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Abstract
In this paper, we prove some strong and �-convergence theorems for a finite family
of multivalued quasi-nonexpansive mappings satisfying condition (E) in CAT(κ )
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1 Introduction
Fixed point theory for multivalued contractions and nonexpansive mappings using the
Hausdorff metric was first studied by Markin [] and Nadler []. Since then different iter-
ative processes have been used to approximate fixed points of multivalued nonexpansive
mappings. Sastry and Babu [] defined Mann and Ishikawa iterates for a multivalued map
T in a Hilbert space. Panyanak [] and Song and Wang [] generalized the results of Sastry
and Babu [] to uniformly convex Banach spaces. Later, Shahzad and Zegeye [] defined
two types of Ishikawa iteration processes and extended the results of [–]. The reader
may consult [] for more detail. Recently, Abkar and Eslamian [] established strong and
�-convergence theorems for the following iterative process for a finite family of multival-
ued quasi-nonexpansive mappings satisfying condition (E) in CAT() spaces:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn, = ( – αn,)xn ⊕ αn,zn,,

yn, = ( – αn,)xn ⊕ αn,zn,,

· · ·
yn,m– = ( – αn,m–)xn ⊕ αn,m–zn,m–,

xn+ = ( – αn,m)xn ⊕ αn,mzn,m, n ≥ ,

()

where zn, ∈ T(xn) and zn,k ∈ Tk(yn,k–) for k = , . . . , m. It is easy to see that if m =  and
T = T = T , then the sequence {xn} defined by () is the Ishikawa iteration:
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⎧
⎨

⎩

yn = ( – αn,)xn ⊕ αn,zn,

xn+ = ( – αn,)xn ⊕ αn,z′
n, n ≥ ,

where zn ∈ Txn and z′
n ∈ Tyn.

The purpose of the paper is to extend and improve the corresponding results of Abkar
and Eslamian [] to the general setting of CAT(κ) spaces, which are geodesic spaces of
bounded curvature, where κ ∈ R is the curvature bound. For example, the n-dimensional
hyperbolic space H

n is a CAT(–) space and the n-dimensional unit sphere S
n is a CAT()

space (see Section  for details). It is worth mentioning that any CAT(κ) space is a CAT(κ ′)
space for κ ′ ≥ κ . Thus all results for CAT(κ) spaces with κ >  immediately apply to any
CAT() space.

Let D be a subset of a metric space (X, d). Recall that an element p ∈ D is called a fixed
point of a single-valued mapping T if p = Tp and of a multivalued mapping T if p ∈ Tp.
The set of fixed points of T is denoted by F(T). D is said to be proximinal if, for each x ∈ X,
there exists an element x∗ ∈ D such that

d(x, D) = inf
{

d(x, y) : y ∈ D
}

= d
(
x, x∗).

It is evident that every proximinal set is closed and every compact set is proximinal
(see []).

Let D be a family of nonempty subsets of D. We denote by C(D), P(D) and K(D) the
families of nonempty closed subsets, nonempty proximinal subsets and nonempty com-
pact subsets of D, respectively. The Hausdorff metric on K(D) is defined by

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for all A, B ∈K(D), where d(x, B) = inf{d(x, z) : z ∈ B}.

Definition  A multivalued mapping T : D → D is said to
(i) be nonexpansive if, for all x, y ∈ D,

H(Tx, Ty) ≤ d(x, y);

(ii) be quasi-nonexpansive if F(T) 
= ∅ and

H(Tx, Tp) ≤ d(x, p), ∀p ∈ F(T), x ∈ D;

(iii) satisfy condition (Eμ) provided that

d(x, Ty) ≤ μd(x, Tx) + d(x, y), x, y ∈ D and μ ≥ .

We say that T satisfies condition (E) whenever T satisfies (Eμ) for some μ ≥ .

Remark  There exist multivalued quasi-nonexpansive mappings satisfying condition
(E). For example, define a mapping T : [, ] → [, ] by
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Tx =

{
[, x

 ], x 
= ,
{}, x = .

Let x, y ∈ [, ), then we get

H(Tx, Ty) =
∣
∣
∣
∣
x – y



∣
∣
∣
∣ ≤ d(x, y).

If x ∈ [, ] and y = , then

H(Tx, Ty) =  ≤  – x = d(x, y).

