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Abstract
We study the inverse problem for non-stationary system of magnetic hydrodynamics
in which it is required to determine the velocity of the fluid �v(x, t), the magnetic
tension �H(x, t), the pressure gradient ∇p(x, t), but also the external forces �f (x) and the
current rot�j(x). In this case, to the conditions constituting the direct problem are
added additional conditions. The trace speed, the magnetic tension, and the pressure
gradient in the final moment, time t = T , are taken as additional information. The
strong generalized solvability of the inverse problem in the two-dimensional case is
proved.
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1 Introduction
The mathematical description of the processes occurring in moving fluids leads to the
solution of the Navier-Stokes equations. References [–] are devoted to the study of the
questions of solvability and stability of solutions of initial-boundary value problems for
the linearized and general nonlinear Navier-Stokes equations.

Magnetohydrodynamics (MHD) is a theory of macroscopic interaction of electrically
conductive fluid and electromagnetic fields. It has important applications in astronomy
and geophysics, as well as in engineering fields such as controlled thermonuclear fusion,
nuclear reactor cooling liquid metals, electromagnetic casting of metals, MHD generators,
and MHD ion engines.

In the s and s the efforts of mathematicians were directed to the study of a class
of problems of magnetohydrodynamics. Fundamental work in this direction was done by
Ladyzhenskaya and Solonnikov [, ].

In this paper we study the three initial-boundary value problems for non-stationary
magnetohydrodynamic equations. Results on the solvability of these problems are sim-
ilar to the corresponding results on the solvability of the initial-boundary value problems
for non-stationary Navier-Stokes equations. Similar results were obtained by Mosconi
and Solonnikov in [] for stationary MHD equations. A variety of approaches to the
mathematical study of MHD systems are reflected in the work of Ladyzhenskaya and
Solonnikov [], Sahaev and Solonnikov [], Stupyalis [, ], Alekseev and Tereshko
[], Duvant and Lions [], Sermange and Temam [], Giga and Yoshida [], and Dyer
and Edmuns [].
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2 Statement of the problem
We consider the inverse problem of magnetic hydrodynamic in the cylinder QT = � ×
[, T], � ⊂ R. One can take the border of the area � from C, namely ∂� ⊂ C, � =
∂�× [, T]. We need to determine �v(x, t), �H(x, t), ∇p(x, t), �f (x), and rot�j(x) that satisfy the
following equations:

∂�v
∂t

+
∑

k=

vk�vxk –
μ

ρ

∑

k=

Hk �Hxk – ν��v = –

ρ

grad

(
p +

μ �H



)
+ g(x, t)�f (x), ()

∂ �H
∂t

+


σμ
rot rot �H – rot[�v × �H] =

ξ (x, t)
σμ

rot�j(x), ()

div �v = , div(μ �H) = . ()

We have the initial conditions

�v(x, ) = �v(x), �H(x, ) = �H(x), ()

the boundary conditions

�v|� = , Hn|� = ,
∂H

∂x
–

∂H

∂x

∣∣∣∣
�

= j|� = , ()

and the overdetermination conditions

�v(x, T) = �U(x), �H(x, T) = �
(x), ∇p(x, T) = ∇π (x). ()

Here �v(x, t) is the velocity of the fluid, �H(x, t) the magnetic tension, p the pressure,
g(x, t)�f (x) the external hydrodynamic forces, ξ (x, t) rot�j(x) the current, μ the magnetic per-
meability, σ the conductivity, ρ the condensation, ν the kinematic viscosity coefficient of
the fluid, �n the outward pointing normal vector to the surface area S, and Hn = �H · �n.

The first results of the well-posedness of the inverse problem with homogeneous bound-
ary conditions for the Navier-Stokes equations appeared in the works of Prilepko and
Vasin [] and Abylkairov []. Reference [] studied the solvability of the inverse spa-
tial problem with unknown right part where we obtain a local existence theorem for the
solutions. Different inverse problems for the Navier-Stokes equations and hydrodynam-
ics were presented in [–]. In the work of Abylkairov [] the inverse problem for the
Navier-Stokes equations was studied with non-standard boundary conditions. The con-
trollability of the systems of magnetic hydrodynamics has been studied in many papers
(see, for example, [, –]).

We denote by

J(�) the subspace


W 

(�), consisting of solenoidal vectors and by Ĵ(�) the
subspace W 

 (�), consisting of solenoidal vectors, satisfying the following � = ∂�× [, T]
conditions: un|� = , y rot �u|� = . Let V(QT ) be the Banach space of functions with the
norm ‖�u‖V(QT ) = vrai max≤t≤T ‖�u(x, t)‖,� + ‖�ux‖,QT that is obtained as a result of the

closure of set of smooth, solenoidal, and zero vectors near � = ∂� × [, T].

J l,n(�) is a

subset of W l
(�) (l is an integer number), for which the closure in the norm of W l

(�)
of the set of continuously differentiable solenoidal vector-functions with un|� = . G(�)
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consists of gradϕ, where ϕ is a single-valued function in �, a locally square integrable and
differentiable function in L(�).

