
A three phase optimization method
for precopy based VM live migration
Sangeeta Sharma*  and Meenu Chawla

Background
Cloud Computing is considered as an utility based system for the dynamic provision-
ing of IT resources and services. For providing on-demand and flexible provisioning of
resources and services, it needs to utilize resources efficiently without any interruption
due to maintenance and setup issues. For this purpose, resources are shared among vari-
ous users in such a way that the requirement of all users can be fulfilled. Virtualization
makes it possible by running multiple operating systems and multiple applications on a
single physical machine. It divides physical machine into two or more virtual machines
and each virtual machine operates as an independent environment. By means of virtual

Abstract 

Virtual machine live migration is a method of moving virtual machine across hosts
within a virtualized datacenter. It provides significant benefits for administrator to
manage datacenter efficiently. It reduces service interruption by transferring the virtual
machine without stopping at source. Transfer of large number of virtual machine mem-
ory pages results in long migration time as well as downtime, which also affects the
overall system performance. This situation becomes unbearable when migration takes
place over slower network or a long distance migration within a cloud. In this paper,
precopy based virtual machine live migration method is thoroughly analyzed to trace
out the issues responsible for its performance drops. In order to address these issues,
this paper proposes three phase optimization (TPO) method. It works in three phases
as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer
of duplicate pages by classifying frequently and non-frequently updated pages, and (iii)
reduce the data sent in last iteration of migration by applying the simple RLE compres-
sion technique. As a result, each phase significantly reduces total pages transferred,
total migration time and downtime respectively. The proposed TPO method is evalu-
ated using different representative workloads on a Xen virtualized environment. Experi-
mental results show that TPO method reduces total pages transferred by 71 %, total
migration time by 70 %, downtime by 3 % for higher workload, and it does not impose
significant overhead as compared to traditional precopy method. Comparison of TPO
method with other methods is also done for supporting and showing its effectiveness.
TPO method and precopy methods are also tested at different number of iterations.
The TPO method gives better performance even with less number of iterations.

Keywords:  Virtualization, VM live migration, Service interruption,
System management, Total migration time, Downtime

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Sharma and Chawla ﻿SpringerPlus (2016) 5:1022
DOI 10.1186/s40064-016-2642-2

*Correspondence:
sanjsharma29@gmail.com
Department of Computer
Science and Engineering,
Maulana Azad National
Institute of Technology,
Bhopal 462003, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192938677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-3305-186X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2642-2&domain=pdf

Page 2 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

machine, cloud computing fulfills demands of resources and services for multiple users
simultaneously. For better performance, simply assignment of resources is not sufficient,
but an efficient utilization of resources (Mishra et al. 2012) is equally important. Virtu-
alization gives facility of managing virtual machines in such a way that it works with-
out any service interruption. Virtual machine live migration is one of the key features
of virtualization, which moves virtual machine from one physical machine to another
machine, without or least service interruption.

With the help of virtual machine live migration, cloud administrator utilizes resources
more efficiently by balancing load between under and over utilized servers without inter-
rupting virtual machine services. Virtual machine live migration also helps to reduce
power consumption in virtualized datacenters by moving virtual machine from underu-
tilized servers to other servers and shutting down the idle servers. Because of these ben-
efits, virtual machine live migration is widely being used by datacenter administrators,
as a result, a huge number of virtual machine migrations are taking place. Migration of
a huge number of virtual machines consume a large amount of network bandwidth as
well as imposes performance overhead, which adversely affects the overall efficiency of
the system. In order to address this issue, it is required to use efficient virtual machine
migration method which imposes minimum overhead. Figure 1 represents the architec-
ture of virtual machine live migration in which virtual machine is transferred from one
physical host to another.

Hypervisor or Virtual Machine Monitor is a tool or a program which is used to imple-
ment virtualization. It acts as an interface between underlying hardware and the vir-
tual machine. It performs all virtual machine management tasks without interrupting
virtual machine services. Various commercial and open source virtualization tools are
available. Xen is one of the open source virtualization platforms which is widely adopted
by research communities due to its availability and ease of adaptation. Other than Xen,
KVM is another popular open source virtualization platform. VMware of VMware Incor-
poration and HyperV of Microsoft Corporation are some other widely used commercial
virtualization platforms.

Xen supports two types of virtual machine live migration methods, one is precopy as
default method and another is postcopy which is used as an alternative. Precopy method

Fig. 1  Virtual machine migration in virtualized physical machine

Page 3 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

is widely used for virtual machine migration as compared to its counterpart namely
postcopy. This is because postcopy method is prone to destination side crash from which
recovery is not possible. Basic components of virtual machine which are required to be
transferred in the migration process are CPU state, device state, storage state, and mem-
ory state. In the present scenario, most of the cloud based data centers are equipped
with network attached storage (NAS), and data is accessible by all hosts. Taking advan-
tage of network attached storage, only internal state of CPU and device with consistent
memory state are transferred in virtual machine migration. The CPU and device state
data is negligible as compared to the memory state data, so main focus is on efficient
migration of virtual machine memory. Precopy method iteratively transfers updated
memory pages to migrate consistent image of virtual machine. As a result, redundant
data is transferred several times which leads to increase in number of pages transferred
and hence, increases the migration time. Precopy method moves virtual machine across
hosts with less service interruption, but there is still scope for improvement. In order to
reduce overhead imposed by migration methods, it is required to make virtual machine
migration method efficient. This paper presents an efficient three phase optimization
(TPO) method for precopy based virtual machine migration with low overhead.

The main objective of this paper is to show the requirements of an efficient virtual
machine migration method, analyze the effect of virtual machine migration method on
performance parameters, and develop an efficient method for virtual machine migra-
tion for virtualized data centers, so that virtualization can manage virtual machines effi-
ciently and facilitate cloud computing as an effective and useful technology. Specifically,
this paper aims to:

• • Investigate basic virtual machine migration precopy method that moves virtual
machine from one host to another with less service delay.

• • Develop optimized method for precopy based virtual machine migration in order to
manage virtual machine efficiently with minimum service interruption and overhead.

• • Study impact of the work by analyzing the experimental results on standard bench-
mark workloads and evaluate its performance based on experimental results.

Rest of the paper is organized as follows:
Section “Related work” describes the related work. Section “Background knowledge”

provides the framework of basic virtual machine migration precopy method. Section
“Three phase optimization (TPO) method” presents the proposed TPO method for vir-
tual machine migration. Section “Simulation and performance evaluation” shows the
performance analysis of proposed TPO method. Section “Open issues” discusses the
vision on open issues in virtual machine live migration. Section “Conclusion and future
work” concludes the paper with future research directions.

