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Background
Longitudinal count data are often encountered in scientific studies. For example, Thall 
and Vail (1990) analyzed repeated seizure counts on subjects in a clinical trial. Winkel-
mann (2004) analyzed doctor visits, to evaluate whether German health care reform 
caused a change in their distribution.

Common features of serial count data include intra-subject correlation, due to simi-
larity between the repeated measurements on each participant, and over-dispersion, 
which occurs when the variance is larger than expected for the assumed distribution 
of the outcome variable (Efron 1992). Poisson regression is often applied for analysis 
of count data, but is usually not appropriate for longitudinal studies because it ignores 
intra-subject correlations and over-dispersion. Generalized Poisson regression (Consul 
and Famoye 1992) allows for both over- and under- dispersion, but assumes independ-
ence of measurements.

In this paper we implement a maximum-likelihood based method for the analysis of 
longitudinal count data with over-dispersion induced by the serial correlation of meas-
urements. Key assumptions of the approach include the first-order Markov property and 
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linearity of the expectations for the conditional distributions, which are assumed to be 
Poisson. In addition, we assume that the correlation between adjacent measurements on 
a subject is constant.

The assumptions of the first-order Markov property, linearity in the conditional expec-
tations, and constant adjacent correlations have been shown to induce a first-order 
autoregressive AR(1) correlation structure for the repeated outcomes on each subject 
(Guerra and Shults 2014). The AR(1) structure forces a decline in the intra-subject cor-
relations with increasing separation in time. Our method is therefore most appropriate 
for analysis of equally spaced longitudinal count data with over-dispersion.

Other approaches for analysis of over-dispersed longitudinal count data include semi-
parametric approaches such as generalized estimating equations (GEE) (Liang and Zeger 
1986). Vinod (2002) described econometric applications of GEE. Ghisletta and Spini 
(2004) provided a concise summary of GEE for the social sciences. GEE is widely used 
because it does not require specification of the full likelihood that can be quite complex 
for longitudinal discrete data. However, GEE does not account for over-dispersion. In 
addition, the relative ease of application of GEE for discrete data can also be a potential 
limitation for the approach. When only the first two moments of the distribution of the 
outcome variable are estimated, as they are for GEE, it is possible to obtain estimates 
that are not compatible with any valid parent distribution. As cautioned by Molenberghs 
and Kenward (2010),  “the parent provides a natural description of the framework into 
which the semi-parametrically specified parameters fit. The implication is that such 
semi-parametric methods as GEE1, GEE2, ALR, etc. can always be applied because there 
is always a valid parent, and hence a probabilistic basis.”

We make comparisons with GEE to evaluate the impact of incorrectly ignoring over-
dispersion when the models for the marginal mean and correlation structure are cor-
rect. We conduct simulations for moderately sized samples to demonstrate that when 
the likelihood is correctly specified, we have improved efficiency in estimation of the 
regression and correlation parameters for our approach relative to GEE that incorrectly 
ignores the over-dispersion.

Another model for longitudinal count data is the class of generalized linear mixed-
effects models that incorporate random effects in the linear predictor. However, the 
implementation of likelihood based methods that involve random effects can be com-
putationally challenging (p. 75, Fitzmaurice et al. 2008). In addition, in contrast to GEE, 
for mixed models it is not straightforward to specify a particular working correlation 
structure for the repeated measurements on subjects. For example, the AR(1) correla-
tion structure is not among the covariance models that were suggested by Thall and Vail 
(1990). Mixed-effects models are typically employed when the goal is to estimate effects 
that are subject specific, because the analysis results are conditional on the random 
effects (Gardiner et al. 2009).

In general, likelihood based approaches like the one we implement in this paper enjoy 
several general advantages. Unlike semi-parametric approaches, they yield an estimated 
likelihood that can be used to conduct likelihood ratio tests and to compare the fit of 
models using criteria such as the Akaike information criterion (AIC) (Akaike 1974) and 
Bayesian information criterion (BIC) (Schwarz 1978). Maximum likelihood estimators 
are also most (asymptotically) efficient among a wide class of estimators (Serfling 2011) 
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when the distribution is correctly specified. Our method in particular, allows for specifi-
cation of the usual model for the marginal mean for Poisson data, while also accounting 
for over-dispersion and serial correlation in the data via the induced AR(1) correlation 
structure.

In "Methods" section we discuss the notation, model assumptions, the likelihood and 
likelihood equations. In ’Application" section we discuss an application of the methods 
followed by simulation studies in "Simulation studies" section. We conclude with a dis-
cussion in Conclusion" section.