Lemma  ([]) The following inequalities hold:

‖u‖
,� ≤ ‖u‖

,�‖ux‖,�‖ux‖,� ≤ ‖u‖
,�‖ux‖

,�

for all u(x) ∈ 
W 

(�), � ⊂ R,

‖u‖
,� ≤ ε‖ux‖

,� + ε–‖u‖
,�,

where ε is optional (ε > ),

‖u‖,� ≡
(∫

�

|u| dx
) 


, |ux| ≡

( ∑

k=

u
xk

) 


,

‖ux‖
,� ≡

∫

�

|ux| dx ≡
∫

�

u
x dx.

Theorem  ([]) If ∂� ∈ C, then the operator rot sets a one-to-one correspondence be-

tween the spaces


W 
(�) and


J(�), moreover, the following inequality holds:

‖ rot �V‖ ≤ ‖ �V‖()
,� ≤

(√
 +

√
μ

)
‖ rot �V‖ ()

for all �V ∈ 
W 

(�).
Here the number μ is the smallest eigenvalue of the operator � in the field � at the zero

boundary condition.

Theorem  ([]) If ∂� ∈ C, then the operator rot gives a one-to-one map of

J,n(�) onto

L(�), moreover, the following inequality holds:

‖ rot �ψ‖ ≤ ‖ �ψ‖()
,� ≤ C‖ rot �ψ‖ ()

for all �ψ = (ψ,ψ) ∈ 
J,n(�). Here �ψ does not depend on the constant C.

3 Main results
Definition  The generalized solution of the inverse problem ()-() is a set of function
{�v(x, t),∇p(x, t), �H(x, t), �f (x), rot�j(x)}, satisfying the correspondence ()-() in the case if

�v(x, t) ∈ W ,
 (QT ) ∩ 

J(QT ), �H(x, t) ∈ W ,
 (QT ) ∩ Ĵ(QT ), �f (x) ∈ L(�), rot�j(x) ∈ L(�), and

the function p(x, t) ∈ G(QT ) (∇p ∈ L(QT )) at any t from [, T], and it continuously de-
pends on t in the norm of this space for [, T].

Let us fix the functions g(x, t) and ξ (x, t) and define the nonlinear operators Tg : L(�) →
L(�), Sξ : L(�) → L(�) by the following expression:

(Tg�f )(x) = �vt(x, T), (Sξ�r)(x) = �Ht(x, T). ()
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Here r = rot�j(x), �f = �f (x), but �v(x, t) and �H(x, t) are the solution of the direct problem ()-()
with �F = g(x, t)�f (x), rot�J = ξ (x, t) rot�j(x).

The introduced operators Tg and Sξ were well-posed as regards their definitions, since
the necessary conditions for differentiability of �v, �H , and p are ensured by the theory in the
work of Ladyzhenskaya and Solonnikov (see [] Theorem , p., Theorem , p.).

We suppose that g(x, T) �=  and ξ (x, T) �=  for all x ∈ �; we introduce the nonlinear
operators A : L(�) → L(�) and yB : L(�) → L(�), by the following expressions:

(A�f )(x) =


g(x, T)
(Tg�f )(x), (B�r)(x) =

σμ

ξ (x, T)
(Sξ�r)(x). ()

Thus, if g(x, t)�f (x) ∈ L(QT ), gt(x, t)�f (x) ∈ L,(QT ) and ξ (x, t) rot�j(x) ∈ L(QT ), ξt(x, t) ×
rot�j(x) ∈ L,(QT ), additionally g(x, t), gt(x, t) ∈ C(Q̄T ), ξ (x, t), ξt(x, t) ∈ C(Q̄T ), then, by ()
and () and in terms of these operators, (), () given the inverse problem can be rewritten
as

A�f + �ℵ = �f , B�r + �λ = �r, ()

where

�ℵ =


g(x, T)

[
–ν� �U + Uk �Uxk –

μ

ρ

k �
xk +


ρ

∇
(

π +
μ �




)]
,

�λ =
σμ

ξ (x, T)

[


σμ
rot rot �h – rot( �U × �
)

]
.

Theorem  Assume that � ⊂ R, g, gt ∈ C(Q̄T ), ξ , ξt ∈ C(Q̄T ), |g(x, t)| ≥ gT > , |ξ (x, t)| ≥
ξT >  for x ∈ �, �U(x) ∈ W 

 (�) ∩ 
J(�), �H(x) ∈ Ĵ(�), �
(x) ∈ Ĵ(�), �v(x) ∈ W 

 (�) ∩ 
J(�),

∇π (x) ∈ G(�). Then the operators A and B are completely continuous from L(�) to L(�).

Proof Now we show that the operators Tg and Sξ are completely continuous. Assume that
�f (x) and �r(x) are arbitrary elements of L(�). We take arbitrary sequences {�f N } and {�rN }
of L(�), such that

∥∥�f N – �f ∥∥ → ,
∥∥�rN – �r∥∥ → , as N → ∞. ()

Let us show () implies that

∥∥Tg�f N – Tg�f
∥∥ → ,

∥∥Sξ�rN – Sξ�r
∥∥ → , as N → ∞. ()

We consider in QT the following problem:

�Wt – ν� �W + vN
k

�Wxk –
μ

ρ
HN

k
�hxk = –


ρ

∇
(

p +
μ( �HN – �H)



)
+ �F , ()

�ht +


σμ
rot rot �h – HN

k
�Wxk + vN

k
�hxk = �G, ()

div �W = , div �h = , ()
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hn|� = , rotτ �h|� = , �W |� = , ()

�W |t= = , �h|t= = . ()

Here we introduce the notations �W = �vN – �v, �h = �HN – �H , �F = (�f N – �f )g – Wk�vxk + μ

ρ
hk �Hxk ,

�G = ξ (x,t)
σμ

(�rN –�r) + hk�vxk – Wk �Hxk . Here the functions �vN , �HN , and ∇pN are the generalized
solution of the direct problem ()-(), corresponding to the external forces �f N (x)g(x, t)
and the currents ξ (x, t)�rN (x). We denote the solution of this problem, corresponding to
the external forces �f (x)g(x, t) and the currents ξ (x, t)�r(x), by �v, �H , and ∇p.

