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Background
The benefits of portfolio optimization are well known to investors and other stakeholders. 
Strategies in portfolio selection have been well documented and unquestionably explored 
in finance and other related areas from a theoretical and much more practical perspective. 
Undoubtedly, a widely used approach is the mean–variance model by Markowitz (1952). 
He demonstrates how investors can employ risk-return tradeoff for wealth allocation 
using utility functions. Investors decide where along an efficient frontier a suitable bal-
ance between risk and return exist. Markowitz’s work has become the bedrock of portfolio 
selection analysis, thereby earning the name “Modern Portfolio Theory”. In a related study, 
Roy (1952) proposed a safety-first principle, which minimizes the shortfall probability in 
portfolio selection. For any investor whose general interest is downside risk measure of 
investment, Roy’s (1952) safety-first principle is much more suitable Chiu et al. (2012).

Under the safety-first principle, instead of employing utility functions, which is hard 
or even impossible to determine, a known amount of the principal is preserved. Thus, 
an investor predefines a minimum threshold level of return and opts for a portfolio 
of assets that attains this preservation of principal. Roy’s principle has over the years 
been studied. For instance, Bawa (1978) used the principle to maximize income, given 
the probability that a predefined threshold is greater than income. Haque et al. (2007) 
also applied safety-first through extreme value theory to portfolios of Mexican and U.S 
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equities. Rachev (2001) showed how the safety-first approach can be more efficient than 
the stable Paretian approach in portfolio theory.

Levy and Sarnat (1972) and Nawrocki (1999) show how safety-first principle and mean–
variance approach are akin. Levy and Sarnat (1972) found out that in the distinctive case 
where target rate of return is equal to risk-free return, both Roy’s safety-first principle and 
Markowitz’s mean–variance approach lead to the same optimal portfolio selection strat-
egy. However, both models have several restrictions which include but are not limited to 
the following: Firstly, both Markowitz and Roy employ symmetry about the mean vari-
ance as a risk measure. Variance takes into account the situation in which return exceeds 
mean value and this does not impact risk. Secondly, transaction costs are absent in safety-
first principle and mean–variance approach. According to DeMiguel et al. (2014), their 
loss in the mean–variance approach with the absence of transaction costs was 49.33 %. 
Borkovec et al. (2010) pointed out that 40 % of financial market participants attribute the 
fundamental loss in abnormal return to transaction costs. Lastly, both model frameworks 
are subjected to parameter uncertainty as returns of assets are considered as determinis-
tic parameters being depicted by a single point estimate which leads to estimation risk.

Variance, as a risk measure, penalizes both under-performance and over-perfor-
mance equally (Markowitz 1968). However, investors are only worried about underper-
formance. Roman et al. (2007) obtained a better portfolio by employing three indexes i.e. 
mean–variance-CVaR in comparison to mean–variance and mean-CVaR. The authors 
demonstrated that the mean-CVaR portfolio policy results in large variance, which leads 
to a small Sharpe ratio. Again, the CVaR of the portfolio generating from mean–vari-
ance model is large. To eliminate these inconsistencies between the strategies of mean–
variance and mean-downside risk models, Roman et al. (2007) proposed to merge CVaR 
and variance in a multi-objective portfolio selection strategy. Inspired by Roman et al. 
(2007)’s approach of combining a downside risk measure, CVaR, and variance, we con-
sider a portfolio optimization model with multiple risk measures. Recognizing a need to 
modify and improve Roy’s safety first principle, we consider merging our improved Roy-
safety first approach with variance as the portfolio risk measure.

The construction of a portfolio of investments is a significant problem faced by inves-
tors and institutions. A decision ought to be made to allocate weights to each investment 
with the intention of striking an appropriate balance between returns and risk. In reality, 
setting up a new portfolio or rebalancing an existing one requires costs to be incurred 
and must be inclusive in any realistic analysis. We incorporate proportional transaction 
costs (Kellerer et al. 2000; Muthuraman and Kumar 2006) which are induced by liquidity 
costs, tax and brokerage fees (Dumas and Luciano 1991; Kellerer et al. 2000; Lobo et al. 
2007) into our portfolio selection model.

In the mean–variance and Roy safety-first models, stock returns are considered determin-
istic and taken as a single point estimate which results in estimation risk or overfitting (Bawa 
et al. 1979; Merton 1980). A small variation in the input parameters of the standard Markow-
itz mean–variance approach and Roy safety-first principle usually lead to changes in the 
structure of the resulting portfolios (Brandt 2009). To reduce the undesired impact of esti-
mation risk or overfitting, models in the context of robustness (Goldfarb and Iyengar 2003; 
Tütüncü and Koenig 2004), stochastic programming (Rockafellar and Uryasev 2000), factor 
models (Green and Hollifield 1992; Nagai 2003; Schultz and Tiedemann 2003) and shrinkage 
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estimators (Jorion 1986; Ledoit and Wolf 2004) have been explored. Another method analo-
gous to our work is the modification of portfolio weights by adding regularizers or additional 
constraints to the portfolio strategy (Jagannathan and Ma 2003; DeMiguel et al. 2009; Brodie 
et al. 2009). Correcting undesired portfolio weights are as a result of large estimation risk 
of unknown parameters leading to the achievement of their desired forms and characteris-
tics. Jagannathan and Ma (2003) employed a short sale constraint in the minimum variance 
framework and found out the non-negativity constraint performs well as those computed 
with shrinkage estimators and factor models. In DeMiguel et al. (2009), authors added a con-
vex norm ball constraint to the portfolio weight and observed that the norm ball constrained 
portfolios had better out of sample performance than the portfolio strategies of the naive 
1/N diversification (Jagannathan and Ma 2003). The l2-norm constrained portfolio in general 
attained higher Sharpe Ratio than l1-norm constrained portfolios. We study the weight con-
strained portfolios by specifying the general norm as squared l2-norm ball.

The optimal portfolio of classical Roy safety-first principle and Markowitz’s model in 
the presence or absence of short sale constraint or stability constraints hold a large num-
ber of assets and especially small weights assigned to their proportions. However, hold-
ing a large number of assets leads to the investor incurring high transaction costs. Due 
to this factor and other market and economic frictions, investors often hold only a small 
number of stocks in their portfolio. This is usually known as a sparse portfolio (a port-
folio with few non-zero weights). With sparsity, one pre-sets limit of assets (stocks) with 
non-zero entries of portfolio allocations.

