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1 Introduction
In this paper, we consider the following fractional elliptic equation with sign-changing
weight functions:

⎧
⎨

⎩

M(
∫

RN
|u(x)–u(y)|p
|x–y|N+sp dx dy)(–�)s

pu = λf (x)uq + g(x)ur , x ∈ �,

u = , x ∈R
N \ �,

(.)

where � is a smooth bounded domain in R
N , N > s,  < s < ,  ≤ q <  < r < p∗

s – 
(p∗

s = pN
N–ps ); λ > , M(t) = a + btp–, (–�)s

p is the fractional p-Laplacian operator defined as

(–�)s
pu(x) =  lim

ε↘

∫

Bε(x)c

|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+sp dy, x ∈ R

N .

We may assume that the weight functions f (x) and g(x) are as follows:
(H) f + = max{f , } �≡ , and f ∈ Lμq (�) where μq = μ

μ–(q+) for some μ ∈ (q + , p∗
s ),

with in addition f (x) ≥  a.e. in � in the case q = ;
(H) g+ = max{g, } �≡ , and g ∈ Lνr (�) where νr = ν

ν–(r+) for some ν ∈ (r + , p∗
s ).

The fractional Kirchhoff type problems have been studied by many authors in recent
years; see [–] and references therein. In the subcritical case, Pucci and Saldi in [] stud-
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ied the following Kirchhoff type problem in R
N :

⎧
⎪⎪⎨

⎪⎪⎩

M(
∫

RN
|u(x)–u(y)|p
|x–y|N+sp dx dy)(–�)s

pu + V (x)|u|p–u

= λw(x)|u|q–u – h(x)|u|r–u, x ∈ �,

u = , x ∈R
N \ �,

with n > ps, s ∈ (, ), and they established the existence and multiplicity of entire solutions
using variational methods and topological degree theory for the above problem with a real
parameter λ under the suitable integrability assumptions of the weights V , w, and h. In [],
Mishra and Sreenadh have studied the following Kirchhoff problem with sign-changing
weights:

⎧
⎨

⎩

M(
∫

RN
|u(x)–u(y)|p
|x–y|N+sp dx dy)(–�)s

pu = λf (x)|u|q–u + |u|α–u, x ∈ �,

u = , x ∈ R
N \ �,

and they obtained the multiplicity of non-negative solutions in the subcritical case α < p∗
s

by minimizing the energy functional over non-empty decompositions of Nehari manifold.
When p = , s = , a =  and b = , problem (.) is reduced to the following semilinear

elliptic equation:
⎧
⎨

⎩

–�u = λf (x)uq + g(x)ur , x ∈ �,

u = , x ∈ ∂�.
(.)

In [], Wu proved that equation (.) involving a sign-changing weight function has at least
two solutions by using the Nehari manifold.

Motivated by the above work, in this paper, we investigate the existence and multiplicity
of solutions for a fractional Kirchhoff equation (.) and extend the main results of Wu [].

This article is organized as follows. In Section , we give some notations and prelimi-
naries. Section  is devoted to the proof that problem (.) has at least two solutions for λ

sufficiently small.

2 Preliminaries
For any s ∈ (, ),  < p < ∞, we define

X =
{

u|u : RN →R is measurable, u|� ∈ Lp(�), and
∫

Q

|u(x) – u(y)|p
|x – y|n+ps dx dy < ∞

}

,

where Q = R
N \ (C� × C�) with C� = R

N \ �. The space X is endowed with the norm
defined by

‖u‖X = ‖u‖Lp(�) +
(∫

Q

|u(x) – u(y)|p
|x – y|n+ps dx dy

)/p

.

The functional space X denotes the closure of C∞
 (�) in X. By [], the space X is a Hilbert

space with scalar product

〈u, v〉X =
∫

Q

|u(x) – u(y)|p–(v(x) – v(y))
|x – y|n+ps dx dy, ∀u, v ∈ X,
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and the norm

‖u‖X =
(∫

Q

|u(x) – u(y)|p
|x – y|n+ps dx dy

)/p

.

For further details on X and X and also for their properties, we refer to [] and the
references therein.

Throughout this section, we denote the best Sobolev constant by Sl for the embedding
of X into Ll(�), which is defined as

Sl = inf
X\{}

∫

RN
|u(x)–u(y)|p
|x–y|N+sp dx dy

(
∫

RN |u|l dx)
p
l

> ,

where l ∈ [p, p∗
s ].

A function u ∈ X is a weak solution of problem (.) if

M
(∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy

)∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy

= λ

∫

�

f (x)|u|q–uv dx +
∫

�

g(x)|u|r–uv dx, ∀v ∈ X.