If x ∈ (, ) and y = , we have

d(x, Tx) =
x


, d(x, y) =  – x, H(Tx, Ty) =  and d(x, Ty) = x – .

Then it is easy to prove that T has the required properties.

In , Xu [] introduced the best approximation operator PT to find fixed points
of ∗-nonexpansive multivalued mappings. In , Dehghan [] obtained the demiclosed
principle of such mappings and approximated their fixed points using PT . Let PT : D → D

be a multivalued mapping defined by

PT (x) =
{

u ∈ Tx : d(x, u) = d(x, Tx)
}

.

By [] we have the following lemma.

Lemma  [] Let D be a nonempty subset of a metric space (X, d) and T : D →P(D) be a
multivalued mapping. Then

(i) d(x, Tx) = d(x, PT (x)) for all x ∈ D;
(ii) x ∈ F(T) ⇔ x ∈ F(PT ) ⇔ PT (x) = {x};

(iii) F(T) = F(PT ).

2 Preliminaries
The study of fixed points in CAT(κ) spaces was initiated by Kirk [, ]. A few recent
new convergence results of classical iterations on CAT(κ) spaces have been obtained (see,
e.g., [–] and the references therein). For example, Panyanak [] in  proved the
strong convergence of two types of Ishikawa iteration processes introduced in Shahzad
and Zegeye [] for some multivalued quasi-nonexpansive mappings in CAT() spaces.

Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). For x, y ∈ X, a geodesic path
joining x to y is an isometry c : [, l] → X such that c() = x, c(l) = y. The image of a geodesic
path is called a geodesic segment, and we shall denote a definite choice of this geodesic
segment by [x, y]. A metric space X is a geodesic space (r-geodesic space) if every two points
of X (every two points with distance smaller than r) are joined by a geodesic segment, and
X is a uniquely geodesic space (r-uniquely geodesic space) if there is exactly one geodesic
segment joining x and y for any x, y ∈ X (for any x, y ∈ X with d(x, y) < r). A subset D of X
is said to be convex if D includes every geodesic segment joining any two of its points.
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The n-dimensional sphere S
n is the set {x = (x, . . . , xn+) ∈ R

n+ : 〈x|x〉 = }, where
〈·|·〉 is the Euclidean scalar product. It is endowed with the following metric: dSn (x, y) =
arccos〈x|y〉, x, y ∈ S

n.

Definition  Given κ ∈R, denote by Mn
κ the following metric spaces:

(i) if κ = , then Mn
 is the Euclidean space R

n;
(ii) if κ > , then Mn

κ is obtained from the sphere S
n by multiplying the distance

function by /
√

κ ;
(iii) if κ < , then Mn

κ is obtained from the hyperbolic n-space H
n by multiplying the

distance function by /
√

–κ .

A geodesic triangle �(x, y, z) in a geodesic space (X, d) consists of three points x, y, z of
X and three geodesic segments joining each pair of vertices. A comparison triangle of a
geodesic triangle �(x, y, z) is the triangle �(x̄, ȳ, z̄) in M

κ such that

d(x, y) = dM
κ
(x̄, ȳ), d(y, z) = dM

κ
(ȳ, z̄), d(z, x) = dM

κ
(z̄, x̄).

If κ > , then such a triangle � always exists whenever d(x, y) + d(y, z) + d(z, x) is less than
Dκ , where Dκ = π/

√
κ . A point p̄ ∈ [x̄, ȳ] is called a comparison point for p ∈ [x, y] if

d(x, p) = dM
κ
(x̄, p̄). A geodesic triangle in X is said to satisfy the CAT(κ) inequality if for

any p, q ∈ �(x, y, z) and for their comparison points p̄, q̄ ∈ �(x̄, ȳ, z̄), we have

d(p, q) ≤ dM
κ
(p̄, q̄).

Definition  Given κ > , a metric space X is a CAT(κ) space if X is Dκ -geodesic and any
geodesic triangle �(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < Dκ satisfies the CAT(κ)
inequality.

In , Lim [] introduced the concept of �-convergence in a general metric space.
Let {xn} be a bounded sequence in a CAT(κ) space X. For x ∈ X, we define

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
.

The asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

(
x, {xn}

)
= r

({xn}
)}

.

A sequence {xn} in a CAT(κ) space X is said to �-converge to x ∈ X if x is the unique
asymptotic center of {un} for every subsequence {un} of {xn}.