A method of constructing sparse portfolio termed hard threshold strategy was pro-
posed by Britten-Jones (1999) to statistically test each portfolio weight with a null 
hypothesis that weight is zero. Using F-test and t-test, Britten-Jones (1999) proposed that 
if the portfolio weights are statistically not different from zero; assigning zero reduces 
portfolio risk. Sparse portfolio weights can be derived by cardinality constrained portfo-
lio optimization (CCPO) problem (Chang et al. 2000; Maringer and Kellerer 2003; Ruiz-
Torrubiano and Suárez 2015). CCPO takes into account all portfolios of given number of 
assets and chooses an optimal portfolio. With the inclusion of cardinality constraint, the 
portfolio selection strategy becomes NP-hard (Moral-Escudero et al. 2006), and standard 
quadratic program solvers can no longer be adopted to tackle the problem. One resorts 
to several other methods or relaxations in search of near-optimal solutions at a moderate 
computational cost. Farrell and Reinhart (1997) suggested classification of assets based 
on geographical aspect, size, sector, etc. and made a selection of N assets from each of 
these classes. In Pai and Michel (2009), the cardinality constraints were handled via clus-
tering algorithm to reduce the size of the portfolio. More recently, Ruiz-Torrubiano and 
Suárez (2015) used a memetic approach that combines a genetic algorithm (GA) with an 
extended set encoding and quadratic programming (QP) in a mean–variance framework 
to deal with the cardinality constraint. An alternative relaxation method for which we 
employ in this paper is by constraining the l1-norm (Tibshirani 1996) which is also in con-
nection with the upper bound of the estimation risk as shown in Fan et al. (2012). The 
convexity nature of this type of regularization makes it more tractable. The use of norm 
penalty helps investors limit transaction costs and exposure to risky stocks.

As Roy safety-first principle minimizes the chances that the portfolio’s return will fall 
below the minimum acceptable return, introducing it in the mean–variance model helps 



Page 4 of 18Atta Mills et al. SpringerPlus  (2016) 5:919 

control the downside risk of the portfolio return. The modification and improvement of 
Roy safety-first principle and merging it with variance as a consolidated risk measure in 
a risk-return framework represents the main novelty of this research paper. In achieving 
our aim, we minimize our modified and improved Roy safety-first principle and impose 
the lower constraint on the mean return of the portfolio as in Markowitz’s mean–vari-
ance model. We also investigate the portfolio strategy with variance and Roy’s safety first 
principle as a consolidated risk measure in a mean-risk framework. To address the prob-
lem of estimation risk, we constrain the portfolio weights with squared l2-norm and pro-
ceed to achieve sparsity via l1-norm heuristic. We will explore the impact of transaction 
costs on portfolio selection strategies.

The paper is organized as follows. The next section presents our proposed portfolio 
selection strategies. It’s subsections study Roy safety-first principle and its modification, 
portfolio revision and stable and sparse portfolio. We perform numerical tests and pre-
sent computational results of our proposed methods in the subsequent section. Con-
cluding remarks are provided in the last section.

Proposed portfolio selection strategies
Investors allocate proportions of their capital among the assets they invest in. For 
the purpose of this study, these proportions are allocated to stocks. We denote by 
N the number of risky assets, R is the required return level, and x0 is the initial risky 
assets before rebalancing: x0k is the proportion of capital initially allocated to asset 
k , k = 1, 2, 3, ...,N . Let x, xb and xs be N dimensional vectors of controllable variables: xk 
is the portfolio invested in risky asset k after rebalancing, xbk is the purchases (proportion 
used) of risky asset k and xsk is the sales (proportion obtained) of risky asset k. The trans-
action costs incurred when buying risky assets is cb and that of selling risky assets is cs. 
The financial portfolio is described by a N-dimensional vector of random returns r. The 
portfolio total random return is Rp = f (x, r) =

∑N
k=1 xkrk, portfolio expected return 

vector µp = Exf (x, r) =
∑N

k=1 Exrk, σ 2
p = Ex(Rp − Ex(Rp))

2 as variance of portfolio 
return and Q as the variance-covariance matrix of the portfolio return.

Roy safety‑first principle and it’s modification

Most investors’ aim is to maximize returns and minimize risk. The Roy safety-first prin-
ciple advocates avoiding extreme losses through the minimization of disaster probability. 
To optimally construct a portfolio strategy, Roy’s safety-first principle defines a thresh-
old or a minimum acceptable return R, below which the portfolio wealth is considered 
to be a disaster. The best portfolio is one that minimizes the chances that the portfolio’s 
return, Rp, will fall below a minimum acceptable return, R. In essence, an investor selects 
his portfolio by solving this optimization problem:

where e is a vector with ones as entries and P is a probability measure. Roy employed 
Bienayme–Tchebycheff’s inequality as the investor is likely not to know the actual prob-
ability function and obtained an approximation

(1)
minimize

x∈RN
P(f (x, r) ≤ R)

subject to eT x = 1
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Thus, the optimization problem is reformulated as

The modification to the Roy’s approach we adopt is by using a coherent downside 
risk measure known as Conditional Value-at-Risk or Expected shortfall as it has a set of 
desirable properties for a risk measure (Platen and Heath 2006) leading to more accu-
rate estimates of probability. For a detailed study on desirable properties of an ideal risk 
measure in portfolio theory, we refer the reader to Rachev et al. (2008).

A well-known downside risk measure known as Value-at-Risk focuses on the percen-
tiles of loss distributions and measures the predicted maximum loss at a given probabil-
ity level. Mathematically it is formulated as α-quantile VaRα(X) = min{z | (FX (z) ≥ α} , 
where X is a loss random variable and α ∈ (0, 1) is the given probability level. Values 
for α often used are 90 %, 95 % and 99 %. Considering Value-at-Risk (VaR) has undesir-
able properties such as non-subadditive and non-smooth etc., Rockafellar and Uryasev 
(2000) introduced a coherent downside risk measure termed Conditional Value-at- Risk 
(CVaR) and for α ∈ (0, 1) represented it as

where

Equivalently, for x ∈ X ⊆ R
N and random vector r ∈ R

N which represents the actual 
portfolio return has a continuous density function p(r)

First, we will determine the semi-deviation of the random return f(x, r) from the α-quan-
tile VaRα(x). With respect to Bienayme–Tchebycheff’s inequality, the following estimate 
is valid for VaRα)(x) > R:

P(Rp ≤ R) ≤
σ 2
p

(µp − R)2

(2)
minimize

x∈RN

σ 2
p

(µp − R)2

subject to eT x = 1

CVaRα(X) =

∫ +∞

−∞

zdFα
X (z)

Fα
X (z) =

{

0 when z < VaRα(X),
FX (z)−α
1−α

when z ≥ VaRα(X).

