathcal{N}_{\lambda,\mathcal{M}}(\Omega),$$

and by the mean value theorem, we obtain

$$\left\langle \mathcal{J}_{\lambda,M}'(u_n),\eta_{\rho}-u_n\right\rangle+o\left(\|\eta_{\rho}-u_n\|_{X_0}\right)\geq -\frac{1}{n}\|\eta_{\rho}-u_n\|_{X_0}.$$

Hence,

$$\langle \mathcal{J}_{\lambda,M}'(u_n), -w_\rho \rangle + (\xi_n(w_\rho) - 1) \langle \mathcal{J}_{\lambda,M}'(u_n), u_n - w_\rho \rangle$$

$$\geq -\frac{1}{n} \|\eta_\rho - u_n\|_{X_0} + o(\|\eta_\rho - u_n\|_{X_0}).$$
 (3.8)

By $\xi_n(w_\rho)(u_n - w_\rho) \in \mathcal{N}_{\lambda,M}(\Omega)$ and (3.8) it follows that

$$-\rho \left\langle \mathcal{J}_{\lambda,M}'(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle + \left(\xi_n(w_\rho) - 1 \right) \left\langle \mathcal{J}_{\lambda,M}'(u_n) - \mathcal{J}_{\lambda,M}'(\eta_\rho), u_n - w_\rho \right\rangle$$

$$\geq -\frac{1}{n} \|\eta_\rho - u_n\|_{X_0} + o \left(\|\eta_\rho - u_n\|_{X_0} \right).$$

Thus,

$$\left\langle \mathcal{J}_{\lambda,M}'(u_{n}), \frac{u}{\|u\|_{X_{0}}} \right\rangle \leq \frac{1}{n\rho} \|\eta_{\rho} - u_{n}\|_{X_{0}} + \frac{1}{\rho} o\left(\|\eta_{\rho} - u_{n}\|_{X_{0}}\right) \\ + \frac{(\xi_{n}(w_{\rho}) - 1)}{\rho} \left\langle \mathcal{J}_{\lambda,M}'(u_{n}) - \mathcal{J}_{\lambda,M}'(\eta_{\rho}), u_{n} - w_{\rho} \right\rangle.$$
(3.9)

Since

$$\|\eta_{\rho} - u_n\|_{X_0} \le \rho \left|\xi_n(w_{\rho})\right| + \left|\xi_n(w_{\rho}) - 1\right| \|u_n\|_{X_0}$$

and

$$\lim_{n\to\infty}\frac{|\xi_n(w_\rho)-1|}{\rho}\leq \big\|\xi_n'(0)\big\|,$$

taking the limit $\rho \rightarrow 0$ in (3.9), we obtain

$$\left(\mathcal{J}_{\lambda,M}'(u_n),\frac{u}{\|u\|_{X_0}}\right) \leq \frac{C}{n} \left(1 + \left\|\xi_n'(0)\right\|\right)$$

for some constant C > 0, independent of ρ . In the following, we will show that $\|\xi'_n(0)\|$ is uniformly bounded in *n*. From (3.1), (3.7), and the Hölder inequality, we obtain for some $\kappa > 0$

$$\langle \xi'_n(0), \nu \rangle \leq \frac{\kappa \|\nu\|_{X_0}}{a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u_n|^{r+1} dx}.$$

We only need to prove that

$$\left|a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2} - (r-q)\int_{\Omega}g|u_n|^{r+1}\,dx\right| > c \tag{3.10}$$

for some c > 0 and n large enough. If (3.10) is fails, then there exists a subsequence $\{u_n\}$ such that

$$a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2} - (r-q)\int_\Omega g|u_n|^{r+1}\,dx = o(1). \tag{3.11}$$

Combining (3.11) with (3.6), we may find a suitable constant d > 0 such that

$$\int_{\Omega} g|u_n|^{r+1} dx \ge d \quad \text{for } n \text{ sufficiently large.}$$
(3.12)

