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Abstract

This article outlines flexible strategies to model survival curves for censored data and
find parametric confidence intervals using generalised lambda distributions. Owing
to the rich shapes of generalised lambda distributions, these distributions are well
suited to the problem of estimating survival curves. This article presents three useful
techniques in estimating survival curves: matching partial probability weighted moments
(PWM), maximum likelihood estimation (MLE) and simulation-refitting (SR) methods. The
performance of these techniques are examined using right skewed, left skewed,
symmetric bell curved and extreme value simulated data with varying degrees of
censoring and sample sizes. Applications of the proposed methods in the context
of multi-stage disease modelling and competing risks are also provided. Under
controlled simulated experiments, PWM and MLE estimation tend to exhibit more
precise estimates for survival curves than the SR method, however, the SR method
tends to perform better in practice. The methods proposed in this article are very
general and can be used to fit a wide range of empirical survival curves. Compared
to the standard Kaplan Meier survival curve, the methods in this article have the
added benefits of producing smoother survival curves and more consistent statistical
estimates where all the statistical information of the survival curve can be obtained
directly under one parametric model.

Introduction
The parametric modelling of the survival curve has always been a tricky task; it in-

volves identifying a suitable probability density function and its parameters for incom-

plete data. The problem of finding a statistical distribution for survival curves can be

broken down into two parts: 1) the problem of identifying a suitable distribution and

2) the problem of estimation based on the assumed distribution. This article proposes

that the problem of distribution identification can be solved by using generalized

lambda distributions (GLDs). The second problem of finding suitable GLD estimates

in the case of censored data can be solved using the following methods: direct max-

imum likelihood estimation, matching partial probability weighted moments and the

simulating-refitting method. All of these methods are discussed below in "Estimation

Algorithms for Survival Data" section.

Traditionally, the identification of a suitable probability density function is often dif-

ficult or time consuming, since many statistical distributions have a limited range of

shapes. Even if a probability density can be found, parameter estimation is an additional

hurdle. The usual method of using maximum likelihood estimation incorporating
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censoring may not always work. A common problem of this approach is that the numer-

ical method used in the optimisation process may fail to give a reasonable solution due to

the complexity of likelihood function. This is particularly relevant to multi-stage disease

situations or where a mixture of statistical distributions is needed to estimate the overall

survival curve.

To date, several solutions have been proposed for this problem. Owing to the signifi-

cance of Normal distribution in statistics, several authors have proposed the use of

Normal mixtures (Komárek 2009, McLachlan and Peel 2000, Böhning and Seidel 2003)

to model a range of empirical data. While Normal mixture models are available, be-

cause of the limitation of the shape of Normal distribution (it must be symmetric and

unimodal), it can require a relatively complicated model for relatively simple data. For

example, Fig. 1 shows a unimodal, skewed distribution being modelled by a number of

distributions, including mixture of six Normal distributions- the optimal model using

BIC for EM initialized by hierarchical clustering (Fraley and Raftery 2002, 2007). The

true distribution is FMKL (Freimer et al. 1988) GLD with parameters λ1 = 4.56687718,

λ2 = 0.33274810, λ3 = 0.65408979, λ4 = -0.01021826 and 5000 observations were gener-

ated from this distribution and fitted using Normal mixture model. The Normal mix-

ture model appears to be overly complex and still failed to capture the true underlying

shape of the distribution. Other distributions such as gamma distribution give a much

simpler and convincing shape, but still over estimates the peak of the distribution. Skewed

Normal distribution (Azzalini 1999) is even more inaccurate than gamma distribution,

missing the mode of the true distribution and does not give the correct shape.

In practice, owing to the complexity of real life data, it is cumbersome to find a good

statistical distribution for empirical data by trial and error. Instead, it is preferable to

use a distribution with very flexible shapes. In the current literature, for survival data,

perhaps the most well-known distributions are the exponentiated Weibull distribution

(Mudholkar and Srivastava 1993, Mudholkar et al. 1995, Singh et al. 2005) and the four

parameter Weibull distribution (Wahed et al. 2009, Jeong 2006). Other distributions

such as generalised hyperbolic distribution, g and h distributions and many others

could also be suitable candidates. The superiority of GLDs over exponentiated Weibull

distribution and comparable performance to the four parameter Weibull distribution in

some general settings is demonstrated using simulation studies in Simulation studies.

Fig. 1 Normal mixture, Gamma and skewed Normal approximation for a distribution with a relatively simple
shape. The real distribution is FMKL GLD(4.56687718, 0.33274810, 0.65408979, -0.01021826)
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While GLDs may not always outperform specific techniques developed for a special

case of survival data, the aim of this article is to present GLD as a useful general pur-

pose parametric model for survival data. Once the GLD fits to survival data is attained,

other summary statistics such as hazards can be easily obtained and will be consistent

with the same underlying survival distribution and the distributional shape of survival

times can be easily gleaned by plotting the fitted GLD. In contrast, one can only obtain

survival probabilities and survival curves using Kaplan Meier (KM) method and other

statistical estimates such as hazards, shape of underlying distributions need to be ex-

tracted using other techniques, potentially leading to a loss in consistency of estimates

due to the employment of different estimation methods on the same data. It is also well

known that a parametric method is more powerful in detecting a significant difference

compared to a non-parametric method such as KM method, so there is potential for

cost saving using less number of patients in clinical trials using a parametric approach

to analyse survival data.