Related work
This section explores existing works related to improvement of precopy method.

Waldspurger (2002) introduces several virtual machine memory management mecha-
nisms and policies for VMware ESX server as a virtualization platform namely mem-
ory ballooning, content-based page sharing and hot I/O page remapping. In memory

Page 4 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

ballooning, physical host fulfills excess memory demands of certain virtual machine by
retrieving unused memory from other virtual machines. In content-based page sharing
and hot I/O page remapping, it shares those pages between virtual machines which are
having same content and frequently used pages by I/O events. These techniques are used
individually or collectively to support the feature, memory over commitment of hypervi-
sor, that allows virtual machines to demand or use memory space more than the avail-
able in physical host.

Nelson et al. (2005) shows design to provide fast transparent virtual machine migra-
tion and uses Vmotion, an integral part of VMware product for implementation. It gives
downtime as a performance measurement for hundreds of concurrently running virtual
machines with standard industry benchmark workloads. It also shows overheads and
resources required during virtual machine migration.

Clark et al. (2005) presents one of the first works which uses precopy method for vir-
tual machine live migration and uses Xen as a virtualization platform. In this it traces
writable working set (WWS), which is a set of frequently updated pages and it will be
sent at the end, instead of each time they are updated. In this way, it reduces transfer
of redundant pages. The paper also introduces another method named ‘dynamic rate
limiting’, to further enhance the performance of the virtual machine live migration. This
method adapts dynamic bandwidth limit with respect to dirty rate for transferring of
pages during migration. Which results into decrease in downtime by increasing band-
width has been shown.

Ma et al. (2012) presents a compression based approach, in which authors use a com-
pression technique, called as Run Length Encoding (RLE), to reduce number of pages
transferred during migration. Reduction in total pages transferred during migration
leads to reduction in total migration time and downtime. The RLE technique compresses
only allocated pages instead of all pages. For this, it uses Linux memory management
mechanism buddy system which scans whole virtual memory and maintains a list of
unallocated pages. During migration, in place of sending unallocated page, only one byte
NODATA is sent. In this way, it tries to reduce total pages transferred during migration
by sending only allocated pages in compressed form, and one byte NODATA for each
unallocated page. Memory exploration module used in this work is guest dependent.
For different guest operating systems, it requires to write different exploration module.
Compression algorithm RLE reduces total data transferred as well as migration time but
increases overhead of compression/decompression.

Svärd et al. (2011) also used compression approach with dynamic page transfer reor-
dering. This approach orders the page transfer in such a way that retransfer of frequently
updated pages is reduced. Based on the number of times a page is being updated during
migration, page weight for each page is calculated and pages are reordered accordingly.
This results into reduced number of pages transferred during migration. For further
improvement, authors combine this idea with delta compression technique which leads
to reduction in both migration time as well as downtime. Delta compression reduces
amount of data transferred by sending XOR deltas between previous and current page
versions instead of full page. It is highly dependent on fast, efficient page privatization
schemes and compression. Here, again overhead is high.

Page 5 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Zhang et al. (2010) presents another method based on compression approach with
data deduplication in migration. By utilizing the self-similarity of run-time memory
image, authors apply RLE method during migration to remove redundant memory data.
For calculating the similarity of pages, hash based fingerprints are used. For this, it main-
tains two FNHash and FPHash LRU hash tables. This approach improves migration per-
formance with space and CPU resource overhead.

Jin et al. (2009) presents an adaptive memory compression method for migration. It
analyses memory data to find regularities within it and divides memory pages in three
categories: memory with many zero-bytes, memory with high similarity and memory
with low similarity. Based on the category of memory pages, compression algorithm
is applied to balance the overhead of compression. This approach tries to improve
the performance of migration method while balancing the overhead due to compres-
sion. Compression based methods are affected by the overhead occurred due to com-
pression/decompression process and to overcome from this, Jin et al. (2011) presents
another method using CPU scheduling. In this method, it controls the memory dirty
rate by using CPU scheduling in such a way that dirty rate reaches to an acceptable
desired small amount. The idea behind this is, to control the dirty rate as performance
of migration method highly depends upon the dirty rate. This improves the performance
of migration method specially downtime, which is one of the important performance
parameters. Overhead occurred due to CPU-Scheduling affects the application perfor-
mance of all the guest virtual machines.

Similar to Jin et al. (2011), Liu et al. (2010) presents a slowdown scheduling algorithm.
This algorithm reduces the dirty rate by adjusting CPU resources allocated to the migra-
tion domain. This results into decreasing CPU activity, and reducing dirty page rate. It
improves migration performance but also affects the application performance running
within the migration domain.

Liu et al. (2011) presents a fast and transparent migration method for LAN as well as
for WAN environment. It uses checkpointing/replay and trace/replay mechanism and
generates log files, a record of nondeterministic system events during migration. In place
of actual pages, these log files are transferred which are smaller in size, through a syn-
chronized algorithm till source and target have a consistent virtual machine state. In this
way, it reduces downtime as well as network bandwidth consumption.

 Liu and Fan (2011a) presents an approach which is based on instruction execution
trace/replay mechanism with CPU scheduling. This method also transfers log file in
place of complete page and also manages the speed of log file generation by adjusting
CPU scheduling. It improves migration performance, but it has not been tested for com-
plex environment.

Jo et al. (2013) uses shared network attached storage between hosts to improve migra-
tion. In this method, memory-to-disk mapping is transferred in place of the page itself.
Page can be directly fetched from network attached system and for maintaining con-
sistency, P2b (Page to block) map is used. The main downfall of this method is down-
time, which increases significantly when the virtual machine is idle because almost all
available memory is duplicated on disk. Another drawback is that virtual machine can-
not be resumed till the background process is not completed which significantly affects

Page 6 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

the downtime. This method can only be applied where hosts are connected with shared
storage.

 Alamdari and Zamanifar (2012) presents a prediction based approach, named reuse
distance. This approach tracks frequently updated pages and keeps them till the last
iteration in order to reduce retransfer of same pages. It adopts the concept of reuse dis-
tance to track frequently updated pages and based on this, decision of transferring dirty
pages in each phase is taken. Reuse distance of a page can be calculated as the number
of distinct pages updated between two consecutive updates of same page and for this, it
manages the reuse distance bitmap. Based on reuse distance value, those pages that have
small reuse-distance are marked as frequently updated pages. In this way, it reduces the
transfer of same page iteratively which leads to reduced total number of pages trans-
ferred, migration time and downtime as well.