We can consider the problem ()-() with respect to the functions �W and �h as linear,
since (�v, �H) and (�vN , �HN ) have the following [, –] differential conditions: (�vtx, �Htx) ∈
L(QT ) × L(QT ) and (�vN

tx, �HN
tx ) ∈ L(QT ) × L(QT ); then (�v, �H) and (�vN , �HN ) are elements

Lq(�) × Lq(�), for all t ∈ [, T] with any finite q, and they continuously depend on t in the
norm Lq(�) × Lq(�). The following inequality holds:

‖ �Wt‖
,QT

+ ‖�ht‖
,QT

+ ν‖ �Wx‖
,� +


σμ

‖�hx‖
,�

+ ν‖P� �W‖
,QT

+


σμ
‖ rot rot �h‖

,QT
≤ c

(‖�F‖
,QT

+ ‖�G‖
,QT

)
()

for the solution of the problem [, , ].
Let us estimate ‖�F‖

,QT
and ‖�G‖

,QT
. By applying Theorems  and , and Lemma , we

obtain

‖�F‖
,QT

≤ 
[∥∥(�f N – �f )g

∥∥
,QT

+ ‖Wk�vxk ‖
,QT

+
μ

ρ
‖hk �Hxk ‖

,Qt

]
,

‖Wk�vxk ‖
,QT

=
∥∥(�vN – �v)k · �vxk

∥∥
,QT

=
∫ T



∫

�

(�vN – �v)
k · �v

xk
dx dt

≤
∫ T



∥∥�vN – �v∥∥
,� · ‖�vx‖

,� dt

≤ c(�)
∫ T



∥∥(�vN – �v)x

∥∥
,� · ‖�vxx‖

,� dt

≤ c(�) sup
[,T]

(‖�v‖()
,�

) · ∥∥(�vN – �v)x

∥∥
,QT

,

‖hk �Hxk ‖
,QT

=
∥∥( �HN – �H)

k · �Hxk

∥∥
,QT

≤ c(�) sup
[,T]

(‖ �H‖()
,�

)∥∥( �HN – �H)
x

∥∥
,QT

.

For the difference of two generalized solutions of problems [] the following inequality
holds:

χ (t) ≤
∫ t



(√
ρ
∥∥(�f N – �f )g(x, τ )

∥∥ +
√
σ

∥∥(�rN – �r)ξ (x, τ )
∥∥
)

exp

{
c

∫ t

τ

�′′(s) ds
}

dτ

=
∫ t



[√
ρ

(∫

�

(�f N – �f )|g| dx
) 



+
√
σ

(∫

�

(�rN – �r)|ξ | dx
) 


]

dτ exp

{
c

∫ t

τ

�′′(s) ds
}

dτ
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≤ exp

{
c

∫ T


�′′(t) dt

}∫ t



[√
ρ
∥∥�f N – �f ∥∥ sup

�

∣∣g(x, τ )
∣∣

+
√
σ

∥∥�rN – �r∥∥ sup
�

∣∣ξ (x, τ )
∣∣
]

dτ

≤ exp

{
c

∫ T


�′′(t) dt

}(√
ρ
∥∥�f N – �f ∥∥

∫ T


sup
�

∣∣g(x, τ )
∣∣dτ

+
√
σ

∥∥�rN – �r∥∥
∫ T


sup
�

∣∣ξ (x, τ )
∣∣dτ

)
, ()

∫ t


�(s) ds ≤ c

∫ t


χ(s)�′′(s) ds

+
∫ t


χ (s)

(√
ρ‖�f ‖ +

√
σ

‖ rot�j‖
)

ds, ()

where

χ(t) = ρ‖ �W‖ + μ‖�h‖, �(t) = ρν‖ �Wx‖ +

σ

‖ rot �h‖,

�′′(t) = ρν‖�vx‖ +

σ

‖ rot �H‖,

�f =
(�f N (x) – �f (x)

)
g(x, t), rot�j =

(�rN (x) – �r(x)
)
ξ (x, t), χ () = .