Methods
Notation and model assumptions

The data comprise realizations yij of ordered discrete random variables Yij that are meas-
ured on subject i at time tij (i = 1, . . . ,m and j = 1, . . . , ni). Associated with each yij is a 
vector of explanatory variables (covariates) xij = (xij1, . . . , xijp)

′. The expected value of 
measurement Yij on subject i is given by

and the variance by var (Yij) = σ 2
ij .

We assume that observations on different subjects are independent. Further, the meas-
urements within subjects are correlated with a structure that depends on parameter α . 
Let cov (Yij ,Yik) represent the covariance and corr (Yij ,Yik) represent the correlation 
between Yij and Yik .

We make three assumptions. First, we assume first-order antedependence, such that 
each Yij, given the immediate antecedent Yij−1, is independent of all further preceding 
variables (Gabriel 1962). The joint probability mass function of Yi1, . . . ,Yini can then be 
expressed as

First-order antedependence is also referred to as the first-order Markov property in the 
literature (Feller 1968, p. 419).

Second, we assume that the correlation between adjacent measurements on a subject 
is constant, implying that

where i = 1 . . . ,m and j = 2, . . . , ni. Third, we assume that the conditional expectation 
of Yij given Yij−1 is a linear function of Yij−1, such that

for i = 1 . . . ,m and j = 2, . . . , ni.
These three assumptions imply the following results. From Theorem 2.1 of Guerra and 

Shults (2014), the conditional expectation is given by

(1)E
(
Yij

)
= µij = �ij ,

(2)

P(Yi1 = yi1,Yi2 = yi2, . . . ,Yini = yini
)

= P
(
Yi1 = yi1

)
P
(
Yi2 = yi2|Yi1 = yi1

)
· · ·P

(
Yini = yini |Yini−1 = yini−1

)
.

corr
(
Yij ,Yij−1

)
= α

E
(
Yij | Yij−1

)
= aij + bijYij−1,

(3)E
(
Yij|Yij−1

)
= µij + ασij/σij−1

(
Yij−1 − µij−1

)
,
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where µij = E
(
Yij

)
, α = corr

(
Yij−1,Yij

)
, σij2 = var

(
Yij

)
, and

where i = 1, . . . ,m and j = 2, . . . , ni.
Next, from Section  2.5 of Zimmerman and Nuñez-Antón (2010), the correlation 

corr (Yij ,Yij+t) between Yij and Yij+t for t > 0 can be expressed as

The induced correlation structure for 
(
Yi1, . . . ,Yini

)′ is therefore an AR(1) structure.
This AR(1) structure is plausible for longitudinal data because it requires the correla-

tion between measurements on a subject to decline with increasing separation in time. 
For example, if α = 0.5, then the correlation between the 1st and 2nd measurements is 
0.5, while the correlation between 1st and 3rd measurements is (0.5)2 = 0.25.

Poisson likelihood

We assume Poisson distributions for the marginal and conditional distributions in Eq. 2. 
For each i = 1, . . . ,m, the distribution of Yi1 is Poisson with µi1 = �i1 = exp

(
x′i1β

)
 and 

σi1
2 = �i1, where β is a p× 1 vector of regression parameters. Then, for j = 2, . . . , ni, the 

conditional distribution of Yij given Yij−1 is Poisson with conditional mean E
(
Yij|Yij−1

)
 = 

�ij
∗ given by Eq. 3, with

and

for j = 2, . . . , ni and i = 1, . . . ,m. The Yij are over-dispersed relative to the Poisson distri-
bution if j ≥ 2 and α �= 0, because in this case σij2 = φ�ij, where φ > 1.

The likelihood can then be expressed as

Taking the natural logarithm then yields the log-likelihood,

(4)σij
2 =

1

1− α2
E
(
var

(
Yij |Yij−1

))
,

corr
(
Yij ,Yij+t

)
=

j+t−1∏

k=j

corr
(
Yij ,Yij+1

)

=

j+t−1∏

k=j

α

= αt .

(5)µij = �ij = exp
(
x′ijβ

)
,

(6)σij
2 = �ij/

(
1− α2

)
,

L(β ,α) =

m∏

i=1

P
(
Yi1 = yi1

)
P
(
Yi2 = yi2|Yi1 = yi1

)
· · · P

(
Yini = yini |Yin−1 = yin−1

)

=

m∏

i=1

exp (−�i1)�i1
yi1

yi1!

ni∏

j=2

exp
(
−�ij

∗
)(
�ij

∗
)yij

yij!

=

m∏

i=1

exp
(
yi1 ln (�i1)− �i1 − ln

(
yi1!

)) ni∏

j=2

exp
(
yij ln

(
�ij

∗
)
− �ij

∗ − ln
(
yij!

))
.
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where θi1 = ln (�i1) = x′i1β and θij∗ = ln (�ij
∗).