Associated with equation (.), we consider the energy functional Jλ,M in X

Jλ,M(u) =

p

M̂
(‖u‖p

X

)
–

λ

q + 

∫

�

f |u|q+ dx –


r + 

∫

�

g|u|r+ dx,

where M̂(t) =
∫ t

 M(μ) dμ.
It is easy to see that the solutions of equation (.) are the critical points of the energy

functional Jλ,M .
The Nehari manifold for Jλ,M is defined as

Nλ,M(�) =
{

u ∈ X \ {} :
〈
J ′

λ,M(u), u
〉

= 
}

=
{

u ∈ X \ {}|M(‖u‖p
X

)‖u‖p
X

– λ

∫

�

f |u|q+ dx –
∫

�

g|u|r+ dx = 
}

.

The Nehari manifold Nλ,M(�) is closely linked to the behavior of functions of the form
hλ,M : t → Jλ,M(tu) for t > , named fibering maps []. If u ∈ X, we have

hλ,M(t) =

p

M̂
(
tp‖u‖p

X

)
– λ

tq+

q + 

∫

�

f |u|q+ dx –
tr+

r + 

∫

�

g|u|r+ dx,

h′
λ,M(t) = tp–M

(
tp‖u‖p

X

)‖u‖p
X

– λtq
∫

�

f |u|q+ dx – tr
∫

�

g|u|r+ dx,

and

h′′
λ,M(t) = (p – )tp–M

(
tp‖u‖p

X

)‖u‖p
X

+ ptp–M′(tp‖u‖p
X

)‖u‖p
X

– qλtq–
∫

�

f |u|q+ dx – rtr–
∫

�

g|u|r+ dx.
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Obviously,

th′
λ,M(t) = M

(
tp‖u‖p

X

)‖tu‖p
X

– λ

∫

�

f |tu|q+ dx –
∫

�

g|tu|r+ dx

=
〈
Jλ,M(tu), tu

〉
,

which implies that for u ∈ X \ {} and t > , hλ,M(t) =  if and only if tu ∈ Nλ,M(�), i.e.,
positive critical points of hλ,M correspond to points on the Nehari manifold. In particular,
hλ,M() =  if and only if u ∈Nλ,M(�). Hence, we define

N +
λ,M(�) =

{
u ∈Nλ,M(�) : h′′

u,M() > 
}

,

N 
λ,M(�) =

{
u ∈Nλ,M(�) : h′′

u,M() = 
}

,

N –
λ,M(�) =

{
u ∈Nλ,M(�) : h′′

u,M() < 
}

.

For each u ∈Nλ,M(�), we have

h′′
λ,M() = (p – )M

(‖u‖p
X

)‖u‖p
X

+ pM′(‖u‖p
X

)‖u‖p
X

– qλ

∫

�

f |u|q+ dx – r
∫

�

g|u|r+ dx

= (p – r – )M
(‖u‖p

X

)‖u‖p
X

+ pM′(‖u‖p
X

)‖u‖p
X

– λ(q – r)
∫

�

f |u|q+ dx (.)

= (p – q – )M
(‖u‖p

X

)‖u‖p
X

+ pM′(‖u‖p
X

)‖u‖p
X

– (r – q)
∫

�

g|u|r+ dx. (.)

Let M(t) = a + btp–, where a > , b ≥  and p > . If u ∈ N 
λ,M(�), then h′′

λ,M() = , and
we have by (.) and (.)

a(p – r – )‖u‖p
X

+ b
(
p – r – 

)‖u‖p

X
– λ(q – r)

∫

�

f |u|q+ dx = , (.)

a(p – q – )‖u‖p
X

+ b
(
p – q – 

)‖u‖p

X
– (r – q)

∫

�

g|u|r+ dx = . (.)

For convenience, we let

(H)  < q < , p >  + q and p∗
s –  > r

⎧
⎨

⎩

> p – , b �= ,

> p – , b = .

Lemma . If (H) and (H) hold, then the energy functionalJλ,M is coercive and bounded
below on Nλ,M(�).

Proof For u ∈Nλ,M(�), we have by the Hölder and Sobolev inequalities

Jλ,M(u) = a
(


p

–


r + 

)

‖u‖p
X

+ b
(


p –


r + 

)

‖u‖p

X

– λ

(


q + 
–


r + 

)∫

�

f |u|q+ dx

= a
(


p

–


r + 

)

‖u‖p
X

+ b
(


p –


r + 

)

‖u‖p

X
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– λ
r – q

(q + )(r + )

∫

�

f |u|q+ dx

≥ a
(


p

–


r + 

)

‖u‖p
X

+ b
(


p –


r + 

)

‖u‖p

X

– λ
r – q

(q + )(r + )
‖f ‖Lμq Sq+

μ ‖u‖q+
X

,

where μq = μ

μ–(q+) , μ ∈ (q + , p∗
s ). Thus Jλ,M is coercive and bounded below on Nλ,M(�).