It follows from [] that CAT(κ) spaces are uniquely geodesic spaces. In this paper, we
mainly focus on CAT(κ) spaces with κ > , and we now collect some elementary facts
about them.



Wan Fixed Point Theory and Applications  (2015) 2015:5 Page 5 of 11

Lemma  [] Let κ >  and (X, d) be a CAT(κ) space with diam(X) =: sup{d(u, v) : u, v ∈
X} < π


√

κ
. Then A({xn}) consists of exactly one point.

Lemma  [] Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Then every sequence in X has a �-convergent subsequence.

Lemma  [] Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). D is a closed convex subset of X. If {xn} ⊆ D and �- limn→∞ xn = x, then
x ∈ D.

Since the asymptotic center is unique by Lemma , we can obtain the following lemma.

Lemma  [] Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let {xn} be a sequence in X with A({xn}) = {x}. If {un} is a subsequence of
{xn} with A({un}) = {u} and {d(xn, u)} converges, then x = u.

Lemma  [] Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Then, for any x, y, z ∈ X and t ∈ [, ], we have

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z).

Lemma  [] Let κ >  and (X, d) be a CAT(κ) space with diam(X) ≤ π/–ε√
κ

for some
ε ∈ (,π/). Then, for any x, y, z ∈ X and t ∈ [, ], we have

d(( – t)x ⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) –

R


t( – t)d(x, y),

where R = (π – ε) tan(ε).

3 Main results
In this section, we prove our main theorems.

Theorem  (Demiclosed principle) Let κ >  and (X, d) be a complete CAT(κ) space with
diam(X) ≤ π/–ε√

κ
for some ε ∈ (,π/). Let D be a nonempty closed convex subset of X, and

let T : D → K(D) be a multivalued mapping satisfying condition (E). If {xn} is a sequence
in D such that limn→∞ d(xn, Txn) =  and �- limn→∞ xn = x, then x ∈ Tx, from which we
may formally say that I – T is demiclosed at zero.

Proof Since �- limn→∞ xn = x, by Lemma  we have x ∈ D. For each n ≥ , we choose
zn ∈ Tx such that

d(xn, zn) = d(xn, Tx).

By the compactness of Tx, there is a subsequence {znk } of {zn} such that limk→∞ znk = w ∈
Tx. It follows from condition (E) that

d(xnk , znk ) = d(xnk , Tx) ≤ μd(xnk , Txnk ) + d(xnk , x)
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for some μ ≥ . Note that

d(xnk , w) ≤ d(xnk , znk ) + d(znk , w) ≤ μd(xnk , Txnk ) + d(xnk , x) + d(znk , w).

Thus

lim sup
k→∞

d(xnk , w) ≤ lim sup
k→∞

d(xnk , x).

By the uniqueness of asymptotic centers, we obtain x = w ∈ Tx. The proof is completed.
�

Theorem  Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let D be a nonempty closed convex subset of X, and let Ti : D → K(D)
(i = , . . . , m) be a family of multivalued quasi-nonexpansive mappings satisfying condition
(E). Suppose that F =

⋂m
i= F(Ti) 
= ∅ and Ti(p) = {p} for each p ∈F . Let αn,i ∈ [a, b] ⊂ (, )

(i = , . . . , m). Then {xn} defined by () �-converges to some point in F .

Proof We divide our proof into several steps.
Step . In the sequel, we shall show that limn→∞ d(xn, p) exists for any p ∈F . Since T is

quasi-nonexpansive, by Lemma  we have

d(yn,, p) = d
(
( – αn,)xn ⊕ αn,zn,, p

)

≤ ( – αn,)d(xn, p) + αn,d(zn,, p)

= ( – αn,)d(xn, p) + αn,d
(
zn,, T(p)

)

≤ ( – αn,)d(xn, p) + αn,H
(
T(xn), T(p)

)

≤ ( – αn,)d(xn, p) + αn,d(xn, p)

= d(xn, p)

and

d(yn,, p) = d
(
( – αn,)xn ⊕ αn,zn,, p

)

≤ ( – αn,)d(xn, p) + αn,d(zn,, p)

= ( – αn,)d(xn, p) + αn,d
(
zn,, T(p)

)

≤ ( – αn,)d(xn, p) + αn,H
(
T(yn,), T(p)

)

≤ ( – αn,)d(xn, p) + αn,d(yn,, p)

≤ d(xn, p).

By continuing this process we have

d(xn+, p) ≤ d(xn, p).