In the statistical literature, GLDs are well known for its flexibility of shapes and both

RS GLD (Ramberg and Schmeiser 1974, Ramberg et al. 1979) and FMKL GLD (Freimer

et al. 1988) have been used in statistical literature to fit a wide range of empirical data

(Karian and Dudewicz 2000, Su 2007b, 2007a, 2010a, 2010b). The versatility of GLD to

accurately estimating a range of well-known statistical distributions such as Normal, T,

Chi-squared, F and others is well known (Karian and Dudewicz 2000, Su 2005, 2007b,

2010a). The downside of GLDs is that they are defined by the inverse quantile functions

(I.e. GLD probability density function must be calculated numerically) and for RS GLD,

there are a number of restrictions on the range of parameters to ensure RS GLD is a

proper probability density function. Recent statistical research have overcome some of

these difficulties and there are a number of stable methods available to fit GLDs to em-

pirical data: maximum likelihood estimation (Su 2007b, 2007a), quantile matching (Su

2010a, 2010b) starship method (King and MacGillivray 1999) and L moments matching

(Asquith 2007a, Karvanen and Nuutinen 2008). It is also possible to fit mixtures of

GLDs to data with unusual shapes using maximum likelihood estimation or quantile

matching (Su 2007a, 2010a).

While the above methods are adequate for fitting uncensored survival data, special

adjustments and some novelty is needed to ensure the effectiveness of GLDs is main-

tained for survival data with censoring. The methods proposed in this paper: direct

maximum likelihood estimation, matching partial probability weighted moments and

simulating-refitting method all extend the methods developed in Su (2007b, 2007a,

2010a, 2010b) to facilitate a successful GLD fit to survival data. Although the theoret-

ical justifications of these methods for fitting any statistical distributions to data can be

found in the literature (Aldrich 1997, Fisher 1922, Hosking 1990), it is unclear how

these methods would perform in the case of GLDs. This article aims to fill these gaps

in literature by describing the mathematical development of these fitting methods for

GLDs and illustrate the typical performance of GLDs through extensive simulations

(Simulation studies) and some real life data examples. Various discussions on the prac-

tical issues of fitting distribution to survival data such as modelling multi-stage disease

scenario (Application in multi-stage disease modelling) and the difference between con-

trolled simulation performance and real life performance (Application in empirical data

modelling) are also presented in this article.
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Characterization of survival curve
For survival data with observed failure times t1, t2, t3,… tm, let f(t) be the probability

density function and F(t) be the cumulative probability density for survival time, then

the survival curve is given by 1 − F(t). The problem is now to find an estimated F(t) for

a given data under censoring. The problem of choosing f(t) and F(t) is solved by using

generalized lambda distributions and the estimation of the parameters of f(t) and F(t) is

achieved using one of the three methods described in Estimation Algorithms for Sur-

vival Data section. A brief introduction to generalized lambda distributions is given below.

Generalized lambda distributions
There are two types of generalised lambda distributions. The RS (Ramberg and Schmeiser

1974, Ramberg et al. 1979) generalised lambda distribution with parameters λ1, λ2, λ3, λ4 is

defined by its inverse quantile function, where u is a quantile from 0 to 1.

F−1 uð Þ ¼ λ1 þ uλ3− 1−uð Þλ4
λ2

; 0≤u≤ 1 ð1Þ

The probability density function for RS GLD is in (2), noting that F− 1(u) = t, then

f tð Þ ¼ 1
dF−1 uð Þ

du

:

λ2

λ4 1−uð Þλ4−1 þ λ3uλ3−1
ð2Þ

The RS GLD is only defined if λ2
λ4 1−uð Þλ4−1þλ3uλ3−1

≥0. King and MacGillivray (1999) dis-

cussed the conditions for which RS GLD is a valid probability density function. Due to

these restrictions, another type of generalised lambda distributions, the commonly

known FMKL GLD (Freimer et al. 1988)1 was introduced, the only restriction for

FMKL GLD is λ2 ≥ 0. When λ3 ≠ 0, λ4 ≠ 0, the FMKL GLD takes the following form:

F−1 uð Þ ¼ λ1 þ
uλ3−1
λ3

− 1−uð Þλ4−1
λ4

λ2
; 0≤u≤ 1 ð3Þ

For completeness, when either λ3 or λ4 or both are equal to zero, the FMKL GLD

takes a different limiting form:

λ3 ¼ 0; λ4≠0

F−1 uð Þ ¼ λ1 þ
log uð Þ− 1−uð Þλ4−1

λ4

λ2
; 0≤u≤ 1 ð4Þ

λ3≠0; λ4 ¼ 0

F−1 uð Þ ¼ λ1 þ
uλ3−1
λ3

− log 1−uð Þ
λ2

; 0≤u≤ 1 ð5Þ
λ3 ¼ 0; λ4 ¼ 0

F−1 uð Þ ¼ λ1 þ log uð Þ− log 1−uð Þ
λ2

; 0≤u≤ 1 ð6Þ

The probability density function of FMKL GLD when λ3 ≠ 0, λ4 ≠ 0 is:

λ2

1−uð Þλ4−1 þ uλ3−1
ð7Þ
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The probability density function of FMKL GLD when either λ3 or λ4 or both are equal to

zero can be easily derived and is not provided here. For FMKL and RS GLD, the numerical

solution of u in F− 1(u) = t gives the cumulative density function F(t), since u = F(t). This is

usually obtained using the Newton–Raphson method (see GLDEX package (Su 2007) in

R). Once the corresponding u is found for a given t, the probability density function f(t) for

RS and FMKL GLDs can be derived using (2) and (7) respectively.