�

Lemma . Let (H)-(H) hold. There exists λ >  such that for any λ ∈ (,λ), we have
N 

λ,M(�) = ∅.

Proof If not, that is, N 
λ,M(�) �= ∅ for each λ > , then by (.) and the Hölder and Sobolev

inequalities, we have for u ∈N 
λ,M(�)

a(r – p + )‖u‖p
X

≤ a(r – p + )‖u‖p
X

+ b
(
r – p + 

)‖u‖p

X

= λ(r – q)
∫

�

f |u|q+ dx,

which implies that

‖u‖p
X

≤ λ(r – q)
a(r – p + )

∫

�

f |u|q+ dx

≤ λ(r – q)
a(r – p + )

‖f ‖Lμq Sq+
μ ‖u‖q+

X

and so

‖u‖X ≤
(

λ(r – q)
a(r – p + )

‖f ‖Lμq Sq+
μ

) 
p–q–

. (.)

Similarly, we obtain by (.) and the Hölder and Sobolev inequalities

‖u‖p
X

≤ r – q
a(p – q + )

‖g‖Lνr Sr+
ν ‖u‖r+

X ,

which implies that

‖u‖X ≥
(

a(p – q + )
r – q

‖g‖–
Lνr S–(r+)

ν

) 
r–p+

. (.)

But (.) contradicts (.) if λ is sufficiently small. Hence, we conclude that there exists
λ >  such that N 

λ,M(�) = ∅ for λ ∈ (,λ). �

Let

cλ = inf
u∈Nλ,M(�)

Jλ,M(u).
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From Lemma ., for λ ∈ (,λ), we write Nλ,M(�) = N +
λ,M(�) ∪N –

λ,M(�) and define

c+
λ = inf

u∈N +
λ,M(�)

Jλ,M(u) and c–
λ = inf

u∈N–
λ,M(�)

Jλ,M(u).

Lemma . (i) If u ∈N +
λ,M(�), then

∫

�
f |u|q+ dx > .

(ii) If u ∈N –
λ,M(�), then

∫

�
g|u|r+ dx > .

The proof is immediate from (.) and (.).
Define the function ku : R+ →R as follows:

ku(t) = tp–q–M
(
tp‖u‖p

X

)‖u‖p
X

– tr–q
∫

�

g|u|r+ dx t > . (.)

Obviously, tu ∈Nλ,M(�) if and only if ku(t) = λ
∫

�
f |u|q+ dx. Moreover,

k′
u(t) = (p – q – )tp–q–M

(
tp‖u‖p

X

)‖u‖p
X

+ ptp–q–M′(tp‖u‖p
X

)‖u‖p
X

– (r – q)tr–q–
∫

�

g|u|r+ dx, (.)

which implies that tqk′
u(t) = h′′

λ,M(t) for tu ∈Nλ,M(�). That is, u ∈N +
λ,M(�) (or N –

λ,M(�)) if
and only if k′

u(t) >  (or < ).
Set

A =
a(r – p + )

r – q

(
a(p – q – )

(r – q)‖g‖Lνr Sr+
ν

) p–q–
r–p+

+
b(r – p + )

r – q

(
a(p – q – )

(r – q)‖g‖Lνr Sr+
ν

) p–q–
r–p+

. (.)

Lemma . Assume that (H)-(H) hold. Let λ = A
‖f ‖Lμq Sq+

μ

. Then, for each u ∈ X \ {}
and λ ∈ (,λ), we have:

() If
∫

�
f |u|q+ dx ≤ , then there exists a unique t– = t–(u) > tmax(u) such that

t–u ∈N –
λ,M(�) and

Jλ,M
(
t–u

)
= sup

t≥
Jλ,M(tu) > . (.)

() If
∫

�
f |u|q+ dx > , then there exists a unique  < t+ = t+(u) < tmax(u) < t– such that

t+u ∈N +
λ,M(�), t–u ∈N –

λ,M(�) and

Jλ,M
(
t+u

)
= inf

≤t≤tmax(u)
Jλ,M(tu), Jλ,M

(
t–u

)
= sup

t≥
Jλ,M(tu). (.)