By (3.11) and $u_n \in \mathcal{N}_{\lambda,M}(\Omega)$, we have

$$\lambda \int_{\Omega} f|u_{n}|^{q+1} dx$$

$$= a \|u_{n}\|_{X_{0}}^{p} + b \|u_{n}\|_{X_{0}}^{p^{2}} - \int_{\Omega} g|u_{n}|^{r+1} dx$$

$$= \frac{1}{p^{2} - q - 1} \left(a(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p} + b(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p^{2}} \right) - \int_{\Omega} g|u_{n}|^{r+1} dx$$

$$\geq \frac{1}{p^{2} - q - 1} \left(a(p - q - 1) \|u_{n}\|_{X_{0}}^{p} + b(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p^{2}} \right) - \int_{\Omega} g|u_{n}|^{r+1} dx$$

$$= \frac{r - q}{p^{2} - q - 1} \int_{\Omega} g|u_{n}|^{r+1} dx - \int_{\Omega} g|u_{n}|^{r+1} dx + o(1)$$

$$= \frac{r - p^{2} + 1}{p^{2} - q - 1} \int_{\Omega} g|u_{n}|^{r+1} dx + o(1).$$
(3.13)

Moreover, we have by (3.11) and (3.13)

$$\begin{split} a(p-q-1)\|u_n\|_{X_0}^p &\leq a(p-q-1)\|u_n\|_{X_0}^p + b\left(p^2-q-1\right)\|u_n\|_{X_0}^{p^2} \\ &= (r-q)\int_{\Omega}g|u_n|^{r+1}\,dx + o(1) \\ &\leq \lambda \frac{(p^2-q-1)(r-q)}{r-p^2+1}\int_{\Omega}f|u_n|^{q+1}\,dx + o(1) \\ &\leq \lambda \frac{(p^2-q-1)(r-q)}{r-p^2+1}\|f\|_{L^{\mu q}}S_{\mu}^{q+1}\|u_n\|_{X_0}^{q+1} + o(1), \end{split}$$

which implies that

$$\|u_n\|_{X_0} \le \left(\lambda \frac{(p^2 - q - 1)(r - q)}{a(p - q - 1)(r - p^2 + 1)} \|f\|_{L^{\mu_q}} S^{q+1}_{\mu}\right)^{\frac{1}{p - q - 1}} + o(1).$$
(3.14)

Let

$$\mathcal{I}_{\lambda,M}(u) = K(p,q,r) \left(\frac{\|u\|_{X_0}^{pr}}{\int_{\Omega} g |u_n|^{r+1} dx} \right)^{\frac{1}{r-1}} - \lambda \int_{\Omega} f |u|^{q+1} dx,$$

where

$$K(p,q,r) = \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{r}{r-1}} \frac{r-p^2+1}{p^2-q-1}.$$

From (3.11), it is easy to see that

$$\|u_n\|_{X_0}^p \le \frac{r-q}{a(p-q-1)} \int_{\Omega} g|u_n|^{r+1} dx.$$
(3.15)

Thus,

$$\begin{aligned} \mathcal{I}_{\lambda,M}(u_n) &\leq \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{r}{r-1}} \frac{r-p^2+1}{p^2-q-1} \left(\frac{\left(\frac{r-q}{a(p-q-1)}\right)^r \left(\int_{\Omega} g |u_n|^{r+1} \, dx\right)^r}{\int_{\Omega} g |u_n|^{r+1} \, dx}\right)^{\frac{1}{r-1}} \\ &- \frac{r-p^2+1}{p^2-q-1} \int_{\Omega} g |u_n|^{r+1} \, dx + o(1) \\ &= o(1). \end{aligned}$$
(3.16)