Estimation algorithms for survival data
Maximising the likelihood for survival data with censored observations (MLE)

The likelihood for censored data is well known in the literature. Take the example of a

survival data with right censoring up to time T, where we observe m random failures

out of n subjects and denote observed failure times as t1, t2, t3,… tm. Let f(t) be the

probability density survival function and F(t) be the cumulative probability survival dens-

ity for survival time, then the likelihood with exact and right censored observations is:Ym

i¼1
f tið Þ

� �
1−F Tð Þð Þn−m: ð8Þ

For left censoring, a failure time is only known to be before a certain time. The likeli-

hood function required is:Ym

i¼1
f tið Þ

� �
F Tð Þð Þn−m: ð9Þ

If there is no censoring, then the usual likelihood function
Ym

i¼1
f tið Þ

� �
is obtained.

Other forms of censoring have been discussed elsewhere (Klein and Moeschberger

1997, Lawless 1981, Marubini and Valsecchi 1995, Patti et al. 2007).

In the context of GLDs, F(t) and f(t) can be obtained as described in Generalized

Lambda Distributions and these are available from a number of statistical packages

such as GLDEX (Su 2007) in R. The usual way of fitting survival curves using max-

imum likelihood estimation for GLD is to take the logarithm of the likelihood and

maximize the likelihood. The maximisation is usually done using the Nelder-Mead sim-

plex algorithm. This is usually a more robust method than trying to find a set of pa-

rameters by differentiating the log likelihood and finding the parameters numerically by

setting the equations to zero. Additionally, the problem of choosing initial values to

kick start the optimisation process can be solved using the method described in Su

(2007b, 2007a) or by using the initial values obtained by matching PWMs as detailed

below. The initial values search method in Su (2007b, 2007a) uses an extensive rando-

mised search across the parameters using quasi random number generators such as the

Sobol or Halton sequence and this article chooses the best randomised set of parame-

ters in terms of the largest likelihood value to initiate the optimisation process.

Matching partial probability weighted moments (PWMs)

As an alternative to maximum likelihood estimation, it is possible to estimate the cen-

sored distribution by matching PWMs. The main advantage of using PWMs is that

these moments are more robust than conventional moments with respect to sampling

variability. Closely related to PWMs are L moments, where sample L moments can be

defined indirectly as functions of probability weighted moments. Owing to their
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robustness, fitting statistical distributions by matching PWMs/L moments to data is

usually preferable to matching conventional moments.

Let the order statistics for a complete sample of n observations be defined as Xj : n

where j = 1,2,3,… n, where X1 : n ≤ X2 : n ≤… Xn : n. The PWMs of sample data for right

and left censoring (Hosking 1995, Greenwood et al. 1979) are given below.

The r-th PWM for right censored data, denoted as bcright rð Þ , with n −m censored

values replaced by threshold T is given in (10).

bcright rð Þ ¼ 1
n

Xm
j¼1

j−1ð Þ j−2ð Þ… j−rð Þ
n−1ð Þ n−2ð Þ… n−rð ÞXj:n þ

Xn
j¼mþ1

j−1ð Þ j−2ð Þ… j−rð Þ
n−1ð Þ n−2ð Þ… n−rð Þ

 !
T

( )
ð10Þ

The r-th PWM for left censoring, with n − v censored values replaced by threshold T

is given in (11).

b bleft rð Þ ¼ 1
n

Xn
j¼n−vþ1

j−1ð Þ j−2ð Þ… j−rð Þ
n−1ð Þ n−2ð Þ… n−rð ÞXj:n þ

Xn−v
j¼1

j−1ð Þ j−2ð Þ… j−rð Þ
n−1ð Þ n−2ð Þ… n−rð Þ

 !
T

( )
ð11Þ

When b bleft 0ð Þ or bcright 0ð Þ, the calculation reduces to a simple average over all uncen-

sored and censored observations in the dataset. In this article we take the first four

PWMs with r = 0, 1, 2, 3.