Proof From (.) and (.), we have

ku(t) = atp–q–‖u‖p
X

+ btp–q–‖u‖p

X
– tr–q

∫

�

g|u|r+ dx t ≥ ,

and

k′
u(t) = t–q–

[

a(p – q – )tp–‖u‖p
X

+ b
(
p – q – 

)
tp–‖u‖p

X
– (r – q)tr

∫

�

g|u|r+ dx
]

,
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which implies that ku() = , ku(t) → –∞ as t → ∞, limt→+ k′
u(t) >  and limt→∞ k′

u(t) < .
Thus there exists a unique tmax(u) := tmax >  such that ku(t) is increasing on (, tmax), de-
creasing on (tmax,∞) and k′

u(tmax) = . Moreover, tmax is the root of

a(p – q – )tp–
max‖u‖p

X
+ b

(
p – q – 

)
tp–
max ‖u‖p

X
– (r – q)tr

max

∫

�

g|u|r+ dx = . (.)

From (.), we obtain

tmax ≥
( a(p – q – )‖u‖p

X

(r – q)
∫

�
g|u|r+ dx

) 
r–p+ ≥ 

‖u‖X

(
a(p – q – )

(r – q)‖g‖Lνr Sr+
ν

) 
r–p+

:= t∗. (.)

Hence, we have by (.), (.), and the Hölder and Sobolev inequalities

ku(tmax) = tp–q–
max

[

a‖u‖p
X

+ btp(p–)
max ‖u‖p

X
– tr–p+

max

∫

�

g|u|r+ dx
]

=
a(r – p + )

r – q
tp–q–
max ‖u‖p

X
+

b(r – p + )
r – q

tp–q–
max ‖u‖p

X

≥ a(r – p + )
r – q

tp–q–
∗ ‖u‖p

X
+

b(r – p + )
r – q

tp–q–
∗ ‖u‖p

X

≥ a(r – p + )
r – q

(
a(p – q – )

(r – q)‖g‖Lνr Sr+
ν

) p–q–
r–p+ ‖u‖q+

X

+
b(r – p + )

r – q

(
a(p – q – )

(r – q)‖g‖Lνr Sr+
ν

) p–q–
r–p+ ‖u‖q+

X

= A‖u‖q+
X

. (.)

Case ():
∫

�
f |u|q+ dx ≤ . Then ku(t) = λ

∫

�
f |u|q+ dx has unique solution t– > tmax and

k′
u(t–) < . On the other hand, we have

a(p – q – )
∥
∥t–u

∥
∥p

X
+ b

(
p – q – 

)∥
∥t–u

∥
∥p

X
– (r – q)

∫

�

g
∣
∣t–u

∣
∣r+ dx

=
(
t–)+q

[

a(p – q – )
(
t–)p–q–‖u‖p

X
+ b

(
p – q – 

)(
t–)p–q–‖u‖p

X

– (r – q)
(
t–)r–q–

∫

�

g|u|r+ dx
]

=
(
t–)+qk′

u
(
t–)

< 

and

〈
J ′

λ,M
(
t–u

)
, t–u

〉

= a
(
t–)p‖u‖p

X
+ b

(
t–)p‖u‖p

X
– λ

(
t–)q+

∫

�

f |u|q+ dx –
(
t–)r+

∫

�

g|u|r+ dx

=
(
t–)q+

[

ku
(
t–)

– λ

∫

�

f |u|q+ dx
]

= .
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Hence, t–u ∈N –
λ,M(�) or t– = . For t > tmax, we obtain

a(p – q – )‖tu‖p
X

+ b
(
p – q – 

)‖tu‖p

X
– (r – q)

∫

�

g|tu|r+ dx < ,

d

dt Jλ,M(tu) < ,

d
dt

Jλ,M(tu) = atp–‖u‖p
X

+ btp–‖u‖p

X
– λtq

∫

�

f |u|q+ dx – tr
∫

�

g|u|r+ dx = ,

for t = t–. Thus, Jλ,M(u) = supt≥ Jλ,M(tu). Furthermore, we have

Jλ,M(u) ≥ Jλ,M(tu) ≥ a
p

tp‖u‖p
X

+
b
p tp‖u‖p

X
–


r + 

tr+
∫

�

g|u|r+ dx, t ≥ .

Let

hu(t) =
a
p

tp‖u‖p
X

+
b
p tp‖u‖p

X
–


r + 

tr+
∫

�

g|u|r+ dx, t ≥ .

Similar to the argument in the function ku(t), we see that hu(t) achieves its maximum at

tm ≥ (
a‖u‖p

X∫

� g|u|r+ dx )


r–p+ . Thus, we have

Jλ,M(u) ≥ hu(tm) ≥ ap(r +  – p) + b(r +  – p)
p(r + )

( a‖u‖r+
X∫

�
g|u|r+ dx

) p
r–p+

> .

Case ():
∫

�
f |u|q+ dx > . By (.) and

ku() =  < λ

∫

�

f |u|q+ dx ≤ λ‖f ‖Lμq Sq+
μ ‖u‖q+

X

< λ‖f ‖Lμq Sq+
μ ‖u‖q+

X
= A‖u‖q+

X
≤ ku(tmax), for λ ∈ (,λ).