By squaring and integrating both sides of inequality () on t from  to T , we have

∫ T


χ(t) dt = ρ‖ �W‖

,QT
+ μ‖�h‖

,QT

≤ T exp

{
c

∫ T


�′′(t) dt

}(
ρ
∥∥�f N – �f ∥∥

(∫ T


sup
�

∣∣g(x, t)
∣∣dt

)

+

σ

∥∥�rN – �r∥∥
(∫ T


sup
�

∣∣ξ (x, t)
∣∣dt

))
, ()

then
∫ T


�(t) dt = ρν

∥∥(�vN – �v)x

∥∥
,QT

+

σ

∥∥rot �HN – rot �H∥∥
,QT

≤ c

∫ T


χ(t)�′′(t) dt

+
∫ T


χ (t)

(√
ρ
∥∥(�f N – �f )g(x, t)

∥∥ +
√
σ

∥∥(�rN – �r)ξ (x, t)
∥∥
)

dt

≤ Tc exp

{
c

∫ T


�′′(t) dt

}∫ T



(
ρ
∥∥�f N – �f ∥∥

(∫ t


sup
�

∣∣g(x, τ )
∣∣dτ

)

+

σ

∥∥�rN – �r∥∥
(∫ t


sup
�

∣∣ξ (x, τ )
∣∣dτ

))
�′′(t) dt

+ 
√

T exp

{
c

∫ T


�′′(t) dt

}(
ρ
∥∥�f N – �f ∥∥

(∫ T


sup
�

∣∣g(x, t)
∣∣dt

)

+

σ

∥∥�rN – �r∥∥
(∫ T


sup
�

∣∣ξ (x, t)
∣∣dt

)) 
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×
(∫ T



(
ρ
∥∥�f N – �f ∥∥

(
sup
�

∣∣g(x, t)
∣∣
)

+

σ

∥∥�rN – �r∥∥
(

sup
�

∣∣ξ (x, t)
∣∣
)

)
dt

) 


. ()

Furthermore, (), (), (), and () imply that
∥∥(�vN – �v)t

∥∥
,QT

+
∥∥( �HN – �H)

t

∥∥
,QT

→ , as N → ∞. ()

Let us consider in QT the problem

�Wt – ν� �W = –

ρ

∇P + �F, div �W = , ()

�W |t= = �v(x), �W |� = , ()

�ht +


σμ
rot rot �h = �G, div �h = , ()

hn|S = , rot �h|� = , �h|t= = �h(x), ()

where

�W =
(�vN – �v)t , �h =

( �HN – �H)
t ,

�F =
∂

∂t

[(�f N – �f )g – vN
k �vN

xk
+ vk�vxk +

μ

ρ

(
HN

k
�HN

xk
– Hk �Hxk

)]
,

�G =
∂

∂t

[
ξ (x, t)
σμ

(�rN – �r) +
(
rot

[�vN × �HN]
– rot[�v × �H]

)]
,

�v(x) = P
(�f N – �f )g(x, ), �h(x) = P

[�rN – �r]ξ (x, )
σμ

.

The problem ()-(), as well as the problem ()-() with the conditions in the space
V(QT ) is uniquely solvable [, , ]. We now take the dot product of the first equation
of () with the function �W (x, t) and of () with �h(x, t), respectively, in L(QT ), then we
obtain



∥∥ �W (x, T)

∥∥
,� + ν

∫ T



∥∥ �Wx(x, t)
∥∥

,� dt

=
∫

QT

�F �W dx dt +


∥∥ �W (x, )

∥∥
,�, ()



∥∥�h(x, T)

∥∥
,� + ν

∫ T



∥∥rot �h(x, t)
∥∥

,� dt

=
∫

QT

�G �W dx dt +


∥∥�h(x, )

∥∥
,�. ()

Using the method of [] we prove that (�vN – �v)t and ( �HN – �H)t are the solutions of the
problems ()-() and ()-() from V(QT ). Estimating the right-hand sides of ()
and (), and by () and (), we have

∥∥(�vN – �v)t(x, T)
∥∥

,QT
+

∥∥( �HN – �H)
t(x, T)

∥∥
,QT

→ , as N → ∞. ()

Thus we have proved that the operators Tg and Sξ are continuous.
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Now we show the complete continuity of the operators Tg and Sξ . Let us consider the
following problem:

�Wt – ν� �W = –

ρ

∇P + �F, div �W = , ()

�ht +


σμ
rot rot �h = �G, div �h = , ()

hn|� = Hn|� = , rot �h|� = , �W |� = ,

�W |t= = �v(x), �h|t= = �h(x).
()

Here

�W = �vt , �h = �Ht , �F =
∂

∂t

[
�f (x)g(x, t) – vk�vxk +

μ

ρ
Hk �Hxk

]
,

�G =
∂

∂t

[
ξ (x, t)
σμ

�r(x) + rot[�v × �H]
]

,

�v(x) = P
(

ν��v + �f (x)g(x, ) – vk�vxk +
μ

ρ
Hk �Hxk

)
,

�h(x) = P
[


σμ

rot rot �H +
ξ (x, )
σμ

�r(x) + rot[�v × �H]
]

.

By the differential conditions of the problem ()-() we fix an arbitrary number ε.
Since the functions ‖ �Wx(x, t)‖,� and ‖ rot �h(x, t)‖,� are continuous on [ε, T], we could
choose t∗ ∈ [ε, T] such that the following equalities hold:

∫ T

ε

∥∥ �Wx(x, t)
∥∥

,� dt = (T – ε)
∥∥ �Wx(x, t∗)

∥∥
,�,

∫ T

ε

∥∥rot �h(x, t)
∥∥

,� dt = (T – ε)
∥∥rot �h(x, t∗)

∥∥
,�.