But, by (3.12), (3.14), and $\lambda \in \Gamma_0$,

$$\begin{split} \mathcal{I}_{\lambda,M}(u_n) &\geq K(p,q,r) \bigg(\frac{\|u_n\|_{X_0}^{pr}}{\|g\|_{L^{v_r}} S_v^{r+1} \|u_n\|_{X_0}^{r+1}} \bigg)^{\frac{1}{r-1}} - \lambda \|f\|_{L^{\mu_q}} S_\mu^{q+1} \|u_n\|_{X_0}^{q+1} \\ &= \|u_n\|_{X_0}^{q+1} \Big(K(p,q,r) \|g\|_{L^{v_r}}^{\frac{1}{1-r}} S_v^{\frac{r+1}{1-r}} \|u_n\|_{X_0}^{p^*} - \lambda \|f\|_{L^{\mu_q}} S_\mu^{q+1} \Big) \\ &\geq \|u_n\|_{X_0}^{q+1} \bigg\{ K(p,q,r) \|g\|_{L^{v_r}}^{\frac{1}{1-r}} S_v^{\frac{r+1}{1-r}} \bigg[\lambda \frac{(p^2-q-1)(r-q)}{a(p-q-1)(r-p^2+1)} \|f\|_{L^{\mu_q}} S_\mu^{q+1} \bigg]^{\frac{p^*}{p-q-1}} \\ &- \lambda \|f\|_{L^{\mu_q}} S_\mu^{q+1} \bigg\}, \end{split}$$

which contradicts (3.16), where $p^* = \frac{(p-2)r}{r-1} - q < 0$.

Hence, we obtain

$$\left\langle \mathcal{J}_{\lambda,M}'(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle \leq \frac{C}{n}.$$

This completes the proof of (i). Similarly, we can prove (ii) by using Lemma 3.2. \Box

Theorem 3.4 Assume that (H1)-(H4) hold. For each $0 < \lambda < \Gamma_0$ (Γ_0 is as in Lemma 3.3), the functional $\mathcal{J}_{\lambda,M}$ has a minimizer u_{λ}^+ in $\mathcal{N}_{\lambda,M}^+(\Omega)$ satisfying:

(1)
$$\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) = c_{\lambda}^{+} = c_{\lambda};$$

(2) u_{λ}^{+} is a solution of (1.1).

Proof By Lemma 3.3(i), there exists a minimizing sequence $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$ for $\mathcal{J}_{\lambda,M}$ on $\mathcal{N}_{\lambda,M}(\Omega)$ such that

$$\mathcal{J}_{\lambda,M}(u_n) = c_{\lambda} + o(1), \qquad \mathcal{J}'_{\lambda,M}(u_n) = o(1) \quad \text{in } (X_0)^*.$$

From Lemma 2.5 and the compact embedding theorem, we see that there exist a subsequence $\{u_n\}$ and $u_{\lambda}^+ \in X_0$ such that

$$u_n \rightharpoonup u_{\lambda}^+$$
 weakly in X_0

$$u_n \to u_{\lambda}^+$$
 strongly in $L^{\eta}(\Omega)$ for $1 < \eta < p_s^*$. (3.17)

In the following we will prove that $\int_{\Omega} f |u_{\lambda}^{+}|^{q+1} dx \neq 0$. In fact, if not, by (3.17) and the Hölder inequality we can obtain

$$\int_{\Omega} f|u_n|^{q+1} dx \to \int_{\Omega} f|u_{\lambda}^+|^{q+1} dx = 0$$

as $n \to \infty$. Hence,

$$a \|u_n\|_{X_0}^p + b \|u_n\|_{X_0}^{p^2} = \int_{\Omega} g |u_n|^{r+1} dx + o(1)$$

and

$$\mathcal{J}_{\lambda,M}(u_n) = a\left(\frac{1}{p} - \frac{1}{r+1}\right) \|u_n\|_{X_0}^p + b\left(\frac{1}{p^2} - \frac{1}{r+1}\right) \|u_n\|_{X_0}^{p^2} + o(1),$$

which contradicts $\mathcal{J}_{\lambda,M}(u_n) \rightarrow c_{\lambda} < 0$ as $n \rightarrow \infty$. Furthermore,

$$o(1) = \left\langle \mathcal{J}_{\lambda,M}'(u_n), \phi \right\rangle = \left\langle \mathcal{J}_{\lambda,M}'(u_\lambda^+), \phi \right\rangle + o(1) \quad \text{for all } \phi \in X_0.$$