CVaRα(x) =
1

1− α

∫

f (x,r)≥VaRα(x)
f (x, r)p(r)dr

(3)

P{f (x, r) ≤ R} = P{−f (x, r) ≥ −R}

= P{VaRα)(x)− f (x, r) ≥ VaRα)(x)− R}

= P{| f (x, r)− VaRα)(x) |≥ VaRα)(x)− R}

≤ P | {min{f (x, r)− VaRα)(x), 0} |≥ VaRα)(x)− R}

≤
Ex | min{f (x, r)− VaRα(x), 0} |

VaRα)(x)− R
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Let us consider an α-quantile

and a measure of risk

which is termed expected shortfall from the α-quantile VaRα(x) value. The estimate (3) 
can be written as

Therefore (1) can be reformulated by considering the approximation of the right hand 
side of (4) and obtain the following

Telser (1955) considered a portfolio strategy by maximizing portfolio returns under 
the the constraint of Roy safety-first principle. He solved the optimization problem:

Inspired by Telser’s approach, we constrain (5) with the minimum mean return vector 
µTx ≥ L from below where L is the lower bound of uTx, where L > R. Thus we obtain 
the optimization problem :

In another approach, we consider variance and the modified Roy’s safety first-principle 
as a consolidated risk measure in a mean-risk framework. To this end, we propose the 
optimization problem:

VaRα(x) = min{z | P(f (x, r) ≤ z) ≥ α} =⇒ P{(f (x, r) ≥ VaRα(x)} = 1− α

CVaRα(x) =
Ex | min{f (x, r)− VaRα(x), 0} |

P{f (x, r) ≥ VaRα(x)}

(4)

P{f (x, r) ≤ R} ≤
P{f (x, r) ≥ VaRα(x)}

VaRα(x)− R

Ex | min{f (x, r)− VaRα(x), 0} |

P{f (x, r) ≥ VaRα(x)}

≤
(1− α)CVaRα(x)

VaRα(x)− R

(5)

minimize
x∈RN

(1− α)CVaRα(x)

VaRα(x)− R

subject to VaRα(x) > R

eTx = 1

(6)
maximize

x∈RN
µTx

subject to P(f (x, r) ≤ R) ≥ 1− ǫ

(7)

P0 : minimize
x∈RN

(1− α)CVaRα(x)

VaRα(x)− R

subject to µTx ≥ L

VaRα(x) > R

eTx = 1

(8)

P1 : minimize
x∈RN

xTQx +
(1− α)CVaRα(x)

VaRα(x)− R

subject to µTx ≥ L

VaRα(x) > R

eTx = 1
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The rest of the modifications is geared towards investigating realistic constraints such 
as transaction costs, sparsity, and stability to P0 and P1 on the financial market.

Portfolio revision

We consider an extension of problems (7) and (8) in which transaction costs are incurred 
to rebalance or revise the initial portfolio x0, into an efficient portfolio x. A portfolio of 
investments may require rebalancing on periodical basis because of updated risk, and 
return information is generated over time. We make the following assumptions on the 
transaction cost function c.

Assumption 1 The transaction cost function satisfies the following:

(i)  c(x) is a convex function of x
(ii) c(0) = 0
(iii) c(x) ≥ 0, ∀x

To achieve portfolio xk from the previous or initial portfolio x0k, we make a payment 
of transaction costs c(x − x0). We incorporate proportional transaction costs (Kellerer 
et al. 2000; Muthuraman and Kumar 2006; Mitchell and Braun 2013) which are induced 
by liquidity costs, tax, brokerage fees (Dumas and Luciano 1991; Kellerer et  al. 2000; 
Lobo et al. 2007) into our model. Therefore, proportional transaction cost follows this 
structure:

where

where cost of buying is cbk 0 and cost of selling is csk > 0.
The P1 model with proportional transaction costs (P1t) is the optimization problem

c(x − x0) =

N
∑

k=1

ck

(

xk − x0k

)

ck(xk − x0k) =

{

cbk(xk − x0k) if xk ≥ x0k ,

csk(x
0
k − xk) if otherwise.

(9)P1t : minimize
x,xs ,xb∈RN

xTQx +
(1− α)CVaRα(x)

VaRα(x)− R

(10)subject to µTx −

N
∑

k=1

(

cbxbk + csxsk

)

≥ L

(11)
N
∑

k=1

xk + cb
N
∑

k=1

xbk + cs
N
∑

k=1

xsk = 1

(12)xk = x0k + xbk − xsk , ∀k = 1, . . . ,N

(13)xbk · x
s
k = 0, ∀k = 1, . . . ,N

(14)VaRα(x) > R
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The model P1t minimizes the upper bound estimate (5) w.r.t x and superimposes the 
lower constraint L ≤ µ′x −

∑N
k=1(c

bxbk + csxsk) on the average return after the deduction 
of transaction costs.

Explaining the constraints with respect to transaction costs, the above optimization prob-
lem is subjected to a set of linear constraints. Constraint (10) requires the net return of 
the portfolio after the deduction of transaction costs to be greater or equal to a threshold 
level L. Constraint (11) is the budget constraint: the capital available to cover transaction 
costs and shares of stocks. Constraint (12) shows that xk represents the portfolio position 
to be chosen explicitly through sold shares xsk and purchased shares xbk that are rebalanced 
adjustments to the initial position x0k of stock k. Constraint (13) and constraint (15) are the 
complementary constraint and non-negative constraint respectively. They prevent any pos-
sibility of concurrent purchases and sales (Dybvig 2005). Note that P0 model with propor-
tional cost (P0t) is defined similarly but without the variance term in the objective function.

Stable and sparse portfolio

In a portfolio selection strategy where the dimensionality of the set of candidate assets is 
high, sparsity is desired. When the number of assets is large, a non-regularized numeri-
cal approach will intensify the effects of estimation risk, leading to an unstable and unre-
liable estimate of the vector x. Typically, portfolio managers want to set up portfolios 
with suitable balance between risk and return by investing in a small number of assets, 
thereby limiting their transaction, management, and monitoring costs.