The following constraints must be satisfied in order for the constructed likelihood to 
be valid: (1) �ij > 0 (j = 1, . . . , ni); (2) −1 < α < 1 (j = 2, . . . , ni), in order to achieve a 
positive-definite correlation matrix; and (3) �ij − ασij/σij−1(�ij−1) > 0 (j = 2, . . . , ni) 
(Guerra and Shults 2014).

Likelihood equations

To obtain maximum likelihood estimates of β and α, we need to obtain simultaneous 
solutions to the following estimating equations for β and α, respectively:

and

 The derivatives are provided in Appendix A of the longer, working version of this 
paper (Gamerman et  al. 2016 at http://biostats.bepress.com/upennbiostat/art45). We 
maximized the likelihood using an adaptive barrier algorithm as implemented in the 
constrOptim function in R (R Core Team 2014). We applied the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization method by Broyden (1970), Fletcher (1970), 
Goldfarb (1970), and Shanno (1970), Shanno and Kettler (1970), which is implemented 
in constrOptim when the gradient is provided.

The following algorithm summarizes our estimation procedure for a particular model:

1.	 Choose initial estimates (starting values) of α and β. Starting values can be obtained 
using GEE to fit a Poisson model with an AR(1) correlation structure; however, we 
should check that the starting values satisfy the constraints ("Poisson Likelihood"). If 
the estimates violate the constraints, change the starting values by choosing a value 
for α that is closer to zero or by applying Poisson regression, which is equivalent to 
assuming that α = 0.

2.	 Obtain solutions to the likelihood Eqs. 7 and 8 using the adaptive barrier algorithm 
that is implemented in the R package constrOptim. R code for the log likelihood 
function and for the gradient function, both of which are implemented in the Appli-
cation, are provided in Appendix B of Gamerman et  al. 2016 (at http://biostats.
bepress.com/upennbiostat/art45).

ln (L(β ,α)) =

m∑

i=1

(
yi1θi1 − exp (θi1)− ln

(
yi1!

))
+

ni∑

j=2

(
yijθij

∗ − exp
(
θij

∗
)
− ln

(
yij!

))
,

(7)

∂ ln (L(β ,α))

∂β
=

m∑

i=1

(
yi1 − exp (θi1)

)∂θi1
∂β

+

ni∑

j=2

(
yij − exp

(
θij

∗
))∂θij∗

∂β

= 0

(8)

∂ ln (L(β ,α))

∂α
=

m∑

i=1

(
yi1 − exp (θi1)

)∂θi1
∂α

+

ni∑

j=2

(
yij − exp

(
θij

∗
))∂θij∗

∂α

= 0.

http://biostats.bepress.com/upennbiostat/art45
http://biostats.bepress.com/upennbiostat/art45
http://biostats.bepress.com/upennbiostat/art45
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Asymptotic distribution of the estimators

If the model is correctly satisfied and standard regularity conditions are satisfied, the 
ML approach described here will yield estimates that are consistent and asymptotically 
normal. Let θ = (β ,α)T and the maximum likelihood estimators θ̂ = (β̂ , α̂)T . We esti-
mated the asymptotic covariance matrix of θ̂ with the inverse of the observed informa-
tion, (i(θ̂ ))−1, that we estimated using the inverse of the negative Hessian matrix, which 
is defined and implemented in Appendices A and B, respectively, of Gamerman et  al. 
(2016 at http://biostats.bepress.com/upennbiostat/art45).

Application
Doctor visits data

Here we consider an analysis of a subset of data from the German Socio-Economic Panel 
data (Winkelmann 2004) that we obtained within Stata (http://www.stata-press.com/
data/r14/drvisits) and then exported for analysis in R (StataCorp 2013). Here we com-
pare the results of an analysis using the proposed ML approach with the results obtained 
using Poisson regression and GEE.

The goal of the analysis was to assess the impact of the 1997 health reform on the 
reduction of government expenditures. A sample of 1518 women who were employed 
full time in the year before or after the reform was implemented were evaluated. The 
outcome we considered was the self-reported number of doctor visits in the three 
months prior to the interview. The main covariate of interest was an indicator vari-
able that took value 1 if the interview took place after the reform was implemented (or 
took value 0 otherwwise). Additional covariate information was available on each par-
ticipant’s age, education, marital status, self-reported health status, and the logarithm of 
household income. Of the 1518 women in the dataset, 709 were interviewed both before 
and after the reform was implemented; 391 were only interviewed before; and 418 were 
only interviewed after the reform went into effect. This resulted in a total of 2227 obser-
vations available for the analysis.

We assumed Eq. 5 with the following linear predictor:

where xij1 was the indicator variable for health care reform (1 if after implementation; 
0 if before), xij2 was age in years, xij3 was education in years, xij4 was marital status (1 if 
married; 0 if not married), xij5 was self-reported health status (1 if bad; 0 if not bad), and 
xij6 was the logarithm of household income.