Then there exist t+ and t– such that  < t+ < tmax < t–,

ku
(
t+)

= λ

∫

�

f |u|q+ dx = ku
(
t–)

.

Moreover, we have k′
u(t+) >  and k′

u(t–) < . Thus, there are two multiples of u lying in
Nλ,M(�), that is, t+u ∈N +

λ,M(�) and t–u ∈N –
λ,M(�), and Jλ,M(t–u) ≥ Jλ,M(tu) ≥ Jλ,M(t+u)

for each t ∈ [t+, t–] and Jλ,M(t+u) ≤ Jλ,M(tu) for each t ∈ [, t+]. Hence, t– =  and

Jλ,M(u) = sup
t≥

Jλ,M(tu), Jλ,M
(
t+u

)
= inf

≤t≤tmax
Jλ,M(tu). �

Lemma . If (H) holds, then we have cλ ≤ c+
λ < .

Proof For u ∈N +
λ,M , we get

(r – q)λ
∫

�

f |u|q+ dx > a(r – p + )‖u‖p
X

+ b
(
r – p + 

)‖u‖p

X
.
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Thus, we have

Jλ,M(u) =
a(r – p + )

p(r + )
‖u‖p

X
+

b(r – p + )
p(r + )

‖u‖p

X
–

λ(r – q)
(q + )(r + )

∫

�

f |u|q+ dx

<
a(r – p + )

r + 

[

p

–


q + 

]

‖u‖p
X

+
b(r – p + )

r + 

[


p –


q + 

]

‖u‖p

X
< ,

which implies that cλ ≤ c+
λ < . �

3 Main results
Using the idea of Ni-Takagi [], we have the following.

Lemma . For each u ∈ Nλ,M(�), there exist ε >  and a differentiable function ξ :
B(; ε) ⊂ X →R

+ such that ξ () = , the function ξ (v)(u – v) ∈Nλ,M(�) and

〈
ξ ′(), v

〉
=

W

a(p – q – )‖u‖p
X

+ b(p – q – )‖u‖p

X
– (r – q)

∫

�
g|u|r+ dx

, (.)

for all v ∈ X, where

W = ap
∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy

+ bp
∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy

– (q + )λ
∫

�

f |u|q–uv dx – (r + )
∫

�

g|u|r–uv dx. (.)

Proof For u ∈Nλ,M(�), we define a function F : R× X →R by

Fu(ξ , w) =
〈
J ′

λ,M
(
ξ (u – w)

)
, ξ (u – w)

〉

= ξpM
(
ξp‖u – w‖p

X

)‖u – w‖p
X

– ξ q+λ

∫

�

f |u – w|q+ dx – ξ r+
∫

�

g|u – w|r+ dx

= aξp‖u – w‖p
X

+ bξp‖u – w‖p

X

– ξ q+λ

∫

�

f |u – w|q+ dx – ξ r+
∫

�

g|u – w|r+ dx.

Then Fu(, ) = 〈J ′
λ,M(u), u〉 =  and

d
dξ

Fu(, ) = ap‖u‖p
X

+ bp‖u‖p

X
– (q + )λ

∫

�

f |u|q+ dx – (r + )
∫

�

g|u|r+ dx

= a(p – q – )‖u‖p
X

+ b
(
p – q – 

)‖u‖p

X
– (r – q)

∫

�

g|u|r+ dx �= .
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From the implicit function theorem, we know that there exist ε >  and a differentiable
function ξ : B(; ε) ⊂ X →R such that ξ () = ,

〈
ξ ′(), v

〉
=

W

a(p – q – )‖u‖p
X

+ b(p – q – )‖u‖p

X
– (r – q)

∫

�
g|u|r+ dx

,

where W is as in (.), and

Fu
(
ξ (v), v

)
=  for all v ∈ B(; ε)

which is equivalent to

〈
J ′

λ,M
(
ξ (v)(u – v)

)
, ξ (v)(u – v)

〉
=  for all v ∈ B(; ε),

which implies that ξ (v)(u – v) ∈Nλ,M(�). �

Similar to the argument in Lemma ., we can obtain the following lemma.

Lemma . For each u ∈ N –
λ,M(�), there exist ε >  and a differentiable function ξ– :

B(; ε) ⊂ X →R
+ such that ξ–() = , the function ξ–(v)(u – v) ∈N –

λ,M(�) and

〈(
ξ–)′(), v

〉
=

W

a(p – q – )‖u‖p
X

+ b(p – q – )‖u‖p

X
– (r – q)

∫

�
g|u|r+ dx

,

for all v ∈ X, where W is as in (.).