()

Equations () and () imply that

∫ T

t∗

∫

�

| �Wt – νP� �W | dx dt =
∫ T

t∗

∫

�

|P�F| dx dt,

∫ T

t∗

∫

�

∣∣∣∣�ht +


σμ
P rot rot �h

∣∣∣∣


dx dt =
∫ T

t∗

∫

�

|P �G| dx dt.

()

Integrating by parts (), we obtain

ν
∥∥ �Wx(x, T)

∥∥
,� +

∫ T

t∗

∫

�

(| �Wt| + |νP� �W |)dx dt

=
∫ T

t∗

∫

�

|P�F| dx dt + ν
∥∥ �Wx(x, t∗)

∥∥
,�,


σμ

∥∥rot �h(x, T)
∥∥

,� +
∫ T

t∗

∫

�

(
|�ht| +

∣∣∣∣


σμ
P rot rot �h

∣∣∣∣
)

dx dt

=
∫ T

t∗

∫

�

|P �G| dx dt +


σμ

∥∥rot �h(x, t∗)
∥∥

,�.

()
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By equality () and equality (), we obtain

ν
∥∥ �Wx(x, T)

∥∥
,� ≤

∫ T

t∗

∫

�

|P�F| dx dt +
ν

T – ε

∥∥ �Wx(x, t)
∥∥

,QT
,


σμ

∥∥rot �h(x, T)
∥∥

,� ≤
∫ T

t∗

∫

�

|P �G| dx dt +


σμ(T – ε)
∥∥rot �h(x, t)

∥∥
,QT

.
()

By the well-known theory in [, ], the following inequalities hold:

ν‖ �Wx‖
,QT

≤ ∥∥�v(x)
∥∥

,� +



(∫ T



∥∥�F(x, t)
∥∥

,� dt
)

,


σμ

‖ rot �h‖
,QT

≤ ∥∥�h(x)
∥∥

,� +



(∫ T



∥∥ �G(x, t)
∥∥

,� dt
)

()

for the solutions of problem ()-().
Since � ⊂ R, g, gt ∈ C(Q̄T ), ξ , ξt ∈ C(Q̄T ), and �f (x), rot�j(x) ∈ L(�), the following in-

equalities hold:

∥∥∥∥�f (x)g(x, t) – vk�vxk +
μ

ρ
Hk �Hxk

∥∥∥∥
,�

≤ ∥∥�f (x)g(x, t)
∥∥

,� + c(�) sup
[,T]

∥∥�v(x, t)
∥∥()

,� · ∥∥�vx(x, t)
∥∥

,�

+ c(�) sup
[,T]

∥∥ �H(x, t)
∥∥()

,� · ∥∥rot �H(x, t)
∥∥

,�,

∥∥∥∥
ξ (x, t)
σμ

�r(x) + rot[�v × �H]
∥∥∥∥

,�

≤
∥∥∥∥
ξ (x, t)
σμ

�r(x)
∥∥∥∥

,�
+ c(�) sup

[,T]

(∥∥�v(x, t)
∥∥()

,�

) · ∥∥rot �H(x, t)
∥∥

,�

+ c(�) sup
[,T]

(∥∥ �H(x, t)
∥∥()

,�

) · ∥∥�vx(x, t)
∥∥

,�,

()

∥∥�F(x, t)
∥∥

,� ≤ ∥∥�f (x)gt(x, t)
∥∥

,� + c(�) sup
[,T]

∥∥�v(x, t)
∥∥()

,� · ∥∥�vtx(x, t)
∥∥

,�

+ c(�) sup
[,T]

∥∥ �H(x, t)
∥∥()

,� · ∥∥rot �Ht(x, t)
∥∥

,�,

∥∥ �G(x, t)
∥∥

,� ≤
∥∥∥∥
ξt(x, t)
σμ

�r(x)
∥∥∥∥

,�
+ c(�) sup

[,T]

(∥∥�v(x, t)
∥∥()

,�

) · ∥∥rot �Ht(x, t)
∥∥

,�

+ c(�) sup
[,T]

(∥∥ �H(x, t)
∥∥()

,�

) · ∥∥�vtx(x, t)
∥∥

,�.

()

By inequalities () and (), we obtain

ν
∥∥ �Wx(x, T)

∥∥
,� ≤

(
 +




T
)

‖�F‖
,QT

+


T – ε

[

∥∥∥∥ν��v – vk�vxk +

μ

ρ
Hk �Hxk

∥∥∥∥


,�

+ 
∥∥�f (x)g(x, )

∥∥
,� + 

(
c(�) sup

[,T]
‖�v‖()

,�

)‖�vx‖
,�
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+ 
(

c(�) sup
[,T]

‖ �H‖()
,�

)‖ rot �H‖
,�

]
,


σμ

∥∥rot �h(x, T)
∥∥

,� ≤
(

 +



T
)

‖�G‖
,QT

()

+


T – ε

[

∥∥∥∥


σμ

rot rot �H + rot[�v × �H]
∥∥∥∥



,�

+ 
∥∥∥∥
ξ (x, )
σμ

�r
∥∥∥∥



,�
+ 

(
c(�) sup

[,T]
‖ �H‖()

,�

)‖�vx‖
,�

+ 
(

c(�) sup
[,T]

‖�v‖()
,�

)‖ rot �H‖
,�

]
.