We first fit the above model using Poisson regression as implemented in the glm 
function in R; the results are provided in Table 1. Among women with the same house-
hold income, marital status, self-reported health, and education, there was a reduc-
tion in the log count of doctor visits of 0.140 after health care reform was implemented 
(p < 0.0001 ).

Next, we used the geeglm function in R to implement GEE with an assumed 
AR(1) working correlation structure; the results are shown in Table  1. As for Pois-
son regression, there was a significant reduction in the log count of doctor visits 
(β̂1 = −0.123, p = 0.0202). The estimated correlation parameter was 0.213.

xij = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + β6xij6,

http://biostats.bepress.com/upennbiostat/art45
http://www.stata-press.com/data/r14/drvisits
http://www.stata-press.com/data/r14/drvisits
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When we fit the GEE model we assumed that the scalar parameters φ = 1 ∀ i, j. After 
fitting GEE, we assessed the adequacy of this assumption by obtaining an estimate of φ 
based on the final GEE estimates of β:

where Zi(β̂) is the ni × 1 vector of Pearson residuals zij(β̂) with zij(β̂) = yij−�̂ij√
�̂ij

. The esti-

mated φ was φ̂ = 4.33, which is much greater than 1 and was therefore suggestive of 
over-dispersion in the data.

Lastly, we fit the proposed ML approach using the algorithm for estimation described 
in "Likelihood equations" section. We obtained starting values for our approach using 

φ̂ =
1

m

m∑

i=1

Zi

(
β̂
)′
Zi

(
β̂
)

ni
,

Table 1  Estimated parameters from the ML, GEE, and Poisson models in the analysis of the 
doctor visits data

Parameter Estimate SE Wald Pr(>|W|)

Coefficients

ML approach (AIC = 11707; BIC = 11,750)

 (Intercept) −0.461 0.2811 2.69 0.1008

 Reform −0.113 0.0241 21.99 <0.0001

 Age 0.005 0.0014 12.22 0.0005

 Education −0.008 0.0064 1.54 0.2153

 Marital status 0.026 0.0294 0.75 0.3855

 Health status 1.100 0.0313 1238.28 <0.0001

 Log income 0.150 0.0376 15.83 <0.0001

Correlation parameters

 Alpha 0.313 0.0208

GEE approach

 (Intercept) −0.381 0.5766 0.44 0.5083

 Reform −0.123 0.0529 5.40 0.0202

 Age 0.005 0.0033 2.44 0.1182

 Education −0.009 0.0118 0.61 0.4349

 Marital status 0.038 0.0698 0.30 0.5822

 Health status 1.105 0.0873 160.23 <0.0001

 Log income 0.139 0.0798 3.05 0.0809

Correlation parameters

 Alpha 0.213 0.0238

Parameter Estimate SE z value Pr(>|z|)

Coefficients

Poisson regression (AIC = 11, 899; BIC = 11, 942)

 (Intercept) −0.414 0.2691 −1.54 0.1242

 Reform −0.140 0.0265 −5.28 <0.0001

 Age 0.004 0.0013 3.35 0.0008

 Education −0.011 0.0060 −1.78 0.0743

 Marital status 0.041 0.0278 1.49 0.1375

 Health status 1.133 0.0303 37.40 <0.0001

 Log Income 0.149 0.0360 4.14 <0.0001



Page 8 of 15Gamerman et al. SpringerPlus  (2016) 5:1935 

GEE, after first confirming that α̂ satisfied the necessary constraint to guarantee a valid 
parent distribution, which in this case was α̂ < 0.4494.

Table  1 shows the results for the ML approach. The estimated correlation param-
eter was 0.313 with a 95% confidence interval of (0.272, 0.354). After adjusting for the 
correlation among the counts of doctors visits, for over-dispersion, and for the other 
covariates, we again found that there was a significant impact of initiation of health care 
reform on the number of doctor visits (β̂1 = −0.113, p < 0.0001).

Overall, the parameter estimates were similar for the proposed ML approach, GEE, and 
the Poisson regression. While the impact of age was similar across the approaches, it was 
significant in both the ML and Poisson approaches but not significant in the GEE model 
(ML p = 0.0005, GEE p = 0.1182, and Poisson p = 0.0008). Similarly, the logarithm of 
household income was significant in both the ML and Poisson approaches but not signifi-
cant in the GEE model (ML p < 0.0001, GEE p = 0.0809, and Poisson p < 0.0001).