Let
(H) p <  + (r–)q

r .
Moreover, we let

p∗ =
(p – )r

r – 
– q

and

λ =
(

a(p – q – )(r – p + )
(r – q)(p – q – )

)(
a(p – q – )

r – q

) (p–q–)
(p–q––p∗)(r–)

×
(


‖f ‖Lμq Sq+

μ

)(


‖g‖Lνr Sr+
ν

) (p–q–)
(r–)(p–q––p∗)

.

Remark . By (H) we know that p∗ < .

Lemma . Assume that (H)-(H) hold. Let � = min{λ,λ,λ}, then for λ ∈ (,�):
(i) There exists a minimizing sequence {un} ⊂Nλ,M(�) such that

Jλ,M(un) = cλ + o(), J ′
λ,M(un) = o() in (X)∗.
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(ii) There exists a minimizing sequence {un} ⊂N –
λ,M(�) such that

Jλ,M(un) = c–
λ + o(), J ′

λ,M(un) = o() in (X)∗.

Proof By the Ekeland variational principle [] and Lemma ., there exists a minimizing
sequence {un} ⊂Nλ,M(�) such that

Jλ,M(un) < cλ +

n

(.)

and

Jλ,M(un) < Jλ,M(w) +

n

‖w – un‖X ∀w ∈Nλ,M(�). (.)

Let n large enough, by Lemma ., we obtain

Jλ,M(un) =
a(r – p + )

p(r + )
‖un‖p

X
+

b(r – p + )
p(r + )

‖un‖p

X
–

λ(r – q)
(q + )(r + )

∫

�

f |un|q+ dx

< cλ +

n

<
cλ


,

which implies that

‖f ‖Lμq Sq+
μ ‖un‖q+

X
≥

∫

�

f |un|q+ dx > –
(q + )(r + )

λ(r – q)
cλ


> . (.)

This implies un �=  and by using (.), (.), and the Hölder inequality, we get

‖un‖X >
[

–
(q + )(r + )

λ(r – q)
cλ


‖f ‖–

Lμq S–(q+)
μ

] 
q+

(.)

and

‖un‖X <
[

λp(r – q)(r + )
a(q + )(r + )(r – p + )

‖f ‖Lμq Sq+
μ

] 
p–q–

. (.)

In the following, we will prove that

∥
∥J ′

λ,M(un)
∥
∥

(X)∗ →  as n → ∞.

By using Lemma . with un we get the functions ξn : B(; εn) → R
+ for some εn > , such

that ξn(w)(un – w) ∈Nλ,M(�). For fixed n ∈N, we choose  < ρ < εn. Let u ∈ X with u �= 
and let wρ = ρu

‖u‖X
. Set ηρ = ξn(wρ)(un – wρ), since ηρ ∈Nλ,M(�), we deduce from (.) that

Jλ,M(ηρ) – Jλ,M(un) ≥ –

n

‖ηρ – un‖X ∀w ∈Nλ,M(�),

and by the mean value theorem, we obtain

〈
J ′

λ,M(un),ηρ – un
〉
+ o

(‖ηρ – un‖X

) ≥ –

n

‖ηρ – un‖X .
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Hence,

〈
J ′

λ,M(un), –wρ

〉
+

(
ξn(wρ) – 

)〈
J ′

λ,M(un), un – wρ

〉

≥ –

n

‖ηρ – un‖X + o
(‖ηρ – un‖X

)
. (.)

By ξn(wρ)(un – wρ) ∈Nλ,M(�) and (.) it follows that

–ρ

〈

J ′
λ,M(un),

u
‖u‖X

〉

+
(
ξn(wρ) – 

)〈
J ′

λ,M(un) – J ′
λ,M(ηρ), un – wρ

〉

≥ –

n

‖ηρ – un‖X + o
(‖ηρ – un‖X

)
.

Thus,

〈

J ′
λ,M(un),

u
‖u‖X

〉

≤ 
nρ

‖ηρ – un‖X +

ρ

o
(‖ηρ – un‖X

)

+
(ξn(wρ) – )

ρ

〈
J ′

λ,M(un) – J ′
λ,M(ηρ), un – wρ

〉
. (.)

Since

‖ηρ – un‖X ≤ ρ
∣
∣ξn(wρ)

∣
∣ +

∣
∣ξn(wρ) – 

∣
∣‖un‖X

and

lim
n→∞

|ξn(wρ) – |
ρ

≤ ∥
∥ξ ′

n()
∥
∥,

taking the limit ρ →  in (.), we obtain

〈

J ′
λ,M(un),

u
‖u‖X

〉

≤ C
n

(
 +

∥
∥ξ ′

n()
∥
∥
)

for some constant C > , independent of ρ . In the following, we will show that ‖ξ ′
n()‖ is

uniformly bounded in n. From (.), (.), and the Hölder inequality, we obtain for some
κ > 

〈
ξ ′

n(), v
〉 ≤ κ‖v‖X

a(p – q – )‖un‖p
X

+ b(p – q – )‖un‖p

X
– (r – q)

∫

�
g|un|r+ dx

.