It implies that d(xn, p) is decreasing and bounded below, thus limn→∞ d(xn, p) exists for
any p ∈F .
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Step . We shall show that limn→∞ d(xn, Ti(xn)) =  for i = , . . . , m. In fact, by Lemma 
we obtain

d(yn,, p) = d(( – αn,)xn ⊕ αn,zn,, p
)

≤ ( – αn,)d(xn, p) + αn,d(zn,, p) –
R


αn,( – αn,)d(xn, zn,)

= ( – αn,)d(xn, p) + αn,d(zn,, T(p)
)

–
R


αn,( – αn,)d(xn, zn,)

≤ ( – αn,)d(xn, p) + αn,H(T(xn), T(p)
)

–
R


αn,( – αn,)d(xn, zn,)

≤ ( – αn,)d(xn, p) + αn,d(xn, p) –
R


αn,( – αn,)d(xn, zn,)

= d(xn, p) –
R


αn,( – αn,)d(xn, zn,)

and

d(yn,, p) = d(( – αn,)xn ⊕ αn,zn,, p
)

≤ ( – αn,)d(xn, p) + αn,d(zn,, p) –
R


αn,( – αn,)d(xn, zn,)

= ( – αn,)d(xn, p) + αn,d(zn,, T(p)
)

–
R


αn,( – αn,)d(xn, zn,)

≤ ( – αn,)d(xn, p) + αn,H(T(yn,), T(p)
)

–
R


αn,( – αn,)d(xn, zn,)

≤ ( – αn,)d(xn, p) + αn,d(yn,, p) –
R


αn,( – αn,)d(xn, zn,)

≤ d(xn, p) –
R


αn,αn,( – αn,)d(xn, zn,) –
R


αn,( – αn,)d(xn, zn,).

Similarly, we get

d(xn+, p) = d(( – αn,m)xn ⊕ αn,mzn,m, p
)

≤ ( – αn,m)d(xn, p) + αn,md(zn,m, p) –
R


αn,m( – αn,m)d(xn, zn,m)

= ( – αn,m)d(xn, p) + αn,md(zn,m, T(p)
)

–
R


αn,m( – αn,m)d(xn, zn,m)

≤ ( – αn,m)d(xn, p) + αn,mH(Tm(yn,m–), Tm(p)
)

–
R


αn,m( – αn,m)d(xn, zn,m)

≤ ( – αn,m)d(xn, p) + αn,md(yn,m–, p) –
R


αn,m( – αn,m)d(xn, zn,m)

≤ d(xn, p) –
R


αn,m( – αn,m)d(xn, zn,m)

–
R


αn,mαn,m–( – αn,m–)d(xn, zn,m–) – · · ·

–
R


αn,mαn,m– · · · αn,( – αn,)d(xn, zn,).
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Then we have

R


am( – b)d(xn, zn,) ≤ R


αn,mαn,m– · · · αn,( – αn,)d(xn, zn,)

≤ d(xn, p) – d(xn+, p),

which yields that

∞∑

n=

R


am( – b)d(xn, zn,) ≤ d(x, p) < ∞,

and hence

lim
n→∞ d(xn, zn,) = .

Similarly, we can also have

lim
n→∞ d(xn, zn,k) =  (k = , . . . , m).

Thus we obtain

lim
n→∞ d

(
xn, T(xn)

) ≤ lim
n→∞ d(xn, zn,) = , ()

lim
n→∞ d

(
xn, Tk(yn,k–)

) ≤ lim
n→∞ d(xn, zn,k) =  ()

and

lim
n→∞ d(xn, yn,k–) = αn,k– lim

n→∞ d(xn, zn,k–) =  ()

for k = , . . . , m. Now, by condition (E), () and (), we have, for some μ ≥ ,

d
(
xn, Tk(xn)

) ≤ d(xn, yn,k–) + d
(
yn,k–, Tk(xn)

)

≤ d(xn, yn,k–) + μd
(
yn,k–, Tk(yn,k–)

)
+ d(xn, yn,k–)

≤ d(xn, yn,k–) + μd(yn,k–, xn) + μd
(
xn, Tk(yn,k–)

)

+ d(xn, yn,k–) →  ()

as n → ∞ (for k = , . . . , m). By () and () we have

lim
n→∞ d

(
xn, Ti(xn)