With estimates of the log-likelihood for Poisson regression and the proposed ML 
approach, it was possible to calculate the AIC and BIC criteria as measures of the rela-
tive quality of the models for this set of data. Both BIC and AIC incorporate a penalty 
term for the number of parameters used in the model because it is possible to increase 
the numerical value of the likelihood solely by including additional parameters in the 
model, which may result in over-fitting the model to the data. This penalty term is larger 
in the BIC as compared to the AIC. For the Poisson regression model, the AIC and BIC 
values were 11,899 and 11,939, which were both greater than the AIC and BIC values 
for the ML approach (AIC = 11,707 and BIC = 11,746), which indicates that the ML 
approach had improved model fit over Poisson regression.

Epilepsy seizure data

Here we implement the proposed ML method and GEE for analysis of the epilepsy sei-
zure data (Thall and Vail 1990; Farewell and Farewell 2013) that is available as part of the 
MASS package in R (Venables and Ripley 2002). We assumed Eq. 5 with the following 
linear predictor:

where xij1 represents an indicator for treatment, xij2 represents baseline seizure count 
(number of seizures in the 3 month time period prior to the start of the study), xij3 rep-
resents subject age in years, and xij4 represents two-week time period (coded as 1, 2, 3, 
4). We initially included a time period by treatment interaction term, but the interaction 
term was not significant for the proposed approach or for GEE (both p-values > 0.05); 
we therefore initially focused on the simpler model 9 for this demonstration.

Table  2 shows the sample mean and variance of seizure counts at baseline and the 
four subsequent two-week periods (denoted as Y1 through Y4) for the placebo and drug 
groups for the seizure counts; it also displays the sample mean and variance of age at 
baseline. From the table, the sample variance for the outcome variables, Y1 through Y4, 
were greater than their respective means, which suggested that there was over-disper-
sion in the seizure counts.

Table  3 shows the results of the analysis. The estimates were similar for the proposed 
ML method and GEE. The estimate of treatment was negative for both approaches, which 

(9)x′ijβ = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4,
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suggested that the number of seizures was lower for subjects in the treatment group. How-
ever, treatment only differed significantly from 0 for the proposed ML approach (p = 0.0124 
for ML versus p = 0.3014 for GEE). In addition, time period only differed significantly from 
0 for the proposed ML approach (p = 0.0032 for ML versus p = 0.0580 for GEE).

The likelihood ratio test of the hypothesis that the regression parameter for time 
period is 0 also suggested that time period should be retained in the model for the pro-
posed ML approach (p = 0.0030.) However, since the GEE analysis suggested that time 
period might not be important, we removed time period from the model for both GEE 
and the proposed ML approach. As shown in Table  4, treatment differed significantly 
from 0 for the proposed ML approach, but was not significant for GEE (p = 0.0121 for 
ML versus p = 0.2977 for GEE).

We next compared the AIC and BIC for the models that included and excluded time 
period. As shown in the Tables, both the AIC and BIC values were smaller for the larger 
model that included time period. The respective AIC and BIC values were 1566 and 

Table 2  Mean and variance for the placebo and treatment groups

† Values in the table represent the mean (variance)

Variable Placebo† Drug† Total†

(n = 28) (n = 31) (n = 59)

Y1 9.86 (102.8) 8.58 (332.7) 8.95 (220.2)

Y2 8.29 (66.6) 8.42 (140.7) 8.36 (103.8)

Y3 8.79 (215.2) 8.13 (192.9) 8.44 (200.2)

Y4 7.96 (58.2) 6.71 (126.8) 7.31 ( 93.1)

Baseline 30.79 (681.2) 31.61 (782.9) 31.22 (722.5)

Age 29.00 (36.0) 27.74 (43.6) 28.34 (39.7)

Table 3  Estimated parameters from  the GEE and  ML approaches for  analysis of  the epi-
lepsy data when Period is included in the models

Parameter Estimate SE Wald Pr(>|W|)

ML approach (AIC = 1566; BIC = 1579)

Coefficients

 (Intercept) 0.6569 0.1958 11.26 0.0008

 Treatment −0.1668 0.0667 6.26 0.0124

 Baseline 0.0232 0.0007 1111.24 <0.0001

 Age 0.0238 0.0056 17.94 <0.0001

 Period −0.0634 0.0215 8.72 0.0032

Correlation parameters

 Alpha 0.416 0.0334

GEE approach

 (Intercept) 0.5855 0.3491 2.81 0.0936

 Treatment −0.1642 0.1589 1.07 0.3014

 Baseline 0.0232 0.0012 350.97 <0.0001

 Age 0.0263 0.0118 4.95 0.0261

 Period −0.0644 0.0340 3.59 0.0580

Correlation parameters

 Alpha 0.551 0.0656
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1579 for the larger model, versus 1573 and 1583 for the smaller model. The AIC and BIC 
values indicated that the fit was superior for the larger model, which lent additional sup-
port for the larger model with its significant treatment and time period effects.