We only need to prove that

∣
∣
∣
∣a(p – q – )‖un‖p

X
+ b

(
p – q – 

)‖un‖p

X
– (r – q)

∫

�

g|un|r+ dx
∣
∣
∣
∣ > c (.)

for some c >  and n large enough. If (.) is fails, then there exists a subsequence {un}
such that

a(p – q – )‖un‖p
X

+ b
(
p – q – 

)‖un‖p

X
– (r – q)

∫

�

g|un|r+ dx = o(). (.)
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Combining (.) with (.), we may find a suitable constant d >  such that

∫

�

g|un|r+ dx ≥ d for n sufficiently large. (.)

By (.) and un ∈Nλ,M(�), we have

λ

∫

�

f |un|q+ dx

= a‖un‖p
X

+ b‖un‖p

X
–

∫

�

g|un|r+ dx

=


p – q – 
(
a
(
p – q – 

)‖un‖p
X

+ b
(
p – q – 

)‖un‖p

X

)
–

∫

�

g|un|r+ dx

≥ 
p – q – 

(
a(p – q – )‖un‖p

X
+ b

(
p – q – 

)‖un‖p

X

)
–

∫

�

g|un|r+ dx

=
r – q

p – q – 

∫

�

g|un|r+ dx –
∫

�

g|un|r+ dx + o()

=
r – p + 
p – q – 

∫

�

g|un|r+ dx + o(). (.)

Moreover, we have by (.) and (.)

a(p – q – )‖un‖p
X

≤ a(p – q – )‖un‖p
X

+ b
(
p – q – 

)‖un‖p

X

= (r – q)
∫

�

g|un|r+ dx + o()

≤ λ
(p – q – )(r – q)

r – p + 

∫

�

f |un|q+ dx + o()

≤ λ
(p – q – )(r – q)

r – p + 
‖f ‖Lμq Sq+

μ ‖un‖q+
X

+ o(),

which implies that

‖un‖X ≤
(

λ
(p – q – )(r – q)

a(p – q – )(r – p + )
‖f ‖Lμq Sq+

μ

) 
p–q–

+ o(). (.)

Let

Iλ,M(u) = K(p, q, r)
( ‖u‖pr

X∫

�
g|un|r+ dx

) 
r–

– λ

∫

�

f |u|q+ dx,

where

K(p, q, r) =
(

a(p – q – )
r – q

) r
r– r – p + 

p – q – 
.

From (.), it is easy to see that

‖un‖p
X

≤ r – q
a(p – q – )

∫

�

g|un|r+ dx. (.)
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Thus,

Iλ,M(un) ≤
(

a(p – q – )
r – q

) r
r– r – p + 

p – q – 

( ( r–q
a(p–q–) )r(

∫

�
g|un|r+ dx)r

∫

�
g|un|r+ dx

) 
r–

–
r – p + 
p – q – 

∫

�

g|un|r+ dx + o()

= o(). (.)

But, by (.), (.), and λ ∈ �,

Iλ,M(un) ≥ K(p, q, r)
( ‖un‖pr

X

‖g‖Lνr Sr+
ν ‖un‖r+

X

) 
r–

– λ‖f ‖Lμq Sq+
μ ‖un‖q+

X

= ‖un‖q+
X

(
K(p, q, r)‖g‖ 

–r
Lνr S

r+
–r
ν ‖un‖p∗

X
– λ‖f ‖Lμq Sq+

μ

)

≥ ‖un‖q+
X

{

K(p, q, r)‖g‖ 
–r
Lνr S

r+
–r
ν

[

λ
(p – q – )(r – q)

a(p – q – )(r – p + )
‖f ‖Lμq Sq+

μ

] p∗
p–q–

– λ‖f ‖Lμq Sq+
μ

}

,

which contradicts (.), where p∗ = (p–)r
r– – q < .

Hence, we obtain

〈

J ′
λ,M(un),

u
‖u‖X

〉

≤ C
n

.

This completes the proof of (i). Similarly, we can prove (ii) by using Lemma .. �

Theorem . Assume that (H)-(H) hold. For each  < λ < � (� is as in Lemma .),
the functional Jλ,M has a minimizer u+

λ in N +
λ,M(�) satisfying:

() Jλ,M(u+
λ) = c+

λ = cλ;
() u+

λ is a solution of (.).