Thus, $u_{\lambda}^{+} \in \mathcal{N}_{\lambda,M}(\Omega)$ is a nonzero solution of (1.1) and $\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) \geq c_{\lambda}$. Next, we will prove that $\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) = c_{\lambda}$. Since

$$\begin{split} \mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) &= \frac{a}{p} \left\| u_{\lambda}^{+} \right\|_{X_{0}}^{p} + \frac{b}{p^{2}} \left\| u_{\lambda}^{+} \right\|_{X_{0}}^{p^{2}} - \frac{\lambda}{q+1} \int_{\Omega} f \left| u_{\lambda}^{+} \right|^{q+1} dx - \frac{1}{r+1} \int_{\Omega} g \left| u_{\lambda}^{+} \right|^{r+1} dx \\ &= \left(\frac{a}{p} - \frac{a}{r+1} \right) \left\| u_{\lambda}^{+} \right\|_{X_{0}}^{p} + \left(\frac{b}{p^{2}} - \frac{b}{r+1} \right) \left\| u_{\lambda}^{+} \right\|_{X_{0}}^{p^{2}} \\ &+ \left(\frac{\lambda}{r+1} - \frac{\lambda}{q+1} \right) \int_{\Omega} f \left| u_{\lambda}^{+} \right|^{q+1} dx \\ &\leq \lim \inf_{n \to \infty} \left[\left(\frac{a}{p} - \frac{a}{r+1} \right) \left\| u_{n} \right\|_{X_{0}}^{p} + \left(\frac{b}{p^{2}} - \frac{b}{r+1} \right) \left\| u_{n} \right\|_{X_{0}}^{p^{2}} \\ &+ \left(\frac{\lambda}{r+1} - \frac{\lambda}{q+1} \right) \int_{\Omega} f \left| u_{n} \right|^{q+1} dx \\ &= \lim \inf_{n \to \infty} \mathcal{J}_{\lambda,M}(u_{n}) = c_{\lambda}. \end{split}$$

Hence, $\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) = c_{\lambda}$. Moreover, we have $u_{\lambda}^{+} \in \mathcal{N}_{\lambda,M}^{+}(\Omega)$. In fact, if $u_{\lambda}^{+} \in \mathcal{N}_{\lambda,M}^{-}(\Omega)$, by Lemma 2.4, there are unique t^{+} and t^{-} such that $t^{+}u_{\lambda}^{+} \in \mathcal{N}_{\lambda,M}^{+}(\Omega)$ and $t^{-}u_{\lambda}^{+} \in \mathcal{N}_{\lambda,M}^{-}(\Omega)$, we have $t_{\lambda}^{+} < t_{\lambda}^{-} = 1$. Since

$$\frac{d}{dt}\mathcal{J}_{\lambda,\mathcal{M}}(t_{\lambda}^{+}u_{\lambda}^{+})=0 \quad \text{and} \quad \frac{d^{2}}{dt^{2}}\mathcal{J}_{\lambda,\mathcal{M}}(t_{\lambda}^{+}u_{\lambda}^{+})>0,$$

there exists $t_{\lambda}^+ < t^* \le t_{\lambda}^-$ such that $\mathcal{J}_{\lambda,\mathcal{M}}(t_{\lambda}^+u_{\lambda}^+) < \mathcal{J}_{\lambda,\mathcal{M}}(t^*u_{\lambda}^+)$. By Lemma 2.4, we get

$$\mathcal{J}_{\lambda,M}(t_{\lambda}^{+}u_{\lambda}^{+}) < \mathcal{J}_{\lambda,M}(t^{*}u_{\lambda}^{+}) \leq \mathcal{J}_{\lambda,M}(t_{\lambda}^{-}u_{\lambda}^{+}) = \mathcal{J}_{\lambda,M}(u_{\lambda}^{+}),$$

which is a contradiction. Since $\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) = \mathcal{J}_{\lambda,M}(|u_{\lambda}^{+}|)$ and $|u_{\lambda}^{+}| \in \mathcal{N}_{\lambda,M}^{+}(\Omega)$, we see that u_{λ}^{+} is a solution of (1.1) by Lemma 2.3.