Simulation studies
In the previous section we identified significant treatment effects for the proposed ML 
approach that were not observed for GEE. Since the results depended on choice of 
approach, it was of interest to compare the performance of the methods for finite sam-
ples. We therefore performed simulations to assess the properties of the estimators of α 
and β for the proposed ML approach and GEE.

Set‑up

We compared the performance of the ML and GEE estimators for

where the xijk were defined in the previous section.
The results shown here are based on R = 1000 simulation runs, equal group sizes 

m/2, β = (0.4467,−0.1659, 0.0232, 0.0258)′ (based on GEE estimates), and ni = 4 meas-
urements per subject. For this scenario, the correlation must satisfy the constraint 
α < 0.707 (see "Poisson likelihood") to ensure the existence of a valid parent distribu-
tion. We specified values of α ∈ {0.2, 0.4, 0.6, 0.7}.

Covariates were simulated based on the observed epilepsy seizure data in the previ-
ous section. Treatment was specified as present (equal to 1) for one group and as absent 
(equal to 0) for the other group. Baseline seizure count was simulated from a Poisson 
distribution with a random seed and mean = 31.22 based on the mean baseline age from 
the epilepsy data. Similarly, age was simulated from a normal distribution based on the 
epilepsy data for which the minimum age was 18, the mean was 28.3, and the stand-
ard deviation was 6.261. Simulated age values below 18 were discarded and the next 

(10)x′ijβ = β0 + β1xij1 + β2xij2 + β3xij3,

Table 4  Estimated parameters from  the GEE and  ML approaches for  analysis of  the epi-
lepsy data when period is not included in the models

Parameter Estimate SE Wald Pr(>|W|)

Coefficients

ML approach (AIC = 1573; BIC = 1583)

 (Intercept) 0.5072 0.1894 7.17 0.0074

 Treatment −0.1673 0.0667 6.30 0.0121

 Baseline 0.0232 0.0007 1113.57 <.0001

 Age 0.0238 0.0056 17.99 <.0001

Correlation parameters

 Alpha 0.423 0.0342

GEE approach

 (Intercept) 0.4467 0.3621 1.52 0.2174

 Treatment −0.1659 0.1593 1.09 0.2977

 Baseline 0.0232 0.0012 353.32 <.0001

 Age 0.0258 0.0117 4.86 0.0275

Correlation parameters

 Alpha 0.544 0.0639
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simulated age value was assigned. Age was then rounded to a whole number, as it was 
recorded in the epilepsy data.

The approach proposed by Guerra and Shults (2014) was used to simulate the corre-
lated Poisson seizure counts with specified means, over-dispersion, and AR(1) correla-
tion structure.

Assessments

We wrote code in R to evaluate mean square error (MSE), percent bias, small sample 
efficiency, and 95% coverage probabilities using the observed information matrix. The 
mean square error (MSE) for estimator θ̂ is defined as

where θ is the true value. The percent bias for estimator θ̂ is defined as

1

R

R∑

i=1

(
θ − θ̂i

)2
,

Table 5  Small sample efficiencies for evaluating the AR(1) correlation structure for varying 
values of α and sample size per group

The true correlation structure is AR(1)

There are equal sample sizes of m
2

 per group and β = (β0,βdrug ,βbaseline ,βage)
′ = (0.4467,−0.1659, 0.0232, 0.0258)′; [1] True 

value by a factor of 102; [2] True value by a factor of 104

m α R* β̂0 β̂
[1]
1

β̂
[2]
2

β̂
[2]
3

α̂[1]