Moreover, the equality () implies that

∥∥�F(x, t)
∥∥

,QT
≤ 

∥∥�f (x)gt(x, t)
∥∥

,QT

+ 
(

c(�) sup
[,T]

‖�v‖
,�

) · ∥∥�vtx(x, t)
∥∥

,QT

+ 
(

c(�) sup
[,T]

∥∥ �H(x, t)
∥∥()

,�

) · ∥∥rot �Ht(x, t)
∥∥

,QT
,

∥∥ �G(x, t)
∥∥

,QT
≤

∥∥∥∥
ξt(x, t)
σμ

�r(x)
∥∥∥∥



,QT

+ 
(

c(�) sup
[,T]

(∥∥�v(x, t)
∥∥()

,�

)
) · ∥∥rot �Ht(x, t)

∥∥
,QT

+ 
(

c(�) sup
[,T]

(∥∥ �H(x, t)
∥∥()

,�

)
)

· ∥∥�vtx(x, t)
∥∥

,QT
.

()

Here ‖�F‖
,QT

and ‖�G‖
,QT

are bounded, since one can estimate �vt(x, t), �vtx(x, t), �Ht(x, t)
and rot �Ht in L(QT ) via the data of the problem and ‖�f ‖,�, ‖�r‖,�. By combining () and
(), we have

∥∥�vtx(x, T)
∥∥

,� +
∥∥rot �Ht(x, T)

∥∥
,� ≤ M. ()

Thus, the operators Tg and Sξ map any bounded set D from L(�), which is the domain
of definition of Tg and Sξ into a bounded set D̃ from W 

 (�). Then the set D̃ is compact in
L(�) by the Rellich theorem. Thus the operators Tg and Sξ are continuous and map every
bounded set into a compact set. Consequently, the operators Tg and Sξ are completely
continuous. The operators A and B are also completely continuous as a composition of
linear bounded and completely continuous operators. �

Theorem  If g, gt ∈ C(Q̄T ), ξ , ξt ∈ C(Q̄T ), |g(x, t)| ≥ gT > , |ξ (x, t)| ≥ ξT >  as x ∈ �,
�U(x) ∈ W 

 (�) ∩ 
J(�), �H(x) ∈ Ĵ(�), �
(x) ∈ Ĵ(�), �v(x) ∈ W 

 (�) ∩ 
J(�), ∇π (x) ∈ G(�).

Let the inequalities


σ

> μc
(‖ �U‖,� + ‖ �
‖,�

)
, ν > c

(
‖ �U‖,� +

μ

ρ
‖ �
‖,�

)
()

hold. Then the problem ()-() is solvable if and only if () is solvable in L(�).
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Proof We suppose that the operator equations () are solvable. We introduce the nota-
tion �f(x) and �r = rot�j(x). Then by [–], we can find �v, ∇p, and �H in the necessary
classes of functions, satisfying ()-() with vectors �f(x)g(x, t) and ξ (x, t) rot�j(x). We show
that these functions satisfy the overdetermination condition (), also. Let �v(x, T) = �U(x),
�H(x, T) = �
(x), ∇p(x, T) = ∇π (x), then for the function �w = �U – �U, �z = �
 – �
, we have
the following problem:

–ν��w + wk �Uxk + Uk �wxk –
μ

ρ
zk �
xk –

μ

ρ

k�zxk = –∇q, ()


σμ

rot rot�z + wk �
xk + Uk�zxk – zk �Uxk – 
k �wxk = , ()

div �w = , divμ�z = , ()

�w|� = , zn|� = ,
∂z

∂x
–

∂z

∂x

∣∣∣∣
�

= . ()

Now we take the dot product of () with the function �w and of () with �z, respectively,
in L(�),

νρ‖�wx‖ + ρ

∫

�

wk �Uxk �w dx + ρ

∫

�

wxk Uk �w dx

– μ

∫

�

zk �
xk �w dx – μ

∫

�


k�zxk �w dx = ,


σ

‖ rot�z‖ – μ

∫

�

wk �
xk �z dx + μ

∫

�

Uk�zxk �z dx

– μ

∫

�

zk �Uxk �z dx – μ

∫

�

�wxk 
k�z dx = .

We transform the previous equalities into the following form:

νρ‖�wx‖ – ρ

∫

�

wk �U �wxk dx + μ

∫

�

zk �
 �wxk dx – μ

∫

�


k�zxk �w dx = , ()


σ

‖ rot�z‖ – μ

∫

�

wk �
�zxk dx + μ

∫

�

�Uzk�zxk dx + μ

∫

�

�w
k�zxk dx = . ()

Now we add () and (),

νρ‖�wx‖ +

σ

‖ rot�z‖

= ρ

∫

�

wk �U �wxk dx – μ

∫

�

zk �
 �wxk dx

+ μ

∫

�

wk �
�zxk dx – μ

∫

�

�Uzk�zxk dx,

the right-hand side of previous equality implies that

νρ‖�wx‖ +

σ

‖ rot�z‖

≤ ρc‖ �U‖,�‖�wx‖
,� + μ‖�w‖,�‖ �
‖,�‖�zx‖,�
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+ μ‖�z‖,�‖ �
‖,�‖�wx‖,� + μc‖ �U‖,�‖�zx‖
,�

≤ ρc‖ �U‖,�‖�wx‖
,� + μc‖ �U‖,�‖�zx‖

,�

+ μc‖�wx‖,�‖ �
‖,�‖�zx‖,� + μc‖�zx‖,�‖ �
‖,�‖�wx‖,�

≤ ρc‖ �U‖,�‖�wx‖
,� + μc‖ �U‖,�‖�zx‖

,�

+ μc‖ �
‖,�
(‖�wx‖

,� + ‖�zx‖
,�

)
.