Hosking (1995) shows that for a given probability distribution with cumulative dens-

ity function F(t) = u and quantile function F− 1(u), the theoretical right and left censored

PWMs with censoring threshold T and F(T) = k are as follows:

bright rð Þ ¼
Z k

0
urF−1 uð Þduþ 1−krþ1

r þ 1
T ð12Þ

bleft rð Þ ¼
Z 1

k
urF−1 uð Þduþ krþ1

r þ 1
T ð13Þ

X
r

db rð Þ−b rð Þ
h i2

; r ¼ 0; 1; 2; 3: ð14Þ

The PWMs for RS and FMKL GLD for left and right censoring are given in the

Appendix. Based on these results, it is now possible to find a set of parameters of GLD

that minimize the sum of the squared difference between sample and derived PWMs

using (14). The problem of choosing initial values for the optimisation process is again

solved using the method described in Su (2007b, 2007a), which involves an extensive

randomised search across the parameters using quasi random number generators such

as the Sobol or Halton sequence. The initial values used to start the optimisation

process will be a randomised set of parameters that best matches the partial probability

weighted moments between the sample and the estimated GLD.

Simulating-refitting (SR) method

This method exploits the Kaplan Meier curve or any non-parametric survival curves by

simulating survival times from the survival curve. The aim is to create “uncensored”

simulated data to allow direct estimation of statistical distributions. The concept behind

SR method is illustrated in Fig. 2 and the probabilities of survival times over each time

interval are given in Table 1.
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Figure 2 is an example where 25 % of patients experienced death at day 100, 200, and

300 and from day 400 onwards the data is censored. To simulate data from this survival

curve, 75 % of the total number of observations will come from a uniform distribution

over the interval 100–200 (25 %), 200–300 (25 %), 300–400 (25 %), with the remaining

25 % from a triangular distribution at 400–500 (Fig. 2). The last time point 500 is

chosen arbitrarily as 400 × (1+ proportion of censored data) or 400 × 1.25. A triangular

distribution towards the end of survival curve is chosen to facilitate an easier fit as

many distributions tend to exhibit a downward tail towards their theoretical minimum

or maximum. Once the data is simulated, the data can be treated as uncensored and

standard distributional fitting method can be used.

The SR strategy effectively transforms survival data with censoring into survival data

without any censoring. This aids the parametric modelling of the survival curve by

allowing a visual representation of f t̂
� �

. Additionally, it also allows methods such as

the starship method, method of moment matching, quantile matching, maximum likeli-

hood estimation and L moments matching to be used to facilitate a potentially better

GLD fit. This is another advantage of the SR method, since not all of the available

methods for fitting GLD to data can be easily adapted to cope with censored survival

Fig. 2 Illustrating SR Method

Table 1 Illustrating SR method

Probability Interval Distribution Used for Simulation

0.25 100–200 Uniform

0.25 200–300 Uniform

0.25 300–400 Uniform

0.25 400–500 Triangular
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data. This article illustrates the use of SR in conjunction with maximum likelihood esti-

mation (ML), L moment matching (LM) and quantile matching (QS) (see Su (2010a) for

details) for GLDs in a series of simulation studies under the Simulation studies section.

Confidence intervals for survival curves
Once a parametric model for survival curves is found using any of the above method,

the confidence intervals for survival curves can be evaluated directly without using

simulation owing to the work by Cramer (1963) and Su (2009). Detailed descriptions

and performance of this method can be found in Su (2009).

To find confidence interval for P-th quantile for n observations, Cramer (1963)

showed that generically, P(X ≤ Xnp) or g(x) as follows. Note in (15), a typo in Su (2009)

is fixed here:

g xð Þ ¼ Γ nþ 1ð Þ
Γ wþ 1ð ÞΓ n−wð Þ F xð Þ½ �w 1−F xð Þ½ �n−w−1f xð Þ

w ¼ np

Γ yð Þ ¼
Z∞
0

uy−1e−udu

ð15Þ

To find the 100(1 − α) % confidence interval analytically, the following equations

need to be solved:

ZUpper Limit

0

g xð Þdx ¼ 1−
α

2
ð16Þ

ZLower Limit

0

g xð Þdx ¼ α

2
ð17Þ

Note that
Z x0

0
g xð Þdx ¼ β wþ 1; n−wð ÞjF x0ð Þ

0 where β is the Euler’s incomplete beta

function normalized by the complete Beta function. This procedure is known as the

analytical-maximum likelihood GLD approach in Su (2009).

For illustration purposes, the cancer dataset from the survival library in R is used. The

survival curve is estimated by RS GLD (λ1 = 4.746579e + 01, λ2 = 7.504002e-04, λ3 =

7.166621e-03, λ4 = 3.432945e-01) using SR method. To visually check the validity of the

evaluated 95 % confidence intervals (CIs), 1000 simulated survival curves (grey area in

Fig. 3) were generated along with the parametric CIs in Fig. 3. This is further validated by

the almost indistinguishable result between the estimated CIs from simulated data and

the parametrically evaluated CIs (Fig. 3). Extensive simulation studies on the performance

of CIs in terms of coverage probability for different sample sizes and quantiles are covered

in Su (2009).

Assessing the goodness of fit
In the absence of full information, the quality of parametric modelling can be visually

examined by comparing the fitted parametric model with a non parametric survival

curve such as the Kaplan Meier (KM) survival curve. In the case where the SR method

is used, it is possible to compare the final model against the simulated data using QQ
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plots and more formally through Kolmogorov-Smirnoff test or Kolmogorov-Smirnoff

resample test (Su 2007b, 2007a, 2010a, 2010b).