To obtain meaningful and sparse (zero components) results, a regularization proce-
dure is usually adopted. A standard approach is to augment the objective function of 
interest with a l0-norm penalty or adding a cardinality constraint �x�0 ≤ N ′ to optimi-
zation problems P0t and P1t, where ‖x‖0 is the number of the non-zero entries of x and 
N ′ is the upper bound limitation of assets to be managed in the portfolio. However, 
with the inclusion of cardinality constraint, the portfolio selection strategy becomes 
NP-hard (Moral-Escudero et al. 2006). We therefore impose its equivalent l1-norm pen-
alty as employed by Brodie et al. (2009) among others. The l1-norm is a convex function 
of x, and such convex relaxation makes portfolio selection strategy more tractable.

To this end, we suggest to evaluate the portfolio weights by

(15)xbk ≥ 0, xsk ≥ 0, ∀k = 1, . . . ,N

(16)

S1t : minimize
x,xs ,xb∈RN

xTQx +
(1− α)CVaRα(x)

VaRα(x)− R
+ τ1�x�1

subject to µ′x −

N
∑

k=1

(

cbxbk + csxsk

)

≥ L

N
∑

k=1

xk + cb
N
∑

k=1

xbk + cs
N
∑

k=1

xsk = 1

xk = x0k + xbk − xsk , ∀k = 1, . . . ,N

xbk · x
s
k = 0, ∀k = 1, . . . ,N

VaRα(x) > R

xbk ≥ 0, xsk ≥ 0, ∀k = 1, . . . ,N
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where the l1-norm of a vector x ∈ R
N is defined by �x�1:=

∑N
k=1 | xk | and τ1 is an adjust-

able parameter that controls the sparsity of the portfolios. Similarly, S0t can be formu-
lated without the variance term in the objective function.

Optimization models S0t and S1t have estimation risk or overfitting problem. The  
l1-norm penalty expedites sparsity of x and leads to a subset of assets receiving zero 
weights. Such sparsity may result in under-diversification and extreme weights of the 
portfolio. On the contrary, convex norm ball does not produce sparsity but it can effi-
ciently regularize size of portfolio weight vector. Thus, the norm ball constraint used 
by DeMiguel et al. (2009) can function as a solution to alleviate the problems of under-
diversification and extreme weights of the portfolio aside estimation risk. Following 
DeMiguel et al.’s (2009) work and specifying the general squared l2-norm under no short 
sale constraint, we propose to formulate the portfolio weights by

and

where τ1 and τ2 are tuning parameters controlling sparsity and stability respectively, with 
�x�22 = x′x as the squared l2-norm of a vector. We estimate tuning parameters τ1 and τ2 
by a method of cross-validation. We perform cross-validation for various possible val-
ues of the parameters and select the parameter value that produces the minimum cross-
validation average error. A combination of the l2-norm penalty and l1-norm penalty is 
referred to as elastic net (Zou and Hastie 2005).

(17)

RSMt : minimize
x,xb,xs∈RN

(1− α)CVaRα(x)

VaRα(x)− R
+ τ1�x�1 + τ2�x�

2
2

subject to µTx −

N
∑

k=1

(

cbxbk + csxsk

)

≥ L

N
∑

k=1

xk + cb
N
∑

k=1

xbk + cs
N
∑

k=1

xsk = 1

xk = x0k + xbk − xsk , ∀k = 1, . . . ,N

xbk · x
s
k = 0, ∀k = 1, . . . ,N

VaRα(x) > R

xbk ≥ 0, xsk ≥ 0, ∀k = 1, . . . ,N

(18)

RSMVt : minimize
x,xb,xs∈RN

xTQx +
(1− α)CVaRα(x)

VaRα(x)− R
+ τ1�x�1 + τ2�x�

2
2

subject to µTx −

N
∑

k=1

(

cbxbk + csxsk

)

≥ L

N
∑

k=1

xk + cb
N
∑

k=1

xbk + cs
N
∑

k=1

xsk = 1

xk = x0k + xbk − xsk , ∀k = 1, . . . ,N

xbk · x
s
k = 0, ∀k = 1, . . . ,N

VaRα(x) > R

xbk ≥ 0, xsk ≥ 0, ∀k = 1, . . . ,N
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Necessary and sufficient conditions for optimal problems

In this section we would like to identify the necessary and sufficient conditions for opti-
mality of problems (17) and (18). We investigate the Karush-Kuhn-Tucker (KKT) con-
ditions for these problems under the assumption of normality and study whether the 
constrained problems have optimal solutions.

KKT conditions for optimal problem

The KKT conditions provide necessary conditions for a point to be optimal point for a 
constrained nonlinear optimal problem. The system

has a unique solution

i.e.

From the budget constraint 
∑N

k=1 xk + cb
∑N

k=1 x
b
k + cs

∑N
k=1 x

s
k = 1, we get that  

cb
∑N

k=1 x
b
k + cs

∑N
k=1 x

s
k = 1−

∑N
k=1 xk. Implementing the first constraint, µT

x−
∑

N

k=1
(cbxb

k
+ c

s
x
s

k
) ≥ L we get that µTx − (1−

∑N
k=1 xk) ≥ L. Thus, RSMt can be rep-

resented as

Similarly, RSMVt can be represented with addition of xTQx to the objective function.
Let x be a regular point for the problem RSMt. Then the point x is a local minimum 

of f subject to constraints (20) if there exists Lagrange multipliers �1, �2 and �3 for the 
Lagrangian function L = f1(x)+ �1g1(x)+ �2h1(x)+ �3g2(x) such that the following are 
true.

(19)

xk = x0k + xbk − xsk , ∀k = 1, . . . ,N

xbk · x
s
k = 0, ∀k = 1, . . . ,N

xbk ≥ 0, xsk ≥ 0

xbk =

{

xk − x0k , if xk − x0k ≥ 0
0, else

xsk =

{

x0k − xk , if xk − x0k < 0
0, else

xbk = max{xk − x0k , 0}

xsk = max{x0k − xk , 0}

(20)

minimize
x∈RN

f1(x) =
(1− α)CVaRα(x)

VaRα(x)− R
+ τ1�x�1 + τ2�x�

2
2

subject to g1(x) = µTx −

(

1−

N
∑

k=1

xk

)

≥ L

h1(x) = cb
N
∑

k=1

max
{

xk − x0k , 0
}

+ cs
N
∑

k=1

max
{

x0k − xk , 0
}

= 1−

N
∑

k=1

xk

g2(x) = VaRα(x) > R



Page 11 of 18Atta Mills et al. SpringerPlus  (2016) 5:919 

1. ∂L
∂x

= (1− α)CVaR′
α(x)VaRα(x)− R−

(1−α)CVaRα(x)VaR
′
α(x)