Mean squared error using ML

 60 0.2 1000 0.056 0.355 0.297 0.291 0.609

0.4 1000 0.088 0.503 0.427 0.445 0.505

0.6 1000 0.127 0.803 0.642 0.619 0.308

0.7 998 0.132 0.908 0.716 0.656 0.171

 120 0.2 1000 0.029 0.176 0.138 0.137 0.305

0.4 1000 0.040 0.254 0.203 0.194 0.236

0.6 1000 0.054 0.381 0.291 0.294 0.124

0.7 1000 0.067 0.489 0.349 0.325 0.067

 300 0.2 1000 0.010 0.071 0.057 0.054 0.111

0.4 1000 0.016 0.101 0.084 0.078 0.080

0.6 1000 0.025 0.153 0.121 0.118 0.047

0.7 1000 0.029 0.174 0.144 0.140 0.023

Mean squared error using GEE

 60 0.2 1000 0.057 0.355 0.300 0.290 0.668

0.4 1000 0.089 0.516 0.427 0.450 0.701

0.6 1000 0.137 0.852 0.703 0.653 0.571

0.7 1000 0.160 1.133 0.883 0.795 0.424

 120 0.2 1000 0.029 0.176 0.139 0.138 0.340

0.4 1000 0.040 0.260 0.204 0.198 0.334

0.6 1000 0.062 0.415 0.327 0.325 0.240

0.7 1000 0.083 0.595 0.435 0.402 0.178

 300 0.2 1000 0.010 0.072 0.058 0.054 0.128

0.4 1000 0.017 0.103 0.085 0.079 0.124

0.6 1000 0.027 0.162 0.132 0.129 0.093

0.7 1000 0.036 0.211 0.182 0.176 0.066
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Lastly, to evaluate the coverage probabilities, a 95% confidence interval was computed 
for each parameter estimate within each simulation run. The coverage probabilities rep-
resent the proportion of the R simulation runs in which the true parameter fell within 
the 95% confidence bounds. GEE coverage probabilities were computed similarly using 
the naïve variance estimates obtained from geeglm in R.

Results

Table 5 displays the MSE and Table 6 displays the percent bias for the simulations. For the 
ML method, the MSE for β̂ and α̂ and the percent bias for α̂ decreased as m increased.

As compared to GEE, the ML approach had lower MSE and percent bias for all sample 
sizes for α̂. For β̂, the percent bias was similar for ML and GEE; however, the MSE was 
slightly smaller for ML than for GEE. For scenarios with high correlation (α = 0.6 or 

{
1

R

R∑

i=1

(
θ − θ̂i

)
/θ

}
∗ 100.

Table 6  Percent bias for evaluating the AR(1) correlation structure for varying values of α 
and sample size per group

The true correlation structure is AR(1)

There are equal sample sizes of m
2

 per group and β = (β0,βdrug ,βbaseline ,βage)′ = (0.4467,−0.1659, 0.0232, 0.0258)′

m α R* β̂0 β̂1 β̂2 β̂3 α̂

Percent bias using ML

 60 0.2 1000 2.57 0.53 −0.61 −0.53 9.41

0.4 1000 6.33 −0.42 −1.15 −2.31 5.15

0.6 1000 1.95 0.05 −0.95 0.27 2.65

0.7 998 −2.21 2.71 0.72 1.21 0.69

 120 0.2 1000 −0.04 0.14 0.07 0.20 5.30

0.4 1000 2.25 −0.52 −0.57 −0.65 2.74

0.6 1000 0.43 −0.79 0.08 −0.13 1.39

0.7 1000 2.00 0.15 −0.01 −1.04 0.17

 300 0.2 1000 0.68 −0.18 −0.57 0.22 2.83

0.4 1000 0.85 −0.29 −0.16 −0.25 1.31

0.6 1000 1.91 −0.38 −0.30 −0.75 0.53

0.7 1000 1.47 −0.29 −0.14 −0.63 −0.03

Percent bias using GEE

 60 0.2 1000 2.48 0.54 −0.60 −0.49 10.94

0.4 1000 6.26 −0.34 −1.10 −2.29 6.06

0.6 1000 1.88 0.64 −0.90 0.45 4.86

0.7 1000 0.60 1.87 −0.28 0.84 4.60

 120 0.2 1000 −0.22 0.07 0.13 0.24 6.19

0.4 1000 1.95 −0.51 −0.40 −0.64 2.89

0.6 1000 0.16 −1.05 0.34 −0.21 2.18

0.7 1000 1.74 −0.22 0.14 −0.83 2.55

 300 0.2 1000 0.65 −0.23 −0.57 0.23 2.87

0.4 1000 0.72 −0.32 −0.15 −0.18 0.98

0.6 1000 2.03 −0.33 −0.23 −0.88 0.86

0.7 1000 2.83 −0.20 −0.58 −0.91 1.64
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0.7), the intercept and treatment estimates, β̂0 and β̂1, had smaller MSE and percent bias 
for the proposed ML approach than for GEE, for all samples sizes.

Table 7 then displays the estimated coverage probabilities. With respect to β̂ , the cov-
erage probabilities were similar for the ML and GEE approach and were close to the 
nominal 95% level. With respect to α̂, the ML approach model-based coverage prob-
abilities were close to the nominal 95%, which outperformed the GEE approach, whose 
model-based coverage probabilities were below the nominal 95% level. Coverage prob-
abilities for α were better for the ML based approach than GEE across all sample sizes 
and correlations (α = 0.2, 0.4, 0.6, 0.7).