Proof By Lemma .(i), there exists a minimizing sequence {un} ⊂ Nλ,M(�) for Jλ,M on
Nλ,M(�) such that

Jλ,M(un) = cλ + o(), J ′
λ,M(un) = o() in (X)∗.

From Lemma . and the compact embedding theorem, we see that there exist a subse-
quence {un} and u+

λ ∈ X such that

un ⇀ u+
λ weakly in X

and

un → u+
λ strongly in Lη(�) for  < η < p∗

s . (.)
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In the following we will prove that
∫

�
f |u+

λ|q+ dx �= . In fact, if not, by (.) and the
Hölder inequality we can obtain

∫

�

f |un|q+ dx →
∫

�

f |u+
λ|q+ dx = 

as n → ∞. Hence,

a‖un‖p
X

+ b‖un‖p

X
=

∫

�

g|un|r+ dx + o()

and

Jλ,M(un) = a
(


p

–


r + 

)

‖un‖p
X

+ b
(


p –


r + 

)

‖un‖p

X
+ o(),

which contradicts Jλ,M(un) → cλ <  as n → ∞. Furthermore,

o() =
〈
J ′

λ,M(un),φ
〉

=
〈
J ′

λ,M
(
u+

λ

)
,φ

〉
+ o() for all φ ∈ X.

Thus, u+
λ ∈ Nλ,M(�) is a nonzero solution of (.) and Jλ,M(u+

λ) ≥ cλ. Next, we will prove
that Jλ,M(u+

λ) = cλ. Since

Jλ,M
(
u+

λ

)
=

a
p
∥
∥u+

λ

∥
∥p

X
+

b
p

∥
∥u+

λ

∥
∥p

X
–

λ

q + 

∫

�

f
∣
∣u+

λ

∣
∣q+ dx –


r + 

∫

�

g
∣
∣u+

λ

∣
∣r+ dx

=
(

a
p

–
a

r + 

)
∥
∥u+

λ

∥
∥p

X
+

(
b
p –

b
r + 

)
∥
∥u+

λ

∥
∥p

X

+
(

λ

r + 
–

λ

q + 

)∫

�

f
∣
∣u+

λ

∣
∣q+ dx

≤ lim inf
n→∞

[(
a
p

–
a

r + 

)

‖un‖p
X

+
(

b
p –

b
r + 

)

‖un‖p

X

+
(

λ

r + 
–

λ

q + 

)∫

�

f |un|q+ dx
]

= lim inf
n→∞Jλ,M(un) = cλ.

Hence, Jλ,M(u+
λ) = cλ. Moreover, we have u+

λ ∈ N +
λ,M(�). In fact, if u+

λ ∈ N –
λ,M(�), by

Lemma ., there are unique t+ and t– such that t+u+
λ ∈ N +

λ,M(�) and t–u+
λ ∈ N –

λ,M(�),
we have t+

λ < t–
λ = . Since

d
dt

Jλ,M
(
t+
λ u+

λ

)
=  and

d

dt Jλ,M
(
t+
λu+

λ

)
> ,

there exists t+
λ < t∗ ≤ t–

λ such that Jλ,M(t+
λ u+

λ) < Jλ,M(t∗u+
λ). By Lemma ., we get

Jλ,M
(
t+
λ u+

λ

)
< Jλ,M

(
t∗u+

λ

) ≤ Jλ,M
(
t–
λ u+

λ

)
= Jλ,M

(
u+

λ

)
,

which is a contradiction. Since Jλ,M(u+
λ) = Jλ,M(|u+

λ|) and |u+
λ| ∈ N +

λ,M(�), we see that u+
λ

is a solution of (.) by Lemma .. �
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Similarly, we can obtain the theorem of existence of a local minimum for Jλ,M on
N –

λ,M(�) as follows.

Theorem . Assume that (H)-(H) hold. For each  < λ < � (� is as in Lemma .),
the functional Jλ,M has a minimizer u–

λ in N –
λ,M(�) satisfying:

() Jλ,M(u–
λ) = c–

λ ;
() u–

λ is a solution of (.).

Finally, we give the main result of this paper as follows.

Theorem . Suppose that the conditions (H)-(H) hold. Then there exists � >  such
that for λ ∈ (,�), (.) has at least two solutions.

Proof From Theorems ., ., we see that (.) has two solutions u+
λ and u–

λ such that
u+

λ ∈ N +
λ,M(�), u–

λ ∈ N –
λ,M(�). Since N +

λ,M(�) ∩ N –
λ,M(�) = ∅, we see that u+

λ and u–
λ are

different. �

Remark . Obviously, if p = , then (H) and (H) hold. Moreover, if p = , s = , a = ,
and b = , then Theorem . is in agreement with Theorem . in [].
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