(VaRα(x)−R)2
+ τ1c

1 + 2τ2x − �1

(µ+ I
N×1)+ �2c

2 − �3VaR
′
α(x) = 0

2. �1(L− µTx − (1−
∑N

k=1 xk) = 0

3. �3(R− VaRα(x)) = 0

4. �1, �3 ≥ 0

5. µTx − (1−
∑N

k=1 xk) ≥ L

6. cb
∑N

k=1max{xk − x0k , 0} + cs
∑N

k=1max{x0k − xk , 0} = 1−
∑N

k=1 xk

7. VaRα(x) > R

where

Remark 1 Since the function h1 in (20) is linear and the functions g1 and g2 are convex, 
then the feasible region � = {x : h1, g1, and g2} is a convex set. On the other hand, f1 is 
a convex function subject to the variable x. We see that any local minimum for problem 
(20) is a global minimum too and KKT conditions are also sufficient.

Similarly, the above KKT conditions holds for RSMVt for when f1(x) in (20) is 
f2(x) = xTQx + (1−α)CVaRα(x)

VaRα(x)−R + τ1�x�1 + τ2�x�
2
2 and when the following are true

1. ∂L
∂x

= 2Qx + (1− α)CVaR′
α(x)VaRα(x)− R−

(1−α)CVaRα(x)VaR
′
α(x)

(VaRα(x)−R)2
+ τ1c

1

+2τ2x − �1(µ+ I
N×1)+ �2c

2 − �3VaR
′
α(x) = 0

2. �1(L− µTx − (1−
∑N

k=1 xk) = 0

3. �3(R− VaRα(x)) = 0

4. �1, �3 ≥ 0

5. µTx − (1−
∑N

k=1 xk) ≥ L

6. cb
∑N

k=1max{xk − x0k , 0} + cs
∑N

k=1max{x0k − xk , 0} = 1−
∑N

k=1 xk

7. VaRα(x) > R

where

Remark 2 Since the feasible region � = {x : h1, g1, and g2} in (20) and the objective 
function f2(x) are convex, then the feasible region is a convex set. We can see that the 

c1k =







1, if xk > 0
−1, if xk < 0
∈ [−1, 1], if xk = 0

c2k =







cb, if xk > x0k
−cs, if xk < x0k
∈ [−cs, cb], if xk = x0k

c1k =







1, if xk > 0
−1, if xk < 0
∈ [−1, 1], if xk = 0

c2k =







cb, if xk > x0k
−cs, if xk < x0k
∈ [−cs, cb], if xk = x0k
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KKT conditions are also sufficient and any local minimum for problem (20) with objec-
tive function f2(x) is a global minimum as well.

Empirical application
Data and models

In this section, we use optimization models RSMt (17) and RSMVt (18) to construct 
optimal portfolios and evaluate out-of-sample performance using stocks traded on New 
York Stock Exchange (NYSE). Historical daily returns of 500 randomly selected stocks 
over the period January 2003 to December 2015 were extracted from Yahoo Finance. 
The risk-free rate is proxied by the 6-month US Treasury Bill rate. The selection crite-
rion of the random sampling of stocks is based on stocks being traded throughout the 
evaluation period. We also use S&P 500 index daily stock price data to test the robust-
ness of our results over the same time period even though 21 % of randomly selected 
stocks are components of S&P 500. We chose a short term period as distribution of stock 
prices tend to change shape over time. To solve the portfolio strategies, we consider the 
lower bound of mean return as threshold return level. We compute initial positions 
x0k , k = 1, . . . ,N  for constructing portfolios for January 2006 to December 2008 and Jan-
uary 2009 to January 2015 by solving classical Roy safety-first optimization problem:

and by setting x0 = x̄∗, with x̄∗ denoting the optimal solution of the above model.
Two portfolio strategies proposed in this research work, RSMt and RSMVt are com-

pared against these existing ones in literature: (1) sample minimum variance without 
short sale constraint portfolio (minVu) (2) sample minimum variance short sale con-
strained portfolio (minVc) (3) sample mean–variance approach (MV) (4) naive equally-
weighted (1/N) portfolio (5) l1-penalized mean–variance model (l1MV) (Brodie et  al. 
2009) (6) linear combination of sample tangency portfolio, sample minimum variance 
portfolio and 1/N portfolio (TMN) (Tu and Zhou 2011) (7) minimum variance portfolio 
resulting from using a diagonal covariance matrix (VD) (Kirby and Ostdiek 2012), refer 
to Table 1.

We employ a 6-month rolling estimation window for parameter estimations and con-
struct portfolios on a sub-sample periodical basis. To obtain the portfolio for January 
2006 to December 2008, we use January 2003 to December 2005 data to construct the 
initial positions via the classical Roy safety-first optimization problem. For January 2009 
to December 2011, we set the portfolio weights from January 2006 to December 2008 as 
initial positions. We then set the portfolio weights from January 2009 to December 2011 
as initial positions to construct portfolios for January 2012 to December 2015. To reflect 
the true risk of the portfolio, we use January 2006 to December 2008 data as initial posi-
tions via the classical Roy safety-first optimization problem to construct portfolios for 

(21)

minimize
σ 2
x̄

(µx̄ − R)2

subject to eT x̄ = 1

x̄ ∈ R
+
N ,
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January 2009 to December 2015. Portfolio revision is made on a monthly basis since in 
reality they are related to low transaction, management and monitoring costs.

Evaluation criteria

With regards to the return that a portfolio can achieve, we calculate and present the 
annualized out-of-sample Sharpe ratio with or without transaction cost. Sharpe ratio 
is defined as the ratio of the expected excess return to standard deviation of portfolio 
return (Sharpe 1966). The expected excess return is the difference between the return 
of the portfolio and the return obtained through a risk-free security. Mathematically, we 
can define Sharpe ratio as SRatio =

ρ−ρf e

σ
, where ρf  is the return from the risk-free secu-

rity (6-month US Treasury Bill rate) and σ is the standard deviation of portfolio return. 
Regarding portfolio risk, we consider the risk reduction which is defined as the ratio of 
portfolio risk measure from the portfolio strategies (17) and (18) to that from (7) and 
(8) respectively. The other portfolio selection strategies in literature’s risk reduction are 
estimated as the ratio of portfolio variance to that from Markowitz’s mean–variance 
framework.