Simulation studies
The use of direct MLE and PWM matching for censored data has been applied using

well known distributions such as log Normal and Weibull distributions (Wang et al.

2010a). The theoretical justification for using MLE and PWM to fit any continuous

distribution to data can be found elsewhere (Hosking 1990, Fisher 1922, Aldrich 1997).

For the SR method, as long as the simulated data is sufficiently close to the true under-

lying distribution and the GLD can model the simulated uncensored data accurately, it

will yield an accurate model.

Unlike many standard statistical distributions, GLDs are characterised by inverse

quantile functions. This means to use ML under SR or MLE directly, it is necessary to

get the probability density functions using numerical methods such as the Newton–

Raphson procedure. Other methods such as PWM do not require this numerical step

in the optimisation algorithm. However, all fitting methods are affected by the sudden

shape change problem in GLD parameter estimation. For relatively small change in one

of the four parameters, GLD can exhibit a dramatic change in shape. For example, RS

GLD (0,1,0.5,1) is an increasing function from -1 to 1 but RS GLD (0,1,0.5,0.75) is a

parabola shaped function from -1 to 1, even though the change in the fourth parameter

is only 0.25. In other situations, RS GLD (0,1,1.5,2) and RS GLD (0,1,1.5,2.5) (with a 0.5

change in the fourth parameter) do exhibit similar shapes and there is a smoother tran-

sition in shapes as the fourth parameter changes. This property means the standard

theory examining the lower bound for the variability of parameters is not particularly

useful for GLDs. The theoretical examinations of fitting methods for GLD are drawn

out by numerical computations, potential abrupt changes in shape of distributions from

small changes in parameters and perhaps the most elegant strategy at the present time

is to use simulations to compare between the methods. Instead of comparing whether

the parameters of fitted GLD are close to the true GLD, the emphasis is on whether

the fitted GLD quantiles are sufficiently close to the true quantiles from some other

known statistical distribution. This is illustrated below.

Fig. 3 Parametric confidence interval (CI) for survival curve for cancer data from survival library in R
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To assess the performance of various estimation methods, survival curves were gen-

erated from 2000 observations from symmetric and skewed Normal distribution with

parameters: location = 20, scale = 2, shape = -5 or 5 or 0 for left skewed, right skewed

and symmetric shape respectively. The motivation for using skewed Normal rather than

Weibull distribution is to facilitate a better comparison across different scenarios using

the same distribution with different parameters. Also, it would be rather unfair com-

parison if one were to use extended Weibull distributions (exponentiated Weibull and

four parameter Weibull) to fit Weibull distributed data. Instead, the primary focus here

is to examine how well the GLDs and extended Weibull distributions fit data from

other distributions, since the true distribution is never known in practice. Additionally,

Gumbel distribution (an extreme value distribution) with location parameter 15 and

scale parameter 5 is also used in this comparison. These distributions are primarily

chosen to examine the behaviour of these fitting algorithms over a range of different

shapes.

This entire process is repeated for 200 observations to allow assessment of effect of

sample size on the performance of proposed fitting methods. To create right censored

data, observations greater than quantile ranging from 0.5 (median) to 0.9 are censored.

Similarly, to create left censored data, observations less than quantile ranging from 0.1 to

0.5 (median) are censored. Five estimation methods: ML (maximum likelihood)/LM (L

moments)/QS (quantile matching) under SR and MLE and PPWMmatching were applied

over 100 simulation runs. When fitting RS GLD using MLE with half of the data being

censored (i.e., at 0.5), sometimes it is desirable to use the SR-ML method to generate the

initial values to start the optimisation process, rather than using randomised search as it

would lead to a better performance. This strategy is used in this article.

To give reader an idea as to the degree of accuracy attained by GLDs in comparison

to other distributions, this article also assesses the performance of the exponentiated

Weibull distribution (Mudholkar and Srivastava 1993, Mudholkar et al. 1995, Singh

et al. 2005) and the four parameter Weibull distribution (Wahed et al. 2009, Jeong

2006) under the same simulation scenarios. Maximum likelihood estimation via New-

ton–Raphson algorithm is used to fit both distributions to survival data. The set of ini-

tial values used to begin the optimisation process is obtained as follows: 1000 initial

values from 0 to 100 are randomly using Sobol sequence generator for parameters of

both distributions. From these 1000 set of values, the set of initial values that maxi-

mises the likelihood is used in the optimisation process.

The sample size 200 and 2000 were chosen to reflect that the number of patients in

many Phase III and IV trials are in the vicinity of 200 and some large meta-analysis may

combine several studies and reach around 2000 patients. The primary intention of 200

and 2000 sample size is to allow comparison as to the accuracy of the estimates as sample

size increases. The general pattern of improved accuracy and numerical precision for lar-

ger sample sizes is seen from Figs. 4, 5, 6 and 7 and this is an expected result.

To compare the performance between methods, the relative error was computed.