Hu et al. (2011) too presents the prediction based time-series method. It also traces
the frequently updated pages by using an array of historical bitmap, which stores past
historical statistics (size N) of sent pages. Based on this, the method predicts frequently
updated pages and sends them at the last iteration. It also places bound to the number
of iterations, by taking optimal ratio of threshold of frequently dirty pages (K) and maxi-
mum size of historical bitmap (N). By taking correct value of K, the size of historical bit-
map is maintained, as well as number of iterations is also reduced. Ma et al. (2010) also
uses an extra bitmap to mark frequently updated pages which are sent in last iteration.
Here, maximum number of iterations is kept as five. The result shows reduction in total
pages transferred and migration time but with increased downtime.

Liu et al. (2011b) presents two models based on prediction to evaluate the migration
cost in terms of performance as well as energy. By using different workloads, it simulates
migration process to predict the migration cost. It significantly reduces migration cost
along with significant energy saving. In this work, migration cost for both performance
and energy is estimated.

The above works discussed, all try to reduce total pages transferred by reducing
the total size of transferred pages either by compression, managing dirty rate, keep-
ing frequently updated pages or by transferring log files. Along with total pages trans-
ferred, all of them also try to reduce total migration time and downtime. Most of the
works are unable to improve all three parameters simultaneously and reduce overhead
imposed by the migration method. Here, only precopy based methods have been dis-
cussed, Sharma and Chawla (2013) gives the review of both precopy and postcopy based
methods.

This paper is also based on predicting frequently updated pages and groups pages into
frequently and less frequently updated pages. The proposed TPO method optimizes
migration method from very first iteration till last and improves performance param-
eters effectively with low overhead.

Background knowledge
This section describes the working of precopy method, performance parameters, the
basic architecture of Xen and its virtual machine live migration mechanism to execute
precopy method.

Page 7 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Virtual machine live migration method effectively manages the transfer of virtual
machines and improves the efficiency of virtualized datacenter. Precopy is a widely used
method for virtual machine live migration, which is adopted by Xen and VMware. Pre-
copy iteratively transfers virtual machine from source to target host. The basic architec-
ture with iterations performed in precopy method is shown in Fig. 2. It is mainly divided
into three phases.

First phase includes first iteration in which complete image of virtual machine is trans-
ferred. This causes total number of pages to be transferred always more than the virtual
machine memory size. Iterations ‘2’ to ‘n− 1’ come in second phase and all updated or
dirty pages are transferred iteratively during this phase. As a result, same pages may be
transferred repeatedly. The last phase includes stop and copy or nth iteration in which
all remaining pages are transferred. After this, virtual machine is stopped at source and
resumed at target host and migration method is completed. There are two stopping con-
ditions, which decide when iterative memory transfer phase is to be stopped and third
phase is to be activated. First one is the total number of iterations reached to 29 which is
default value and another is the dirty pages in previous iteration are less than or equal to
256 KB. Based on either of these two conditions, last iteration or third phase is activated
with transfer of remaining pages and after that migration method is stopped.

Method presented in this paper works in all three phases and tries to reduce extra
pages transferred during migration from all three phases. It effectively improves migra-
tion performance with less overhead.

Performance parameters

Performance of migration method is measured through following four parameters.
Total Pages Transferred: It is the total number of pages transferred during migration.

For better performance this value should be less and ideally, it should be equal to the
total number of pages of virtual machine. But, in precopy method, it is always more due
to iterative transfer of updated pages. The total pages transferred Vmig is defined as the
total number of pages in all n iterations.

Fig. 2  Iterations in precopy method

Page 8 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

where, Vi is the number of pages transferred in ith iteration and n is the total number of
iterations.

Total Migration Time: It is the time taken in complete transfer of virtual machine from
source to target. It should be minimum for fast completion of migration. Due to the
transfer of extra pages other than the virtual machine memory size, migration time is
also increased in precopy method. It is defined as time taken by all n iterations during
migration.

where, Ti is the time taken by ith iteration.
Downtime: It is the time taken by migration process to stop virtual machine at source

and resume at target host. It directly affects the service availability. This value depends
on the remaining pages in the last iteration. Downtime is measured as the time taken by
last iteration of migration process.

Overhead: It is the additional data transferred during migration which is defined as the
redundancy ratio of total pages or data transferred to the actual pages or size of virtual
machine.

where, Rd is redundancy ratio, Vmig is total data transferred during migration, and Vmem
virtual memory size. With the increase in redundancy ratio, more overhead is imposed
by the migration method and for better performance, redundancy ratio needs to be less.

It may also affect the performance of virtual machine or application running within it.
Extra CPU or space usage, page dirty rate, network bandwidth consumptions, and total
number of iterations are some other parameters which also effects migration and can be
considered for improving the performance of migration method.

Xen architecture

Xen is a widely adopted as open source virtual machine monitor (VMM) or hypervi-
sor. It supports virtualization and acts as a manager to run multiple operating systems
on a common hardware by managing resources without affecting the performance. It
also supports virtual machine live migration precopy method. For better understand-
ing the mechanism of Xen virtual machine live migration, its important components are
described. Figure 3 shows the basic system structure of Xen precopy method for vir-
tual machine live migration. Xen hypervisor, domain 0 (Dom0) guest and Domain U
guest are basic components of Xen virtual environment to support virtual machine live
migration.

Vmig =

n∑

i=0

Vi

Tmig =

n∑

i=0

Ti

Rd =
Vmig

Vmem

Page 9 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Xen hypervisor acts as a basic abstraction layer for guest operating system and hard-
ware. It controls execution of virtual machine in common sharing environment. It
also performs the task of CPU scheduling and memory partitioning of various virtual
machines running on same hardware.

Domain 0 guest is a unique virtual machine with modified linux kernel running on
a Xen hypervisor. It is a special privileged user, which has rights to access physical I/O
resources and interact with other virtual machine too. For Xen virtualization environ-
ment, it is mandatory for domain 0 to run before any other virtual machine starts run-
ning. Domain management and control module is represented as the series of linux
daemons, which support overall control and management of the virtualization environ-
ment. It resides within the domain 0 virtual machine.

Xend, Xm and Libxenctrl are the submodules of domain management and control
module. Xend is a python application, which is considered as a manager for Xen envi-
ronment. It handles the request coming from Xen hypervisor via Domain 0. Xm is a
command line tool which takes input and delivers it to Xen via XML RPC (Remote Pro-
cedure call). Libxenctrl is a C library, that supports Xend to talk with Xen hypervisor via
Domain 0. Domain U guest is unprivileged guest user which does not have direct access
to physical hardware. It is managed through the Domain 0 guest.