Sparsity may result in under-diversification and extreme weights of the portfolio. We 
therefore present the average number of a subset of assets with non-zero weights. We 
consider another performance metric known as portfolio turnover. A portfolio turnover 
measures the frequency with which assets in this case stocks are bought and sold. We 
employ the measure used by DeMiguel et al. (2009) and Kourtis et al. (2012) by defining 
the turnover rate of the portfolio between t to t + 1 as

where xk ,t+1 is the portfolio weight for stock k at t + 1, x−k ,t+1 is the portfolio weight 
before revision at t + 1, T̊ − T − 1 represents the length of the non-zero elements in 
total portfolio return and N, the number of stocks.

The introduction of transaction costs affects the overall profitability of a portfolio 
strategy. In practice, they lessen the net returns and diminish capital available for future 

(22)Turnover =
1

T̊ − T − 1

T̊−1
∑

t=T

N
∑

k=1

(| xk ,t+1 − x−k ,t+1 |),

Table 1 List of proposed and selected alternative portfolio strategies

Symbol Description

RSMt l1- Squared l2 penalized mean-Roy safety-first portfolio

RSMVt l1- Squared l2 penalized mean–variance-Roy safety-first portfolio

minVu Sample minimum variance without short sale constraint portfolio

minVc Sample minimum variance with short sale constraint portfolio

MV Sample mean–variance portfolio

1/N Equally-weighted portfolio

l1-MV l1 penalized mean–variance portfolio with short sale constraint (Brodie et al. 2009)

TMN Linear combination of sample tangency portfolio, sample minimum variance portfolio and 1/N portfo-
lio (Tu and Zhou 2011)

VD Minimum variance portfolio resulting from using a diagonal covariance matrix (Kirby and Ostdiek 
2012)
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investments. We assume proportional transaction cost for the purpose of this study 
(Please refer to Assumption 1 for more details). We investigate the impact of transac-
tion cost on our portfolio strategy by computing Sharpe ratio with transaction cost. In 
particular, the optimal portfolios can be obtained by solving problems (17) and (18). 
To highlight the effect of transaction costs, we consider two situations with transaction 
costs, cbk = csk = 0 and cbk = csk = 0.02.

Computational results

Tables 2 and 3 shows the annualized out-of-sample metrics for different periods of each 
portfolio considered in this study: RSMt is the regularized mean-safety first portfolio 
with transaction costs, RSMVt is the regularized mean–variance-safety-first portfo-
lio with transaction costs. The others are selected alternative portfolio strategies in 
literature.

Table 2 Out-of-sample performance of  portfolio strategies on  500 NYSE stocks of  sub-
sample periods

Performance measures and metrics of portfolio selection strategies

Portfolio selection strategy SRatio (transaction costs) SRatio Risk reduction Sparsity Turnover

Panel A : results for January 2006 to December 2008

RSMt (17) 0.6891 0.6902 0.2115 165.1612 0.1517

RSMVt (18) 0.7111 0.7209 0.1801 188.6575 0.1783

minVu −0.1523 0.1902 0.2561 500 0.4013

minVc 0.2042 0.2821 0.2393 500 0.4209

MV −0.1745 0.1887 1.0000 500 4.1910

1/N 0.4084 0.4810 0.2710 500 0.3575

l1-MV (Brodie et al. 2009) 0.41014 0.5131 0.2604 217.1435 0.3872

TMN (Tu and Zhou 2011) −0.0158 0.3412 0.2573 500 0.4643

VD (Kirby and Ostdiek 2012) 0.3914 0.4710 0.2104 500 0.4510

Panel B : results for January 2009 to December 2011

RSMt (17) 1.2319 1.2783 0.0932 151.2341 0.0613

RSMVt (18) 1.3012 1.3114 0.0815 203.2533 0.0791

minVu 0.0985 0.4612 0.1044 500 0.2002

minVc 0.4202 0.5319 0.1012 500 0.2125

MV 0.0812 0.4104 1.0000 500 2.1234

1/N 0.7264 0.8041 0.1395 500 0.1453

l1-MV (Brodie et al. 2009) 0.9011 0.9511 0.1391 326.5532 0.1877

TMN (Tu and Zhou 2011) 0.2216 0.6013 0.1091 500 0.2563

VD (Kirby and Ostdiek 2012) 0.8153 0.8921 0.0995 500 0.2418

Panel C : results for January 2012 to December 2015

RSMt (17) 1.3112 1.3205 0.0901 195.0186 0.0717

RSMVt (18) 1.3813 1.3984 0.0737 245.1227 0.0801

minVu 0.1120 0.4824 0.1018 500 0.2011

minVc 0.4413 0.5302 0.1006 500 0.2289

MV 0.1091 0.4591 1.0000 500 2.3914

1/N 0.7641 0.8321 0.1391 500 0.1465

l1-MV (Brodie et al. 2009) 0.9403 0.9821 0.1294 267.8271 0.1903

TMN (Tu and Zhou 2011) 0.2426 0.63841 0.1067 500 0.2613

VD (Kirby and Ostdiek 2012) 0.8534 0.9010 0.0945 500 0.2485
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Analyzing portfolio risk, the regularized portfolio rules have lower risk than other 
portfolio selection strategies. This can be attributed to the downside risk measure, 
Roy safety-first principle considered in the regularized strategies. The variance and the 
safety-first principle as a consolidated risk measure in RSMVt have lower risk reduction 
compared to RSMt.

The portfolio turnover indicates how frequently assets in a portfolio are bought and 
sold. This performance measure is preferred to be small. In terms of turnover, the naive 
1/N portfolio has the lowest turnover. The two portfolio selection strategies consid-
ered in this paper have relatively low turnover rates with RSMVt the preferred choice. 
The portfolio rules in selected from literature have a high turnover rate as compared to 
the regularized models in this paper. The highest turnover comes from TMN, MV and 
minVu portfolios leading to smaller Sharpe ratios. We observe that with large turnovers, 
feasible transaction costs lowers the monetary gains of many selected portfolios strate-
gies in literature, as seen by Sharpe ratio deductions after transaction costs have been 
considered.