The relative error is defined as the absolute difference between fitted and true quantile

divided by the true quantile. This is computed using 100 equally spaced quantiles from

1 % quantile up to the censored quantile for right censored data. For left censored data,

this is computed using 100 equally spaced quantiles from the censored quantile up to

the 99 % quantile. The log mean and log variance of the relative error among five
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estimation methods for different types of censoring and different statistical distribu-

tions are shown in Figs. 4, 5, 6 and 7. The log transformation is designed to solve the

problem of extreme results, to ensure a fairer and clearer comparison across different

methods.

Within Figs. 4, 5, 6 and 7, the emphasis is on the performance of different methods. In

Fig. 4, it is clear that the exponentiated Weibull is among the worst performing distribu-

tion except with respect to fitting of Gumbel distribution data and the four parameter

Weibull has fairly comparable performance with GLD but performs less well for Gumbel

data. The precision comparison in Fig. 5 indicates similar conclusion as Fig. 4 and the

general pattern in these two figures is reflected in Figs. 6 and 7 but with added variability.

Within GLD methods, Figs. 4 and 5 show that the most accurate methods appear to be

MLE and PWM matching while quantile matching, ML and LM under SR method appear

to be more variable in a number of cases. This is expected as ML/LM/QS under SR intro-

duce extra variability through simulation, due to the nature of the SR algorithm in this art-

icle. However, this is not always true. The advantage of using SR is seen in Fig. 6 for

Gumbel Distribution with 10 % left censored data (GB-LC0.1) for FMKL GLD PWM and

FMKL GLD under SR-LM. It is clear that in this example, the direct use of PWM does not

result in a fitting result as good as using SR-LM. This is likely due to the difficulty in ascer-

taining a suitable set of initial values to ensure proper convergence to find the best possible

GLD fit, an area where SR can provide valuable guidance and input.

The log variability of relative error plot shows that the methods provided give quite pre-

cise results with direct MLE tends to outperforms PWM. ML/LM/QS under SR all have

similar performance and often perform slightly worse than MLE or PWM (Figs. 5 and 7).

The perceived, generic pattern of superior performances of MLE or PWM over ML/LM

SR should be interpreted with caution. There are also cases, as shown in the example

Fig. 4 Trellis plot showing the performance of log mean relative error among SR-LM (simulating refitting-L
moments), SR-ML (simulating refitting-maximum likelihood), SR-QS (simulating refitting-quantile matching),
MLE (maximum likelihood direct estimation) and PWM (partial probability weighted moments matching) for
RS and FMKL GLD, exponentiated Weibull and four parameter Weibull distributions. The description “SD-RC0.9”
means the true distribution partial probability weighted moments and was symmetric and observations greater
than the 90 % quantile were treated as right censored data. The simulation result shown is for 2000 samples
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Fig. 5 Trellis plot showing the performance of log of variance of relative error among SR-LM (simulating
refitting-L moments), SR-ML (simulating refitting-maximum likelihood), SR-QS (simulating refitting-quantile
matching), MLE (maximum likelihood direct estimation) and PWM (partial probability weighted moments
matching) for RS and FMKL GLD, exponentiated Weibull and four parameter Weibull distributions. The
description “SD-LC0.1” means the true distribution was symmetric and observations less than the 10 % quantile
were treated as left censored data. The simulation result shown is for 2000 samples

Fig. 6 Trellis plot showing the performance of log mean relative error among SR-LM (simulating refitting-L
moments), SR-ML (simulating refitting-maximum likelihood), SR-QS (simulating refitting-quantile matching),
MLE (maximum likelihood direct estimation) and PWM (partial probability weighted moments matching) for
RS and FMKL GLD, exponentiated Weibull and four parameter Weibull distributions. The description “SD-RC0.9”
means the true distribution was symmetric and observations greater than the 90 % quantile were treated as
right censored data. The simulation result shown is for 200 samples
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above, where LM SR can in fact outperform from direct use of PWM. Also, note that the

optimality of the simulation results comes from the fact that the true distributions are

known and a single GLD is an adequate approximation to the true underlying distribu-

tion. In practical situations, the true underlying distribution is unknown and may require

a mixture of GLDs. When dealing with mixture of GLDs, it is harder to fit a distribution

to censored data using direct MLE or PWMs, since this requires maximising or minimis-

ing a much more complex objective function which can be difficult in practice. The ML/

LM/QS under SR, on the other hand, can be adapted more easily fit mixture of GLDs and

the success of these methods in fitting mixtures has already been documented elsewhere

(Su 2007b, 2010a, 2010b). SR also tends to give better model for empirical data, as illus-

trated in Application in empirical data modelling. The main message is that the theoret-

ical loss of efficiency and accuracy using SR is likely to be minimal as evident in these

simulation studies but as illustrated below, SR can provide additional information to aid

the fitting of a suitable distribution which is not attainable by using an estimation method

such as PWM or MLE directly.

Application in empirical data modelling
While the methods described in this article works well so far in controlled, simulation

experiments, it is the successful modelling of survival curves for real life data set that

will be most useful for practitioners. The European Blood Marrow Transplant (EBMT)

registry (2205 patients) and Amsterdam Cohort Studies on AIDS infection data (329

participants) from Putter et al. (2007) are used for this illustration.