Other than this, for the execution of precopy method, Xen uses some data structure for
effective transfer of virtual machine memory pages during virtual machine live migra-
tion. Guest page table are managed by guest itself and pointed by CR3 register. Initially,
Xen makes guest page tables read-only and when the guest tries to change or update its
page table during migration, a page fault occurs. Xen employs shadow page table under
the running virtual machine to log information of updated pages. It uses log of updated
pages during migration. Xen also uses another bitmap named dirty log bitmap, which
also contains the log of updated or dirty pages. When pages are updated during migra-
tion, the changes are propagated to both shadow page table and dirty log bitmap. Both

Fig. 3  System structure of xen precopy method of VM live migration

Page 10 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

are used to manage transferring of virtual machine pages at the time of migration and
for each iteration bitmap is scanned to locate updated pages for transferring.

Xen itself optimizes precopy method by considering updated pages as writable work-
ing set (WWS) for each round. Pages within WWS are sent at last iteration. For this,
it uses three types of bitmap named TO_SEND, TO_SKIP, and TO_FIX for tracking
updated pages and to decide which pages are transferred in the current iteration.

TO_SEND bitmap contains those pages which are to be transferred in next iteration.
TO_SKIP bitmap contains those pages which are skipped from being transferred in cur-
rent iteration. These are the pages which are considered as frequently updated pages
within WWS. TO_FIX bitmap contains those pages which are transferred at last itera-
tion. By using these three bitmaps at each iteration during migration; precopy method
decides which pages are transferred in a current iteration. Barham et al. (2003) presents
Xen and its architecture in detail and effectively.

Three phase optimization (TPO) method
In order to overcome the overhead of extra memory pages transfer in each iteration of
precopy method, designing of such an algorithm is essential which can optimize the
migration method at each iteration. This paper proposes a method, named as TPO,
which minimizes number of memory pages to be transferred in each iteration of the
migration method.

Method design

The proposed method is implemented through three phases:

• • First Phase: This phase deals with transferring of memory pages in first iteration of
the migration method.

• • Second Phase: In this phase, page transferring between iteration ‘2’ to ‘n− 1’ is con-
sidered.

• • Third Phase: Last iteration takes place under this phase.

Flow chart of the TPO method is shown in Fig. 4. All three phases are discussed in detail
as follows:

First Phase: This phase covers transferring of memory pages in the first iteration.
Transfer of virtual machine memory pages in the first phase of migration method is
based on following three conditions:

1	 If none of the memory pages is modified/updated (which is practically a rare case)
then all the memory pages are transferred like precopy method.

2	 If all memory pages are modified/updated (which is also a rare case) then those pages
are transferred which are marked by the historical statistics based prediction method
explained below in phase two.

3	 If fraction of memory pages are modified/updated then only unmodified pages are
transferred.

Page 11 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Since, most of the pages are modified in high load or write intensive workload, less num-
ber of pages is remain unmodified and hence, number of transferred pages reduces in
first phase. This effectively reduces the total number of pages transferred during the
migration method.

Second Phase: In this phase from iteration ‘2 to n− 1’, iterative transfer of updated
or dirty pages is reduced by using the historical statistics of updated pages to predict or
trace frequently updated pages (WWS). The correct prediction or tracing of frequently
updated pages reduce the transfer of same pages repeatedly during iterative transfer
phase. As a result, transfer of similar pages multiple times during migration is reduced.
To count the number of times a page can be updated, the virtual machine memory write
functionality of hypervisor is modified. TO_SEND_h [i] array is used to store the count,
which shows the number of times a page has been updated. Two byte space is used to
store each entry in TO_SEND_h [i] array. By using the TO_SEND_h [i] array updated
pages are divided into two groups G1 and G2 and the condition is

Fig. 4  Flowchart of TPO method

Page 12 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Pages updated less than a threshold value T1 are considered as less frequently updated
pages and kept in group G1, whereas pages updated more than or equal to the thresh-
old value T1 are considered as frequently updated pages and kept in group G2. At each
iteration pages of G1 (less frequently updated pages) group is transferred. This idea of
grouping is inspired from the clustering method in which similar elements having same
characteristics are combined into one group. Each time it gives more accurate and
tighter bounded WWS window of frequently updated pages. Here, value of threshold is
not static; it is updated at each iteration as following formula:

In each iteration T1 is calculated by using TO_SEND_h[i] array. Keeping the frequently
updated pages till last iteration reduces the unnecessary transfer of same pages repeat-
edly and reduces total pages transferred as well as the migration time.

Third Phase: This phase is termed as stop and copy phase. In this phase, remaining
pages are transferred based on two stopping conditions. The first stopping condition is
the same as the stopping condition in precopy method. The second stopping condition
states that if the number of dirty pages in last iteration is larger than 1.5 times of the
number of dirty pages in the previous iteration, the pages are transferred after compres-
sion. The compression method used is Run Length encoding. This condition is employed
to ensure that the downtime should not be unbearable.

Algorithm 1 shows the performance calculation of virtual machine live migration on
different parameters like total pages transferred, total migration time and downtime,
also given by (2011b).

Algorithm calculates the time taken for transferring pages in each iteration. Total
migration time or Tmig is calculated as the summation of time taken by all iteration for
transferring the complete virtual machine. Similarly, total pages transferred or Vmig is
calculated as the summation of pages transferred in all iterations. Tl gives the value of
downtime, which is the time taken in transferring pages in last iteration. Condition
which is needed to be satisfied for executing the last iteration is, that the number of

PG1
< T1 ≤ PG2

T1 = ⌊[(max[page modification rate] +min[page modification rate])÷ 2]⌋

Page 13 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

iterations reaches to its maximum value or the dirty pages in previous iteration are less
then or equal to Vthd. The key parameters with their notations used in algorithm for per-
formance calculation of virtual machine live migration are shown in Table 1.

Simulation and performance evaluation
This section explains the simulation environment which evaluates the performance of
the TPO method. It first presents simulation setup on which experiments are performed
along with virtual machine workloads. It shows the evaluation of performance param-
eters viz. total pages transferred, total migration time, and downtime. It also presents the
overhead analysis for the TPO method. To validate the effectiveness of TPO method, it is
compared with precopy method as well as with other counterpart works. It also presents
results which show the effectiveness of TPO method with less number of iterations.