Similarly, we can obtain the theorem of existence of a local minimum for $\mathcal{J}_{\lambda,M}$ on $\mathcal{N}^{-}_{\lambda,M}(\Omega)$ as follows.

Theorem 3.5 Assume that (H1)-(H4) hold. For each $0 < \lambda < \Gamma_0$ (Γ_0 is as in Lemma 3.3), the functional $\mathcal{J}_{\lambda,M}$ has a minimizer u_{λ}^- in $\mathcal{N}_{\lambda,M}^-(\Omega)$ satisfying:

- (1) $\mathcal{J}_{\lambda,M}(u_{\lambda}^{-}) = c_{\lambda}^{-};$
- (2) u_{1}^{-} is a solution of (1.1).

Finally, we give the main result of this paper as follows.

Theorem 3.6 Suppose that the conditions (H1)-(H4) hold. Then there exists $\Gamma_0 > 0$ such that for $\lambda \in (0, \Gamma_0)$, (1.1) has at least two solutions.

Proof From Theorems 3.4, 3.5, we see that (1.1) has two solutions u_{λ}^+ and u_{λ}^- such that $u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^+(\Omega)$, $u_{\lambda}^- \in \mathcal{N}_{\lambda,M}^-(\Omega)$. Since $\mathcal{N}_{\lambda,M}^+(\Omega) \cap \mathcal{N}_{\lambda,M}^-(\Omega) = \emptyset$, we see that u_{λ}^+ and u_{λ}^- are different.

Remark 3.2 Obviously, if p = 2, then (H3) and (H4) hold. Moreover, if p = 2, s = 1, a = 1, and b = 0, then Theorem 3.6 is in agreement with Theorem 1.2 in [1].

Competing interests

The author declares that he has no competing interests.

Author's contributions

All results belong to CB.

Acknowledgements

This work is supported by Natural Science Foundation of China (11571136 and 11271364).

Received: 5 August 2016 Accepted: 11 November 2016 Published online: 25 November 2016

References

- Wu, TF: Multiplicity results for a semilinear elliptic equation involving sign-changing weight function. Rocky Mt. J. Math. 39, 995-1011 (2009)
- Autuori, G, Fiscella, A, Pucci, P: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699-714 (2015)
- Chen, CY, Kuo, YC, Wu, TF: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876-1908 (2011)
- Fiscella, A, Valdinoci, E: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156-170 (2014)
- Pucci, P, Saldi, S: Critical stationary Kirchhoff equations in ℝ^N involving nonlocal operators. Rev. Mat. Iberoam. 32, 1-22 (2016)
- 6. Pucci, P, Xiang, M, Zhang, B: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional *p*-Laplacian in ℝ^N. Calc. Var. Partial Differ. Equ. **54**(3), 2785-2806 (2015)
- Mishra, PK, Sreenadh, K: Existence and multiplicity results for fractional *p*-Kirchhoff equation with sign changing nonlinearities. Adv. Pure Appl. Math. (2015). doi:10.1515/apam-2015-0018
- Di Nezza, E, Palatucci, G, Valdinoci, E: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012)
- 9. Drabek, P, Pohozaev, SI: Positive solutions for the *p*-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. A **127**, 703-726 (1997)
- Ni, WM, Takagi, I: On the shape of least energy solution to a Neumann problem. Commun. Pure Appl. Math. 44, 819-851 (1991)
- 11. Ekeland, I: On the variational principle. J. Math. Anal. Appl. 17, 324-353 (1974)