For EBMT data, the aim is to model the survival curve for those who experienced

platelet recovery and subsequently died or had a relapse. For this dataset, both MLE

and SR are used to estimate the survival curve. From Fig. 8 panel A and B, the SR

Fig. 7 Trellis plot showing the performance of log of variance of relative error among SR-LM (simulating
refitting-L moments), SR-ML (simulating refitting-maximum likelihood), SR-QS (simulating refitting-quantile
matching), MLE (maximum likelihood direct estimation) and PWM (partial probability weighted moments
matching) for RS and FMKL GLD, exponentiated Weibull and four parameter Weibull distributions. The
description “SD-LC0.1” means the true distribution was symmetric and observations less than the 10
% quantile were treated as left censored data. The simulation result shown is for 200 samples
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estimation is better than using MLE. While the SR estimation is based on mixture of

two GLDs and MLE is based on a single GLD, this comparison is not unfair. Since

when we fit distribution to data using MLE with censored data, we have no information

as to the shape of our target distribution. While it may be possible, for example, to use

mixture of two GLDs with MLE to model censored data, this method will often fail be-

cause the likelihood often becomes too complex to maximize. In contrast, by using the

SR method, users can clearly see that mixture of GLDs is needed in this case (Fig. 8-

panel C). Also, it is much easier to fit a mixture of GLDs under the SR scheme since it

is only necessary to maximize the usual uncensored likelihood. In practice, the add-

itional information provided by SR method on the shape of the survival distribution to

assist the identification of an appropriate probability density is what gives SR method

an edge over direct use of PWM or MLE on censored data.

For Amsterdam Cohort Studies on AIDS infection, because there is competing risk

(see Putter et al. (2007) for more details), the appropriate measure of probability is to

use the cumulative incidence function rather than the naive KM curve. The SR-ML

method is again used in this example and the resulting fit is very close to the non-

parametric cumulative incidence function as shown in Fig. 8-panel D.

A further interest with the EBMT data in this article is to illustrate how the GLD fits

could be improved and compared against well-known parametric models using mixture

of Normal distributions. We consider three method in this example: fitting mixture of

3 RS GLDs (Su 2007a, 2010b) under SR scheme, fitting mixtures of Normal distribu-

tions (Fraley and Raftery 2002, 2007) under SR scheme, and fitting mixture of Normal

distributions to censored data directly using Bayesian method (Komárek 2009). A

fourth method, kernel density estimation (using Normal distribution as kernel), is pro-

vided as a benchmark as to how well these methods fit the target distribution in Fig. 9.

The survival curve fit to EBMT data is first refitted using mixture of 3 RS GLDs

using SR method. Details on fitting mixture of GLDs can be obtained from Su (2007a,

Fig. 8 In panel (a), the EBMT Kaplan Meier survival curve is modelled by maximising the censored log
likelihood directly using RS or FMKL GLD. In panel (b), the EBMT Kaplan Meier survival curve is modelled by
mixtures of GLDs using maximum likelihood estimation (Su 2007a) under SR scheme. Panel (c) shows the
estimated EBMT probability density function of mixture of RS GLDs from Panel (b) and only the observed
part of the survival curve is displayed in Panel (b). Panel (d) shows the AIDS infection cumulative incidence
function (CIF) (Amsterdam Cohort Study) modelled by mixture of RS GLDs (Su 2007a) using the SR method
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2010b). This GLD mixture model (fitted using quantile matching method (Su 2010b))

now corresponds almost exactly to the survival curve (Fig. 9, (B)). Previously, the use of

mixture of 2 RS GLDs in Fig. 8 (B) shows a slight departure (but still within the 95 %

CI) at the start of survival curve. Note the number of GLDs to be chosen can be se-

lected using AIC. For example, in this case, the AIC under mixtures of 3 RS GLDs give

AIC is 179658.8 compared to 175950.5 under mixtures of 2 RS GLDs. The preference

therefore, based on AIC, is to use mixtures of 2 RS GLDs.

In Fig. 9, the EBMT data was also fitted using Normal mixtures. Firstly, MCMC esti-

mation of Normal mixtures for survival data with censoring is applied directly using 5

Normal distributions via mixAK package in R (Komárek 2009). Secondly, Normal mix-

tures is fitted directly using the SR method via mclust package (Fraley and Raftery

2002, 2007) in R. This involves finding the optimal Normal mixture using BIC under

the EM algorithm by hierarchical clustering and a mixture of 8 Normal distributions

was fitted onto the simulated data using the SR method. Figure 9, panel A shows that

the mixAK Bayesian Normal mixture model failed to estimate the survival distribution

accurately for survival times greater than 2500 in comparison to kernel density

Fig. 9 Panel (a) compares the use of simulating refitting method (GLD mixture Vs Normal mixture) and the
use of Bayesian Normal mixture model from mixAK package. Panel (b) shows the performance of GLD
mixture and Normal mixture (SR methods only) relative to KM survival curve and this is compared directly
in Panel (c). Panel (c) shows the mixture of GLDs gives a simpler representation of the survival curve compared
to using mixture of Normal distributions
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estimation. As a result, this model is not considered further in Fig. 9 panel (b) and (c).

Fig. 9 shows that the GLD mixture model not only provides a compelling fit to the KM

survival curve (Fig. 9, panel b) but also has the advantage of possessing a simpler shape

and less parameters than the Normal mixture model (Fig. 9, panel a and c).