Simulation setup

Virtualization environment has been created using the following simulation setup: 2GB
RAM, Intel Core i5 2400 CPU @ 3.10 GHz processor and VT-X technology enabled. The
host machines were installed with CentOS 6.3 as the operating system with the hyper-
visor Xen 4.3.0. Virtual machines are also installed with Centos 6.3 as guest operating
systems and configured with 2 VCPU and 1GB RAM. For migration virtual machine
storage is exported as a system image file and accessed with NFS protocol. Number of
seeds are ten and results are taken over average of all seeds. The performance of the
method is tested under following four standard workloads:

1	 Idle: An idle booted Centos operating system without any running application.
2	 Kernel-built: Compiled a kernel source in the virtual machine to represent the sys-

tem-call intensive workload.
3	 Memtester 4.3: It is a utility program for testing memory subsystems for faults. It is

used to impose memory workload.
4	 Stress 1.0.1: It is a tool to impose a configurable amount of CPU, memory, I/O and

disk stress. It is used to generate higher workload.

Table 1  Performance parameters used in virtual machine live migration method

Vmem Memory size of VM

Tmig Total migration time

Vmig Total pages transferred

Tdown Downtime

R Memory transmission rate

D Memory dirty rate per iteration

Vi Volume of pages transferred at ith iteration

Ti Time taken for transferring pages at ith iteration

Vl Volume of Pages transferred in last iteration

Tl Time taken for transferring pages in last iteration

Vthd Threshold value required for last iteration

Tresume Time taken by VM to resume at target

n Maximum number of iterations

Temp array used TO_SEND_h to store historical statistics based on number of times page is updated

Page 14 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

All the statistics like the number of pages sent, number of iterations, time taken for
each iteration are extracted from log file generated during migration through Xen. The
four workloads are executed with both precopy and the TPO for comparison. The per-
formance of TPO is compared with basic precopy method corresponding to all three
parameters viz. Total pages transferred, Total migration time and Downtime. The results
of TPO method are also compared with reuse-distance (Alamdari and Zamanifar 2012)
method and with some other counterpart methods.

Comparison with Precopy Method

A. Total Pages Transferred: It shows the number of pages transferred during migration.
Table 2 and Fig. 5 show the total pages transferred in both precopy and TPO for all four
workloads. It shows that TPO performs better than precopy by reducing number of
pages transferred in all four workloads. When virtual machine is under low workload
like idle case, less pages are updated and most of the pages sent only once. This is the

 0

 20

 40

 60

 80

 100

 120

Idle KernelBuilt Memtester Stress1.0.1

T
ot

al
 P

ag
es

 T
ra

ns
fe

rr
ed

 *
 1

00
00

Load Types

Precopy
TPO

Fig. 5  Total pages transferred versus load types

Table 2  Total pages transferred

System status Precopy TPO Reduction ratio (%)

Idle 296,354 287,978 2.83

Kernel compile 454,311 342,951 24.51

Memtester 4.3 569,590 363,906 36.11

Stress 1.0.1 1,056,144 304,664 71.15

Page 15 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

reason that, total pages transferred in TPO method as compared to precopy method is
reduced by 2.83 %. For the case of heavy work load or write-intensive load, many pages
get updated and sent frequently in precopy method. Number of pages sent multiple
times in precopy method is considerably reduced in TPO method because in the latter,
most frequently updated pages are kept till last iteration and then sent. As a result, TPO
performs well and significantly reduces total pages transferred.

 B. Total Migration time: It is the time taken by all the ‘n’ iterations during migra-
tion. TPO effectively reduces the number of pages transferred in each iteration during
migration by keeping frequently updated pages till last iteration. Due to this, time taken
by all iterations is reduced, which results in reduction of total migration time. Table 3
and Fig. 6 show the total migration time taken by both precopy and TPO, which clearly
shows that TPO performs well and reduces total migration time significantly for all four
workloads.

C. Downtime: It is the time taken by the last stop and copy iteration, in which virtual
machine is stopped at source host and resumed at target host after transferring remain-
ing memory pages. It is one of the important parameter which directly affects the ser-
vice availability. Its value should be as minimum as possible. Table 4 and Fig. 7 show the

 0

 50

 100

 150

 200

 250

 300

 350

Idle KernelBuilt Memtester Stress1.0.1

T
ot

al
 M

ig
ra

tio
n

T
im

e
(m

s)
 *

 1
00

0

Load Types

Precopy
TPO

Fig. 6  Total migration time versus load types

Table 3  Total migration time

System status Precopy TPO Reduction ratio (%)

Idle 103,435 84,871 17.95

Kernel compile 144,101 106,035 26.42

Memtester 4.3 127,802 87,152 31.74

Stress 1.0.1 305,277 90,434 70.38

Page 16 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

downtime for both methods with all four workloads. Downtime in TPO for idle case is
almost equal to precopy method. TPO gives less downtime than precopy method for
higher workload. It is due to reduction in transfer of extra pages in last iteration because
only frequently updated pages are kept till last iteration while rest of the pages are trans-
ferred during previous iterations.

Comparison with reuse‑distance (Alamdari and Zamanifar 2012) method

The TPO is also compared with prediction based reuse-distance (Alamdari and Zamanifar
2012) method for the same sort of parameters and workloads. Tables 5, 6, and 7 show the
difference in reduction ratio between them for each performance parameter viz. total page
transferred, total migration time and downtime. Both methods are compared with their
reduction ratio corresponding to precopy method. From the results, it is clear that TPO
also improves all the performance parameters in comparison to reuse-distance method.

TPO method performs well as compared to reuse-distance method because it only
transfers unmodified pages in first iteration and less frequently updated pages in further
iterations. In TPO method, the number of pages transferred is minimized effectively.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Idle KernelBuilt Memtester Stress1.0.1

D
ow

nt
im

e
(m

s)

Load Types

Precopy
TPO

Fig. 7  Downtime versus load types

Table 4  Downtime

System status Precopy TPO Reduction ratio (%)

Idle 233 231 0.9

Kernel compile 6570 3521 46.4

Memtester 4.3 73,235 70,024 4.39

Stress 1.0.1 62,820 60,699 3.4

Page 17 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Whereas, reuse-distance method sends all memory pages in first iteration, which is big
in number and greatly increases the total number of pages transferred.