Hence

(
νρ – c

(
ρ‖ �U‖,� + μ‖ �
‖,�

))‖�wx‖

+
(


σ

– μc
(‖ �U‖,� + ‖ �
‖,�

))‖ rot�z‖ ≤ . ()

By conditions (), from inequality () we obtain �U = �U, �
 = �
, then ∇π (x) = ∇π(x).
Thus, �v, ∇p, �H, �f(x), and �r = rot�j(x) satisfy all conditions ()-(). Consequently, the
problem ()-() is solvable.

Necessity. Assume that the problem ()-() is solvable. Let us denote this solution by
{�v,∇p, �H , rot�j}. Hence, we obtain the operator equations (). Furthermore, we see that
�f (x) and �r = rot�j(x) are solutions of this equation. �

Theorem  Let the condition of Theorem  hold. Let the following inequality hold:

M + ‖�ℵ‖,� + ‖�λ‖,� < , ()

where

‖�‖
,QT

= ν‖�vx‖
,QT

+

σ

‖ rot �H‖
,QT

, β =
 – ε

d , ε ∈ (, ],

�ℵ =


g(x, T)

[
–ν� �U + Uk �Uxk –

μ

ρ

k �
xk +


ρ

∇
(

π +
μ �




)]
,

�λ =
σμ

ξ (x, T)

[


σμ
rot rot �h – rot( �U × �
)

]
,

M = exp

{
c

d
‖�‖

,QT

}(


inf� |g(x, T)| +


inf� |ξ (x, T)|
)

×
[(∥∥∥∥ν��v – vk�vxk +

μ

ρ
Hk �Hxk

∥∥∥∥
,�

+ sup
�

(∣∣g(x, )
∣∣ +


σμ

∣∣ξ (x, )
∣∣
)

+
∥∥∥∥


σμ

rot rot �H + rot[�v × �H]
∥∥∥∥

)
exp{–βT}

+
∫ T


exp

{
–β(T – t)

}
sup
�

(∣∣gt(x, t)
∣∣ +

√
σ

∣∣ξt(x, t)
∣∣
)

dt
]

.

Then there exists a solution of the inverse problem ()-().
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Proof It is known that for the direct problem ()-(), one can obtain the following inequal-
ity:

χ(t) +
∫ t


�(τ ) dτ

≤ ρ‖�v‖
,� + μ‖ �H‖

,�

+



{
ρ

(∫ T


sup
�

∣∣g(x, t)
∣∣dt

)

+


σ μ

(∫ T


sup
�

∣∣ξ (x, t)
∣∣dt

)}
. ()

We return to the problem ()-(). We rewrite (), (). By differentiating () and ()
with respect to t, we have

�vtt + (vkt�vxk + vk�vxk t) –
μ

ρ
(Hkt �Hxk + Hk �Hxk t) – ν��vt

= –

ρ

grad

(
p +

μ �H



)

t
+ �f gt , ()

�Htt +


σμ
rot rot �Ht –

(
rot[�v × �H]

)
t =


σμ

ξt rot�j, ()

(
rot[�v × �H]

)
t = Hkt�vxk + Hk�vxkt – vkt �Hxk – vk �Hxkt .

Taking the dot product of () and () with ρ�vt and μ �Ht in L(�), respectively, we
obtain

ρ


d
dt

‖�vt‖ + ν‖�vtx‖ + ρ

∫

�

vkt�vxk �vt dx

– μ

∫

�

(Hkt �Hxk + Hk �Hxk t)�vt dx = ρ

∫

�

�f gt · �vt dx, ()

μ


d
dt

‖ �Ht‖ +

σ

‖ rot �Ht‖ – μ

∫

�

�Ht · (rot[�v × �H]
)

t dx =

σ

∫

�

�Ht · ξt rot�j dx. ()

Here
∫

�

�Ht · (rot[�v × �H]
)

t dx

=
∫

�

�Ht(Hkt�vxk + Hk�vxk t – vkt �Hxk – vk �Hxk t) dx

=
∫

�

(Hkt�vxk
�Ht – Hk�vt �Hxk t – �Hxk vkt �Ht) dx.

By combining () and (), we obtain




d
dt

ω(t) + F(t) = I(t) + ρ

∫

�

�f gt · �vt dx +

σ

∫

�

�Ht · ξt rot�j dx. ()

Here we introduced the following notation:

χ(t) = ρ‖�v‖ + μ‖ �H‖, �(t) = ρν‖�vx‖ +

σ

‖ rot �H‖,

ω(t) = ρ‖�vt‖ + μ‖ �Ht‖, F(t) = ρν‖�vtx‖ +

σ

‖ rot �Ht‖,
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z(t) =
√

ρ‖�f gt‖ +
√
σ

‖ξt rot�j‖,

I(t) =
∫

�

[�vxk (μHkt �Ht – ρvkt�vt) + μ �Hxk (Hkt�vt – vkt �Ht)
]

dx.