Application in multi-stage disease modelling
A common goal in multi-stage disease modelling is to find an overall survival curve, ac-

counting for all different paths to a final outcome. Lo et al. (2009) discussed how this

can be done using saddlepoint approximation in a semi-markov process setting, how-

ever, the problem of choosing a suitable statistical distribution is still unsolved. Their

method also hinged upon the successful maximisation of the likelihood for the whole

system; which can be difficult to achieve for a complex multi-stage disease scenario.

The method proposed below can be used quite effectively for complex multi-stage

disease scenarios. Consider a simple multi-stage disease scenario in Fig. 10.

Figure 10 shows two possible paths leading to death for each patient in a clinical trial.

Patients could develop a disease leading to death or go straight to death. There are two

pathways leading to death and censoring could occur any time.

The general pattern of any multi-stage disease scenario is that all patients end up at

the final stage, which may be death or disease. Some patients may not have yet experi-

enced an event and in that case, a censored event is recorded. Other patients may be

censored at the start of the study, before any pathways. However, there are no recurrent

events in which patients may go back and forward between different stages indefinitely.

Under these conditions, the process of finding the parametric survival curve for the

overall system is as follows:

1. Find a parametric survival curve for each path, using either MLE, PWMs matching

or SR technique. Each path is comprised of censored and uncensored data and any

data censored at any intermediate stages would be classified as censored data.

2. Obtain the number of patients for each path; simulate survival times from the fitted

parametric model for each path.

3. Combine all the simulated results in step 2 and the censored times observed at the

start of the study into one final survival data. Model the survival times of this final

data set parametrically using either PWMs matching, MLE or SR method. This

gives the overall parametric survival curve for the system.

The above modelling strategy is simple yet effective. It avoids the problem of having

a complicated likelihood in the event of a complex multi-stage system as was used in

Fig. 10 A simple multi-stage disease scenario
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Lo et al. (2009) and it provides a visual check as to the overall goodness of fit between

the estimated parametric survival curve and the non-parametric survival curve for the

whole system. To illustrate, consider a simulated multi-stage disease modelling in

Fig. 10. Let path 1 be the path with an intermediate event before death and path 2 be

the path straight to death. One thousand survival times for path 1 and 2 are generated

from Weibull (6,12) and Weibull (3,13) distributions respectively. Survival times greater

than 20 are censored at 20 for the whole system. Additionally, for path 1, survival time

greater than 14 are censored at 14. Under this simulation scenario, the overall survival

curves estimated by RS GLD using MLE and SR methods are shown in Fig. 11. While

both methods appeared to be effective, a slightly more accurate result is obtained using

the direct ML estimation technique in this case.

Conclusion
This article illustrates the use of generalised lambda distributions in conjunction with

MLE, PWMs matching and SR method to find an approximate probability density

function and confidence interval for the survival curve. In the event where the use of

MLE and PWMs matching failed to give convincing result, the SR method is often a

useful alternative. The SR method converts the censored survival data into uncensored

data, allowing users to improve the distributional fit using a wider range of fitting

methods. The SR method can also provide initial values for a secondary optimisation

for MLE and PWM matching, which sometimes provide a better fit to survival curves

that is not attainable using only one method.

The development of these techniques is promising as it means statisticians are no

longer limited to non- parametric techniques when analysing such data. Also, it is now

possible to extract all the statistical information such as mean, quantile, variability in

relation to survival times consistently under one parametric model and this opens up

the prospect of developing more powerful statistical models and tests for censored sur-

vival data frequently used in engineering and medicine. Recent advances in GLD re-

gression (Su 2015) also opens the possibility of extending this work into accelerated

failure models, which will further enhance statistician’s toolbox in practice.

Fig. 11 Modelling overall survival curve for multi-stage disease scenario using (a) direct maximum likelihood
estimation and (b) SR method
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Endnotes
1The correct abbreviation should be FKML GLD, but in conformity with the

statistical literature, the FMKL GLD terminology is used here.

Appendix
For RS and FMKL GLD, the theoretical PWMs for left and right censoring are as follows:

RS GLD: PWMs for Right Censored Data

bright rð Þ ¼ λ1
krþ1

r þ 1
þ kλ3þrþ1

λ3 þ r þ 1ð Þ � λ2 −
1
λ2

� �
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r þ 1
T ð18Þ

RS GLD: PWMs for Left Censored Data
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FMKL GLD: PWMs for Right Censored Data
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FMKL GLD: PWMs for Left Censored Data
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From (18) to (27), H is hypergeometric function, β is beta function, βk is incomplete

beta function integrated to k, ψ(a, b) is psigamma function, the derivative of log(gam-

ma(a)) of order b + 1. The Euler-Mascheroni constant is − ψ(1, 0). Other definitions

such as W1(k, r), W2(k, r) and Wδ(k, r) are given in (28) (29) and (30).

W 1 k; rð Þ ¼
Z k

0
pr log pð Þ dp ¼ k1 þ r 1 þ rð Þ log kð Þ−1ð Þ

1 þ rð Þ2 ð28Þ
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0
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