Overhead analysis

Figure 8 shows the redundancy ratio for both precopy and TPO with all four workloads.
From the figure it is clear that the overhead induced by the TPO method is significantly
less as compared to precopy method. Less overhead makes TPO method more efficient
in terms of bandwidth utilization and migration time. Other than this, TPO is also ana-
lyzed for space and processing overheads. The TPO uses TO_SEND_h[i] array to store
the count for each memory page, based on number of times it is updated. Majority of
times, it will have less entries than total number of pages and in worst case, it will be
equal to the total number of pages of virtual machine. In worst case, space overhead
0.05% (for page size 4KB) is used to store the TO_SEND_h[i] array, which is very less
and easily bearable. All the processing (prediction of frequently updated pages) are per-
formed on the host machine, so there is no impact of processing on virtual machine.
Memory allocation and de-allocation is dynamic in nature and hence, automatically
freed after virtual machine migration. Similar bitmaps have also been used in other
works (Svärd et al. 2011; Hu et al. 2011; Ma et al. 2010).

Table 5  Total pages transferred

System status Reuse-distance (Alamdari
and Zamanifar 2012) compared
with precopy (%)

TPO compared
with precopy (%)

Difference
in reduction
ratio (%)

Idle 0.27 2.83 2.56

Kernel compile 18.1 24.51 6.4

Memtester 4.3 31.9 36.11 4.21

Stress 1.0.1 68 71.15 3.15

Table 6  Total migration time

System status Reuse-distance (Alamdari
and Zamanifar 2012) compared
with precopy (%)

TPO compared
with precopy (%)

Difference
in reduction ratio
(%)

Idle 16.5 17.95 1.4

Kernel compile 22.2 26.42 4.2

Memtester 4.3 22.8 31.74 8.94

Stress 1.0.1 62.3 70.38 8.08

Table 7  Downtime

System status Reuse-distance
(Alamdari and Zamanifar 2012)
compared with precopy (%)

TPO compared
with precopy (%)

Difference
in reduction
ratio (%)

Idle −53 0.9 53.9

Kernel compile 40.1 46.4 6.3

Memtester 4.3 1.8 4.39 2.59

Stress 1.0.1 0.4 3.4 3

Page 18 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Comparison with other methods

TPO is also compared with other works for analyzing it more noticeably. Table 8 gives
a comparative analysis for the behavior of TPO and other methods as compared to pre-
copy corresponding to the parameters such as total page transferred, total migration
time, downtime, overhead, experimental workloads used and their migration techniques
used.

Effect of number of iterations

Number of iterations is one of the important factors which affects the migration time. In
order to analyze the effect of number of iterations, both TPO and precopy methods are
run for 10, 20, and 30 iterations respectively and compared with each other. After ana-
lyzing both methods at different number of iterations, it is found that by reducing the
numbers of iterations both total pages transferred, and total migration time are reduced
considerably but downtime increases by a small amount. The analysis also shows that the
TPO further reduces total pages transferred, and total migration time for 10 iterations, for
all types of workloads because the transfer of redundant pages in subsequent iterations is
reduced. Downtime is also reduced for rest of workloads except for higher workload such
as stress 1.0.1 where frequency of page updation is high. Table 9 shows the improvement
of all three performance parameters viz. total pages transferred, total migration time and
downtime (except for stress) by TPO for 10 iterations compared to 30 iterations of the pre-
copy method at different workloads. Figures 9, 10, and 11 shows the comparison of TPO at
iteration 10 with the precopy method at 10, 20, and 30 iterations respectively.

From above analysis, it can be concluded that if number of iterations are chosen
dynamically according to the workloads then the migration method performs more effi-
ciently and gives better performance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Idle KernelBuilt Memtester Stress1.0.1

R
ed

un
da

nc
y

R
at

io

Load Types

Precopy
TPO

Fig. 8  Redundancy ratio

Page 19 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

Open issues
The virtualization technology provides the ability to transfer virtual machine from one
physical host to another using virtual machine live/offline migration. In order to keep
transfer time and overhead minimum, efficient virtual machine live migration methods
are required. Apart from this, other issues are also there which need to be addressed to
make the migration method applicable on most of the virtual environments. This section
identifies and discusses these key issues.

Table 8  Comparison of various migration methods along with TPO method

Here, ↓ is decrease in value, ↑ is increase in value, ‘—’ shows parameter not specified, TPT is Total Pages Transferred, TMT
is Total Migration Time, DT is Downtime, ↑ ∗ is improvement but with no data specified, MT is Migration time, DT* is Data
Transferred

S.no. Migration
techniques

References Parameters Overhead Workload

TPT TMT DT

1. Compression
based

Ma et al.
(2012)

50.5 % ↓ 48.2 % ↓ 47.6 % ↓ — Idle, static web,
dynamic
web, stream
video, kernel
compiler

Svärd et al.
(2011)

51 % ↓ 35 % ↓ Factor
10–20 ↓

— LMBench
benchmark,
streaming
video server

Zhang et al.
(2010)

56.6 % ↓ 34.9 % ↓ 23.16 % ↓ — Compilation,
VOD, static
web, dynamic
web

Jin et al.
(2009)

68.8 % ↓ 32 % ↓ 27.1 % ↓ — Static web,
dynamic web,
kernel-com-
piler, dbench,
MUMmer
(memory-
intensive)

2. CPU schedul-
ing based

Jin et al.
(2011)

— 1s ↑ in TMT 88 % ↓ 6 % More
CPU usage

Static web,
dynamic web

3. Shared stor-
age based

Jo et al.
(2013)

— 30 % ↓ — 0.2 % Space RDesk, admin,
file I/O

4. Prediction of
frequently
updated
pages
based

 Alam-
dari and
Zamanifar
(2012)

68 % ↓ 62.3 % ↓ 0.4 % ↓ — Idle, kernel built,
memtester
4.3 (memory-
intensive),
stress 1.0.1

Ma et al.
(2010)

34 % ↓ 32.5 % ↓ ↑* — MUMmer
(memory-
intensive)

Liu et al.
(2011)

Reduced migration cost 72.9 % in terms
of MT and DT*

— Linux idle, TPC-
C, Dbench,
LINPACK,
SPECweb2005

Hu et al.
(2011)