Conclusion
We proposed an ML approach for analysis of equally spaced longitudinal count data 
that accounts for intra-subject correlation of measurements and over-dispersion. Our 
application of the ML approach and GEE demonstrated that the results of the analysis 
differed between approaches, with significant treatment differences observed for some 
models for the ML approach, but not for GEE. The availability of the AIC and BIC crite-
ria for the ML approach was useful for selecting between nested models. The interested 

Table 7  Coverage probabilities for the ML and GEE approaches with the AR(1) correlation 
structure for varying values of α and sample size per group

The true correlation structure is AR(1)

There are equal sample sizes of m
2

 per group and β = (β0,βdrug ,βbaseline ,βage)′ = (0.4467,−0.1659, 0.0232, 0.0258)′

m α Method R Coverage Probability

β̂0 β̂1 β̂2 β̂3 α̂

60 0.2 ML 1000 94.7 95.2 95.5 95.5 93.8

GEE 1000 94.4 95.0 94.8 95.1 91.1

0.4 ML 1000 93.8 94.6 95.9 93.0 94.6

GEE 1000 93.2 94.3 95.5 92.7 86.1

0.6 ML 1000 93.8 93.9 94.3 94.0 93.4

GEE 1000 94.1 93.6 95.1 93.1 83.2

0.7 ML 998 95.4 95.3 95.4 95.5 92.3

GEE 1000 95.0 94.9 94.0 95.7 84.6

120 0.2 ML 1000 94.7 95.2 95.2 94.8 92.9

GEE 1000 94.2 95.1 94.9 94.5 91.3

0.4 ML 1000 95.1 96.1 95.6 94.7 95.1

GEE 1000 95.2 96.0 95.5 94.5 85.4

0.6 ML 1000 95.9 94.5 95.3 94.9 95.5

GEE 1000 95.5 95.5 95.5 94.9 84.5

0.7 ML 1000 95.3 94.2 94.7 96.2 92.9

GEE 1000 95.3 94.2 95.0 95.9 87.2

300 0.2 ML 1000 95.2 95.0 94.7 94.7 94.5

GEE 1000 95.6 95.3 94.8 94.6 91.5

0.4 ML 1000 93.5 95.4 94.2 93.9 96.5

GEE 1000 93.7 96.0 94.9 94.3 86.2

0.6 ML 1000 93.2 95.4 94.9 94.0 95.2

GEE 1000 93.8 95.6 94.6 94.9 85.9

0.7 ML 1000 94.5 95.1 94.1 94.4 92.4

GEE 1000 94.8 95.9 94.6 94.8 88.0
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reader can replicate our analyses using code in R that we provided in Appendix B of 
Gamerman et al. (2016) ( at http://biostats.bepress.com/upennbiostat/art45).

Our simulations demonstrated that the ML approach was similar to or slightly outper-
formed GEE with respect to MSE, bias, and coverage probabilities, especially for higher 
values of the correlation (for β̂). That the ML approach outperformed GEE for larger val-
ues of the correlation was not surprising. We assumed over-dispersion that was induced 
by α and that was greater for larger values of α. For α = 0 the assumed models for the 
marginal means and correlations would have been identical for the ML approach and 
GEE. That the differences between the two approaches were greatest for larger values for 
the correlation was therefore to be expected.

Winkelmann (2004) implemented the Poisson model and several other approaches, 
including random effects and hurdle models. In future work it could be of interest to 
extend our comparisons with GEE to include some of the other methods considered by 
Winkelmann (2004). However, in this paper we focused our attention on comparisons 
with GEE because GEE is widely used and, unlike the methods considered by Winkel-
mann (2004), GEE allows for correct specification of the true AR(1) correlation structure 
that was induced by the model we used to simulate our data. Our comparisons with GEE 
therefore allowed us to assess the impact of correctly modeling the marginal mean, corre-
lation structure, and over-dispersion (our approach), versus correctly modeling the mar-
ginal mean and correlation structure, but incorrectly ignoring the over-dispersion (GEE).

There are some limitations to the proposed ML approach that should be acknowl-
edged. First, we assumed that the adjacent correlations on subjects are constant. The 
Pearson correlations of the residuals from a Poisson regression for the epilepsy data sug-
gested that there was a 9% difference between the smallest and largest adjacent correla-
tions, so that it may be worthwhile to relax the assumption of equal adjacent correlations 
for this data set. In addition, it may be of interest to consider an exchangeable correlation 
structure that assumes equality of all pairwise correlations on a subject. It is a limitation 
of the proposed approach that it cannot implement an exchangeable structure. In addi-
tion, although the proposed approach accounts for over-dispersion in the distribution of 
Yij for j = 2, . . . , ni, it assumes that Yi1 is distributed as Poisson. The proposed approach 
therefore does not account for over-dispersion in the first measurements on each sub-
ject, which is appropriate when the over-dispersion is induced by the intra-subject cor-
relation of measurements. In addition, as noted by a reviewer, the proposed approach 
assumes that the degree of overdispersion is directly related to the strength of the adja-
cent correlation coefficient. It would be interesting to explore how the method performs 
if there is weak correlation but strong overdispersion, or strong correlation with weak 
overdispersion.
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