The Sharpe ratio allows investors to analyse risk-adjusted returns in exchange for the 
level of risk they are assuming. The higher the Sharpe ratio, the more returns the inves-
tor gets per unit of risk. The lower the Sharpe ratio, the more risk the investor bears to 
get more returns. Comparing all strategies in this study, the regularized portfolios have 
the highest Sharpe ratios with RSMVt leading the way. With regards to sparsity, more 
than 30 % of stocks are selected by RSMt and RSMVt in all the evaluation periods. The l1
-penalized mean–variance model selects at least 50 % of the stocks across the evaluation 
periods. The smaller set of sparse portfolio optimizes the budget allocation by focusing 
on stocks believed to foster diversification.

From Table 2, the sample-based portfolios i.e. minVu, minVc, MV and TMN perform 
worse due to a large number of stocks that increases the degree of estimation risk or 
over-fitting. Apart from VD, all other non-regularized portfolios selected from literature 
(minVu, minVc, MV, TMN) perform worse than 1/N regarding both Sharpe ratio and 
turnover. We observe an increment in Sharpe ratio, lower risk reduction, lower turno-
ver for post financial crisis sub-sample periods. Among the selected alternative portfolio 
strategies considered in this paper, l1MV has a better out-of-sample performance than 

Table 3 Out-of-sample performance of portfolio strategies for 2009–2015

Performance measures and metrics of portfolio selection strategies

Portfolio selection strategy SRatio (transaction 
costs)

SRatio Risk reduction Sparsity Turnover

Results for January 2009 to December 2015

RSMt (17) 0.8912 0.9111 0.1521 175.5103 0.9859

RSMVt (18) 0.9577 0.9610 0.1112 228.3181 0.8113

minVu 0.0698 0.2413 0.1742 500 1.1612

minVc 0.2408 0.2958 0.1663 500 1.6209

MV 0.0451 0.1959 1.0000 500 7.3224

1/N 0.5514 0.5911 0.1977 500 0.9418

l1-MV (Brodie et al. 2009) 0.6899 0.7094 0.1790 254.8511 0.9958

TMN (Tu and Zhou 2011) 0.1354 0.2985 0.1551 500 1.4705

VD (Kirby and Ostdiek 2012) 0.4544 0.5871 0.1605 500 1.2403
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minVu, minVc, MV, 1/N, TMN and VD. In comparing periods 2006–2008 to 2009–2015, 
we observe that during the financial crisis period, the Sharpe ratio is lower and the risk 
reduction is much higher with turnover ratio also higher. This amounts to lower returns 
during 2006–2008 as compared to the other periods. The Sharpe ratio is much higher 
and the risk reduction is lower in periods 2009–2011 and 2012–2015 as compared to 
periods 2006–2008 and 2009–2015. In all the sub-sample periods 2006–2008, 2009–
2011 and 2012–2015 including the period 2009–2015, our proposed models RSMt and 
RSMVt have better out-of-sample performance than the selected alternative models.

To further gain financial insights, we use S&P 500 index data from January 2009 to 
December 2015 as a benchmark portfolio. With a starting wealth value of $1, we com-
pare the cumulative wealth of portfolio strategies RSMt, RSMVt and l1MV to that of S&P 
500 index. To provide evidential proof, Fig. 1 plots the cumulative wealth of the portfo-
lios strategies relative to S&P 500 benchmark.

In Fig. 1, $1 is used as initial wealth and it grows at a monthly return of the portfolio 
selection strategies considered. The figure shows distinctly the higher performance of 
the regularized portfolio over S&P 500 benchmark.

Conclusion
In this paper, we seek near-optimal sparse and stable portfolios to reduce the difficulty 
of portfolio management. Theoretical results are established to guarantee the stability 
and sparsity of our novel portfolio strategies. Computational evidence indicates that l1
- squared l2 penalized mean-Roy safety-first portfolio and l1- squared l2 penalized mean–
variance-Roy safety-first portfolio are able to choose optimal sparse and stable portfolios 
while maintaining satisfactory out-of-sample performance.

We compare the performance of our proposed models (l1- squared l2 penalized mean-
Roy safety-first portfolio and l1- squared l2 penalized mean–variance-Roy safety-first 
portfolio) of optimal asset allocation relative to selected alternative portfolio strategies 
in literature (minVu, minVc, MV, 1/N, l1MV, TMN and VD). Our results show that our 
regularized proposed models have a better out-of-sample performance with high Sharpe 
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Fig. 1 Cumulative wealth of portfolio strategy RSMt, RSMVt and l1MV relative to S&P 500 portfolio
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ratios and relatively low turnover rates. Except for VD, the Sharpe ratio of 1/N portfo-
lio when compared to other selected non-regularized portfolio rules considered in this 
paper is higher, which shows that estimation errors in returns shrink gains from other 
selected classical portfolio strategies in literature. The norm penalty improves Sharpe 
ratio and turnover.  As a result, l1MV has a better out-of-sample performance than 
minVu, minVc, MV, 1/N, TMN and VD.

To gain more financial acumen, we compare our proposed models and the best per-
forming portfolio strategy among the selected models from literature considered in this 
paper, to a benchmark, S&P 500 index. The results indicate that given an initial wealth 
of $1, the excess returns from l1- squared l2 penalized mean–variance-Roy safety-first 
portfolio is the highest. Our proposed models for optimal asset allocation are favour-
able since they overcome unsteady and extreme portfolio weights induced by estimation 
error due to parameter uncertainty.

Authors’ contributions
EFEAM, the corresponding author, conceived, designed the methodology and wrote the paper. DY redesigned the struc-
tural framework of the paper and edited the content. XW and DY aided in the numerical test and analysis of the results. 
BY made a significant contribution to the methodological approach, analysis framework and supervised the study. All 
authors have read and approved the final manuscript.

Author details
1 School of Mathematical Sciences, Dalian University of Technology, Dalian, China. 2 School of Business Management, 
Dalian University of Technology, Dalian, China. 3 Bank of Dalian, Dalian, Liaoning, China. 

Acknowledgements
We thank the reviewers for taking time to add their comments and suggestions to this paper. We also thank SpringerPlus 
for giving us the platform to contribute to literature. We acknowledge support by the National Nature Science Founda-
tion of China (11571061, 71301017).

Competing interests
The authors declare that they have no competing interests.