↑* Bound no.
of itera-
tions 3–5

↑* ↑* — Low and high
dirty page
environment

TPO 71.1 % ↓ 70.4 % ↓ 3.4 % ↓ 0.05 %
Space

Idle, kernel built,
memtester
4.3 (memory-
intensive),
stress 1.0.1

Page 20 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

 0

 20

 40

 60

 80

 100

Idle KernelBuilt Memtester Stress1.0.1

T
ot

al
 P

ag
es

 T
ra

ns
fe

rr
ed

 *
 1

00
00

Load Types

TPO10Iter
Precopy10Iter
Precopy20Iter

Precopy30Iter

Fig. 9  Total pages transferred

 0

 50

 100

 150

 200

 250

 300

 350

Idle KernelBuilt Memtester Stress1.0.1

T
ot

al
 M

ig
ra

tio
n

T
im

e
(m

s)
 *

 1
00

0

Load Types

TPO10Iter
Precopy10Iter
Precopy20Iter

Precopy30Iter

Fig. 10  Total migration time

Table 9  Percentage improvement of TPO method for 10 iterations over precopy for 30 iter-
ations

S.no. Parameters Idle Kernel compile (%) Memtester 4.3 (%) Stress 1.0.1 (%)

1 Total pages transferred 9.6 % 37.45 40.93 73.12

2 Total migration time 23.3 % 41.05 34.85 72.46

3 Downtime ≈ Equal 28.4 3.4 −6.4

Page 21 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

WAN (Wide Area Network) Environment: Most of the migration methods con-
sider LAN (Local area network) environment for the migration, in which they have
fair amount of available network bandwidth for the transfer of memory pages. But, the
scenario will change if it moves towards the WAN. In the WAN, virtual machines are
moved over the geographically separated cloud locations, having high latency and low
network bandwidth as compared to LAN. Migration of big virtual machines over WAN
with low service delay is very challenging and needs different solutions and techniques
unlike traditional method used for LAN environment.

Bose et al. (2011) presents an optimized virtual machine live migration method over
WAN environment. It replicates the copy of virtual machine at different sites. Scheduler
selects the primary copy for updating, based on changing cost parameters, which gives
the cost associated with the selection of primary copy for updation and also propagates
the changes to other copies. This method is highly dependent on the replica placement
strategies and on the ration of additional storage requirement. Hirofuchi et al. (2009)
also uses two key techniques viz., on-demand fetching and background copying for the
efficient virtual machine migration over WAN.

Liu et al. (2015) presents the VMbuddies coordination system to correlate virtual
machine migrations within a WAN environment. By using synchronize protocol and an
optimal network bandwidth allocation method, VMbuddies coordinates virtual machine
migrations to minimize the migration cost. It also effectively reduces the performance
degradation. In this method, the virtual machines disk image is replicated before the
memory migration starts in WAN environment.

Concurrent Migration of Multiple Virtual Machines: Transfer of more than one virtual
machines concurrently in a virtualized environment leads to increase in performance

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Idle KernelBuilt Memtester Stress1.0.1

D
ow

nt
im

e
(m

s)

Load Types

TPO10Iter
Precopy10Iter
Precopy20Iter

Precopy30Iter

Fig. 11  Downtime

Page 22 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

overhead and complexity. To maintain the efficiency of virtual machine live migration
along with overhead and complexity, improvement in traditional virtual machine live
migration method is required.

Energy Consumption: In present scenario, the energy consumption and carbon emis-
sion by the datacenter is a serious issue. When virtual machines are migrated within
datacenter, additional energy is consumed by it which impacts on the carbon emitted
by the datacenter. This issue is discussed by Beloglazov et al. (2012), in which it presents
the energy-aware resource allocation method for allocating resources within data cent-
ers and shows that the migration also increases energy consumption. This concludes the
need of energy efficient live migration methods.

Security: In the rush to take advantage of the virtual machine live migration, security
issues are often ignored. During migration, virtual machine is moved over an insecure
channel and stored on some another machine. It is the point where the intruder can get
control over the virtual machine and simultaneously affect the target machine. Another
issue is virtual machine authentication i.e., only legitimate user should be enabling the
virtual machine migration. These security issues are needed to be handled during vir-
tual machine live migration. Zhang et al. (2008) discusses the virtual machine migration
security issues and proposes a secure migration system. A detail survey on cloud secu-
rity is discussed by Vaquero et al. (2011), which helps to better understand the security
as a challenge.

Conclusion and future work
Virtual machine live migration is a process of moving virtual machine across hosts
within a virtualized datacenter. Large number of virtual machine migration consumes
high amount of network bandwidth as well as imposes performance overhead which
adversely affects the overall efficiency of the system. As a solution, efficient migration
methods are required which improve the migration process as well as impose minimum
overhead. A virtual machine live migration method is evaluated based on the perfor-
mance parameters such as number of pages transferred during migration, time to com-
plete the migration process and downtime. Precopy method is one of the popular virtual
machine live migration method, which iteratively transfers updated memory pages to
migrate consistent image of virtual machine. Various work has been proposed to make
precopy method more efficient by optimizing above parameters. This paper explores
these works in detail. The main drawback of precopy method is transferring of all
updated pages in each iteration which results into multiple time transfer of same pages.

In order to solve this problem, this paper proposes three phase optimization (TPO)
method, which divides the whole migration process into three phases. The main aim of
classifying the iterations into different phases is to minimize the transferring of redun-
dant memory pages by applying different techniques in different phases. First phase
consist of iteration one, in which only unmodified pages are transferred instead of com-
plete virtual machine image. Second phase consists of iterations 2 to ‘n− 1’, in which
less frequently updated pages are sent. For this, TPO method classifies pages into less
updated and frequently updated pages with the help of historical statistics of memory
pages updated. It is inspired from the clustering method which classifies the elements
of same property in one group. Third phase covers last iteration of migration method,

Page 23 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

which limits the downtime by using RLE compression method, only when number of
remaining pages are very high.

The experimental results show that the TPO method effectively improves the migra-
tion performance by improving the total pages transferred by 71 %, total migration time
by 70 % and downtime by 3 % with respect to the precopy method for higher workload.
This paper also shows the analysis of precopy and TPO methods for different number
of iterations. Proposed TPO method for 10 iterations is compared with precopy for 30
iterations on all types of workload. It improves total pages transferred by 73 %, and total
migration time by 72 %, with little increasing downtime for higher workloads where
page updating rate is very high. From this analysis, it can be suggested that if the number
of iterations is kept dynamic in place of static then the TPO further improves the perfor-
mance of migration method. It will be studied in more detail in future.