By applying the Young inequality to the right-hand side of (), we obtain

∣∣I(t)
∣∣ ≤

(∫

�

(μHkt �Ht + ρvkt�vt)
) 

 ‖�vx‖ + μ

∫

�

 �Hxk
�Ht�vt dx

≤ c

(∫

�

(( �H
t
) +

(�v
t
))dx

) 
 ‖�vx‖ + μ

(∫

�

�H
t · �v

t dx
) 

 ‖ �Hx‖

≤ c�(t)ω(t)F(t),
∣∣∣∣ρ

∫

�

�f gt · �vt dx +

σ

∫

�

�Ht · ξt rot�j dx
∣∣∣∣

≤ ρ‖�f gt‖‖�vt‖ +

σ

‖ξt rot�j‖‖ �Ht‖

≤ ω(t)
(√

ρ‖�f gt‖ +
√
σ

‖ξt rot�j‖
)

.

Then we have




dω(t)
dt

+ F(t) ≤ c�(t)ω(t)F(t) + ω(t)z(t)

≤ δ


F(t) +

c

δ
�(t)ω(t) + ω(t)z(t),

dω(t)
dt

+
 – δ

d ω(t) ≤ c

δ
�(t)ω(t) + z(t).

Multiplying the last inequality by exp{–β(T – t)}, β = –δ

d , we obtain

e–β(T–t) dω(t)
dt

+ βω(t)e–β(T–t) ≤ c

δ
�(t)ω(t)e–β(T–t) + z(t)e–β(T–t),

here y(t) = ω(t)e–β(T–t), α(t) = c

δ
�(t), α(t) = z(t)e–β(T–t). Then the last inequality can be

rewritten as

dy(t)
dt

≤ α(t)y(t) + α(t). ()

By the Gronwall lemma, we have

exp

{
–

∫ t


α(τ ) dτ

}
dy(t)

dt

≤ α(t)y(t) exp

{
–

∫ t


α(τ ) dτ

}
+ α(t) exp

{
–

∫ t


α(τ ) dτ

}
,

d
dt

[
y(t)e–

∫ t
 α(τ ) dτ

] ≤ α(t)e–
∫ t

 α(τ ) dτ .
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Integrating this inequality with respect to t from  to T , we obtain

y(T)e–
∫ T

 α(τ ) dτ ≤ y() +
∫ T


α(t)e–

∫ t
 α(τ ) dτ dt,

ω(T) ≤ exp

{
c

δ

∫ T


�(t) dt

}[
ω()e–βT +

∫ T


z(t)e–β(T–t) dt

]
.

Returning to the original notation, we obtain the following inequality:

ρ
∥∥�vt(x, T)

∥∥ + μ
∥∥ �Ht(x, T)

∥∥

≤ exp

{
c

δ

∫ T


�(t) dt

}[(
ρ
∥∥�vt(x, )

∥∥ + μ
∥∥ �Ht(x, )

∥∥)e– –δ

d T

+
∫ T



(√
ρ
∥∥gt(x, t)�f (x)

∥∥ +
√
σ

∥∥ξt(x, t) rot�j(x)
∥∥
)

e– –δ

d (T–t) dt
]

,

where �vt(x, ) = ν��v + �f (x)g(x, ) – vk�vxk + μ

ρ
Hk �Hxk ,

�Ht(x, ) =


σμ
rot rot �H +

ξ (x, )
σμ

rot�j(x) + rot[�v × �H].

We consider the bounded, convex, closed set

D =
{�f ∈ L(�), rot�j ∈ L(�),‖�f ‖ ≤ ,‖�r‖ ≤ 

}
.

Since (A�f )(x) = 
g(x,T) (Tg�f )(x), (B�r)(x) = σμ

ξ (x,T) (Sξ�r)(x), the following inequality holds:

‖A�f ‖ + ‖B�r‖ ≤ M
 ()

for the operators A and B in D.
We define in D the nonlinear operators A and B in the following form:

A�f = A�f + �ℵ, B�r = B�r + �λ. ()

By the condition () the operators A and B map D onto itself. By virtue of this and by
Theorem , the operators A and B are completely continuous, and the combined Schauder
principle implies the solvability of the operator equation

A�f = �f , B�r = �r

in D. Thus, by Theorem  the inverse problem is solvable ()-(). The proof is complete.
�

4 Conclusion
The inverse problem with final overdetermination for a non-stationary magnetic hydro-
dynamics system has been reduced to an operator equation. By skillfully using the method
proposed in [] and [], the compactness of the operator is proved and Schauder’s theo-
rem for the operator equation is used. The important thing is the previously unexamined
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inverse problem with final overdetermination for a non-stationary flat system of magnetic
hydrodynamics. The results were formulated in the form of theorems and were proved
rigorously. The search for new methods for facilitating the solution of the problem of the
existence of a global solution of inverse problems for the Navier-Stokes equations, free
convection, magnetohydrodynamics, and other nonlinear evolution equations is relevant.
Therefore the proposed method by [] and [] is definitely applicable, also to the inves-
tigation of many other inverse problems.
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