Received: 17 February 2016   Accepted: 17 June 2016

References
Bawa VS, Brown SJ, Klein RW (1979) Estimation risk and optimal portfolio choice. North-Holland Publ Co, New York
Bawa VS (1978) Safety-first, stochastic dominance, and optimal portfolio choice. J Financ Quant Anal 13(02):255–271
Borkovec M, Domowitz I, Kiernan B, Serbin V (2010) Portfolio optimization and the cost of trading. J Invest 19(2):63–76
Brandt M (2009) Portfolio choice problems. Handbook Financ Econom 1:269–336
Britten-Jones M (1999) The sampling error in estimates of mean-variance efficient portfolio weights. J Finance 

54(2):655–671
Brodie J, Daubechies I, De Mol C, Giannone D, Loris I (2009) Sparse and stable Markowitz portfolios. Proc Natl Acad Sci 

106(30):12267–12272
Chang TJ, Meade N, Beasley JE, Sharaiha YM (2000) Heuristics for cardinality constrained portfolio optimisation. Comput 

Oper Res 27(13):1271–1302
Chiu MC, Wong HY, Li D (2012) Roys safety-first portfolio principle in financial risk management of disastrous events. Risk 

Anal 32(11):1856–1872
DeMiguel V, Garlappi L, Nogales FJ, Uppal R (2009) A generalized approach to portfolio optimization: improving perfor-

mance by constraining portfolio norms. Manag Sci 55(5):798–812
DeMiguel V, Mei X, Nogales FJ (2014) Multiperiod portfolio optimization with many risky assets and general transaction 

costs. Available at SSRN 2295345
Dumas B, Luciano E (1991) An exact solution to a dynamic portfolio choice problem under transactions costs. J Finance 

46(2):577–595
Dybvig PH (2005) Mean-variance portfolio rebalancing with transaction costs. Working paper, Washington University in 

Saint Louis
Fan J, Zhang J, Yu K (2012) Vast portfolio selection with gross-exposure constraints. J Am Stat Assoc 107(498):592–606
Farrell JL, Reinhart WJ (1997) Portfolio management: theory and application. McGraw-Hill, New York
Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1):1–38
Green RC, Hollifield B (1992) When will mean-variance efficient portfolios be well diversified? J Finance 47(5):1785–1809
Haque M, Varela O, Hassan MK (2007) Safety-first and extreme value bilateral US–Mexican portfolio optimization around 

the peso crisis and NAFTA in 1994. Q Rev Econ Finance 47(3):449–469



Page 18 of 18Atta Mills et al. SpringerPlus  (2016) 5:919 

Jagannathan R, Ma T (2003) Risk reduction in large portfolios: why imposing the wrong constraints helps. J Finance 
58(4):1651–1684

Jorion P (1986) Bayes–Stein estimation for portfolio analysis. J Financ Quant Anal 21(03):279–292
Kellerer H, Mansini R, Speranza MG (2000) Selecting portfolios with fixed costs and minimum transaction lots. Ann Oper 

Res 99(1–4):287–304
Kirby C, Ostdiek B (2012) It’s all in the timing: simple active portfolio strategies that outperform naive diversification. J 

Financ Quant Anal 47(02):437–467
Kourtis A, Dotsis G, Markellos RN (2012) Parameter uncertainty in portfolio selection: shrinking the inverse covariance 

matrix. J Bank Finance 36(9):2522–2531
Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 

88(2):365–411
Levy H, Sarnat M (1972) Safety firstan expected utility principle. J Financ Quant Anal 7(03):1829–1834
Lobo MS, Fazel M, Boyd S (2007) Portfolio optimization with linear and fixed transaction costs. Ann Oper Res 

152(1):341–365
Maringer D, Kellerer H (2003) Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR 

Spectrum 25(4):481–495
Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91
Markowitz HM (1968) Portfolio selection: efficient diversification of investments, vol 16. Yale University Press, New Haven
Merton RC (1980) On estimating the expected return on the market: an exploratory investigation. J Financ Econ 

8(4):323–361
Mitchell JE,  Braun S (2013) Rebalancing an investment portfolio in the presence of convex transaction costs, including 

market impact costs. Optim Methods Softw 28(3):523–542
Moral-Escudero R, Ruiz-Torrubiano R, Suárez A (2006) Selection of optimal investment portfolios with cardinality con-

straints. In: IEEE congress on evolutionary computation, CEC 2006, IEEE; pp 2382–2388
Muthuraman K, Kumar S (2006) Multidimensional portfolio optimization with proportional transaction costs. Math 

Finance 16(2):301–335
Nagai H (2003) Optimal strategies for risk-sensitive portfolio optimization problems for general factor models. SIAM J 

Control Optim 41(6):1779–1800
Nawrocki DN (1999) A brief history of downside risk measures. J Invest 8(3):9–25
Pai G, Michel T (2009) Evolutionary optimization of constrained-means clustered assets for diversification in small portfo-

lios. IEEE Trans Evol Comput 13(5):1030–1053
Platen E, Heath D (2006) A benchmark approach to quantitative finance. Springer Science & Business Media, New York
Rachev ST (2001) Safety-first analysis and stable paretian approach to portfolio choice theory. Math Comput Model 

34(9):1037–1072
Rachev S, Ortobelli S, Stoyanov S, Fabozzi FJ, Biglova A (2008) Desirable properties of an ideal risk measure in portfolio 

theory. Int J Theor Appl Finance 11(1):19–54
Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–42
Roman D, Darby-Dowman K, Mitra G (2007) Mean-risk models using two risk measures: a multi-objective approach. 

Quant Finance 7(4):443–458
Roy AD (1952) Safety first and the holding of assets. Econom J Econom Soc 20:431–449
Ruiz-Torrubiano R, Suárez A (2015) A memetic algorithm for cardinality-constrained portfolio optimization with transac-

tion costs. Appl Soft Comput 36:125–142
Schultz R, Tiedemann S (2003) Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. 

SIAM J Optim 14(1):115–138
Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138
Telser LG (1955) Safety first and hedging. Rev Econ Stud 23(1):1–16
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 1:267–288
Tütüncü RH, Koenig M (2004) Robust asset allocation. Ann Oper Res 132(1–4):157–187
Tu J, Zhou G (2011) Markowitz meets Talmud: a combination of sophisticated and naive diversification strategies. J Financ 

Econ 99(1):204–215
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 

67(2):301–320


	Research on regularized mean–variance portfolio selection strategy with modified Roy safety-first principle
	Abstract 
	Background
	Proposed portfolio selection strategies
	Roy safety-first principle and it’s modification
	Portfolio revision
	Stable and sparse portfolio
	Necessary and sufficient conditions for optimal problems
	KKT conditions for optimal problem


	Empirical application
	Data and models
	Evaluation criteria
	Computational results

	Conclusion
	Authors’ contributions
	References