This paper also identifies and discusses some of the open issues related to virtual
machine live migration and aimed to work on these issues in order to increase the appli-
cability of virtual machine live migration method. In future, the research work is planned
to migrate multiple virtual machines concurrently along with maintaining the perfor-
mance of migration method with minimum overhead in terms of space and processing.
Making TPO method energy efficient is also considered in future plan. Further, it is also
planned to make proposed TPO method eligible to run over WAN environment which
spreads virtualization across large geographical area.
Authors’ contributions
SS carried out conception generation and experimental design, drafting the manuscript and revising the manuscript. MC
carried out the concept generation and experimental design, revising the manuscript. Both authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 January 2016 Accepted: 21 June 2016

References
Alamdari JF, Zamanifar K (2012) A reuse distance based precopy approach to improve live migration of virtual machines.

In: 2012 2nd IEEE international conference on parallel distributed and grid computing (PDGC), IEEE, pp 551–556
Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtual-

ization. ACM SIGOPS Oper Syst Rev 37(5):164–177
Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data

centers for cloud computing. Future Gener Comput Syst 28(5):755–768
Bose SK, Brock S, Skeoch R, Rao S (2011) Cloudspider: combining replication with scheduling for optimizing live migra-

tion of virtual machines across wide area networks. In: 2011 11th IEEE/ACM international symposium on cluster,
cloud and grid computing (CCGrid), IEEE, pp 13–22

Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A (2005) Live migration of virtual machines. In: Pro-
ceedings of the 2nd conference on symposium on networked systems design & implementation-volume 2. USENIX
Association, pp 273–286

Hirofuchi T, Ogawa H, Nakada H, Itoh S, Sekiguchi S (2009) A live storage migration mechanism over wan for relocatable
virtual machine services on clouds. In: Proceedings of the 2009 9th IEEE/ACM international symposium on cluster
computing and the grid. IEEE computer society, pp 460–465

Hu B, Lei Z, Lei Y, Xu D, Li J (2011) A time-series based precopy approach for live migration of virtual machines. In: 2011
IEEE 17th international conference on parallel and distributed systems (ICPADS), IEEE, pp 947–952

Jin H, Deng L, Wu S, Shi X, Pan X (2009) Live virtual machine migration with adaptive, memory compression. In: IEEE
International conference on cluster computing and workshops, 2009. CLUSTER’09. IEEE, pp 1–10

Jin H, Gao W, Wu S, Shi X, Wu X, Zhou F (2011) Optimizing the live migration of virtual machine by cpu scheduling. J
Netw Comput Appl 34(4):1088–1096

Jo C, Gustafsson E, Son J, Egger B (2013) Efficient live migration of virtual machines using shared storage. In: ACM SIG-
PLAN notices, vol 48, ACM, pp 41–50

Page 24 of 24Sharma and Chawla ﻿SpringerPlus (2016) 5:1022

KVM. http://www.linux-kvm.org
Liu H, He B (2015) Vmbuddies: coordinating live migration of multi-tier applications in cloud environments. IEEE Trans

Parallel Distrib Syst 26(4):1192–1205
Liu H, Jin H, Liao X, Yu C, Xu C-Z (2011) Live virtual machine migration via asynchronous replication and state synchroni-

zation. IEEE Trans Parallel Distrib Syst 22(12):1986–1999
Liu W, Fan T (2011a) Live migration of virtual machine based on recovering system and cpu scheduling. In: Information

technology and artificial intelligence conference (ITAIC), 2011 6th IEEE joint international, vol 1. IEEE, pp 303–307
Liu H, Xu C-Z, Jin H, Gong J, Liao X (2011b) Performance and energy modeling for live migration of virtual machines. In:

Proceedings of the 20th international symposium on High performance distributed computing. ACM, pp 171–182
Liu Z, Qu W, Liu W, Li K (2010) Xen live migration with slowdown scheduling algorithm. In: 2010 International conference

on parallel and distributed computing, applications and technologies (PDCAT). IEEE, pp 215–221
Ma F, Liu F, Liu Z (2010) Live virtual machine migration based on improved pre-copy approach. In: 2010 IEEE international

conference on software engineering and service sciences (ICSESS). IEEE, pp 230–233
Ma Y, Wang H, Dong J, Li Y, Cheng S (2012) Me2: efficient live migration of virtual machine with memory exploration and

encoding. In: 2012 IEEE international conference on cluster computing (CLUSTER). IEEE, pp 610–613
Microsoft Corporation. http://www.microsoft.com/en-us/server-cloud/hyper-v-server/
Mishra M, Das A, Kulkarni P, Sahoo A (2012) Dynamic resource management using virtual machine migrations. IEEE Com-

mun Mag 50(9):34–40
Nelson M, Lim B-H, Hutchins G et al. (2005) Fast transparent migration for virtual machines. In: USENIX annual technical

conference, general track, pp 391–394
Sharma S, Chawla M (2013) A technical review for efficient virtual machine migration. In: 2013 International conference

on cloud & ubiquitous computing & emerging technologies (CUBE). IEEE, pp 20–25
Svärd P, Tordsson J, Hudzia B, Elmroth E (2011) High performance live migration through dynamic page transfer reorder-

ing and compression. In: 2011 IEEE 3rd international conference on cloud computing technology and science
(CloudCom). IEEE, pp 542–548

Vaquero LM, Rodero-Merino L, Morán D (2011) Locking the sky: a survey on iaas cloud security. Computing 91(1):93–118
VMware Incorporation. http://www.vmware.com
Waldspurger CA (2002) Memory resource management in vmware esx server. ACM SIGOPS Oper Syst Rev 36(SI):181–194
Xen. http://www.archive.xenproject.org/files/Marketing/HowDoesXenWork.pdf
Zhang F, Huang Y, Wang H, Chen H, Zang B, (2008), Palm: security preserving vm live migration for systems with vmm-

enforced protection. In: Trusted infrastructure technologies conference (2008) APTC’08. Third Asia-Pacific, IEEE, pp
9–18

Zhang X, Huo Z, Ma J, Meng D (2010) Exploiting data deduplication to accelerate live virtual machine migration. In: 2010
IEEE international conference on cluster computing (CLUSTER). IEEE, pp 88–96

http://www.linux-kvm.org
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/
http://www.vmware.com
http://www.archive.xenproject.org/files/Marketing/HowDoesXenWork.pdf

	A three phase optimization method for precopy based VM live migration
	Abstract
	Background
	Related work
	Background knowledge
	Performance parameters
	Xen architecture

	Three phase optimization (TPO) method
	Method design

	Simulation and performance evaluation
	Simulation setup
	Comparison with Precopy Method
	Comparison with reuse-distance (Alamdari and Zamanifar 2012) method
	Overhead analysis
	Comparison with other methods
	Effect of number of iterations

	Open issues
	Conclusion and future work
	Authors’ contributions
	References