)
= 

for i = , . . . , m.
Step . Now we are in a position to prove the �-convergence of {xn}. In fact, let

Wω(xn) := ∪A({un}) for all subsequences {un} of {xn}. We claim that Wω(xn) ⊂ F . Let
u ∈ Wω(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By
Lemma  and Lemma , there exists a subsequence {vn} of {un} such that �- limn→∞ vn =
v ∈ D. Since limn→∞ d(vn, Tivn) =  (i = , . . . , m), it follows from Theorem  that v ∈ F
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and thus limn→∞ d(xn, v) exists by Step . By Lemma , u = v ∈ F , which implies that
Wω(xn) ⊂ F . Let {un} be a subsequence of {xn} with A({un}) = {u}, and let A({xn}) = {x}.
Since u ∈ Wω(xn) ⊂F and limn→∞ d(xn, u) converges, we get x = u by Lemma . It implies
that Wω(xn) consists of exactly one point. The proof is completed. �

Remark  Theorem  improves and extends the corresponding results in Abkar and Es-
lamian [, Theorem .].

In the sequel, we make use of condition (A) introduced by Senter and Dotson [].
A mapping T : D → D, where D is a subset of a normed space E, is said to satisfy condition
(A) if there exists a nondecreasing function f : [,∞) → [,∞) with f () = , f (r) >  for
all r >  such that

‖x – Tx‖ ≥ f
(
d
(
x, F(T)

))
for all x ∈ D.

Theorem  Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let D be a nonempty closed convex subset of X, and let Ti : D → C(D)
(i = , . . . , m) be a family of multivalued quasi-nonexpansive mappings satisfying condition
(E). Suppose that F =

⋂m
i= F(Ti) 
= ∅ and Tip = {p} for each p ∈ F . Let αn,i ∈ [a, b] ⊂ (, )

(i = , . . . , m). Assume that there is a nondecreasing function f : [,∞) → [,∞) with f () =
, f (r) >  for all r >  such that for some i = , . . . , m,

d
(
xn, Ti(xn)

) ≥ f
(
d(xn,F )

)
. ()

Then {xn} defined by () converges strongly to some point in F .

Proof As in the proof of Theorem , for i = , . . . , m, we have limn→∞ d(xn, Ti(xn)) = .
Hence by assumption () we obtain limn→∞ d(xn,F ) = . Now we can choose a subse-
quence {xnk } ⊂ {xn} and a subsequence {pk} ⊂F such that for all positive integer k ≥ ,

d(xnk , pk) <


k .

Since for each p ∈F the sequence {d(xn, p)} is decreasing, we get

d(xnk+ , pk) ≤ d(xnk , pk) <


k .

Hence

d(pk+, pk) ≤ d(xnk+ , pk+) + d(xnk+ , pk) <


k+ +


k <


k– .

Then {pk} is a Cauchy sequence in D. Without loss of generality, we can assume that pk →
p∗ ∈ D. Since for each i = , . . . , m

d
(
p∗, Ti

(
p∗)) = lim

n→∞ d
(
pk , Ti

(
p∗)) ≤ lim

n→∞ H
(
Ti(pk), Ti

(
p∗)) ≤ lim

k→∞
d
(
pk , p∗) = ,

then p∗ ∈ F and {xnk } converges strongly to p∗. Since limn→∞ d(xn, p∗) exists, it follows
that {xn} converges strongly to p∗. The proof is completed. �
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Remark  Theorem  improves and extends the corresponding results in Abkar and Es-
lamian [, Theorem .] and Panyanak [, Theorem .].

Theorem  Let κ >  and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for some
ε ∈ (,π/). D is a nonempty closed convex subset of X. Let Ti : D → P(D) (i = , . . . , m)
be a family of multivalued mappings with F =

⋂m
i= F(Ti) 
= ∅ such that PTi is quasi-

nonexpansive satisfying condition (E). For x ∈ D, define the sequence {xn} ⊂ D as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn, = ( – βn,)xn ⊕ βn,zn,,

yn, = ( – βn,)xn ⊕ βn,zn,,

· · ·
yn,m– = ( – βn,m–)xn ⊕ βn,m–zn,m–,

xn+ = ( – βn,m)xn ⊕ βn,mzn,m, n ≥ ,

()

where zn, ∈ PT (xn), zn,k ∈ PTk (yn,k–) (k = , . . . , m) and βn,i ∈ [a, b] ⊂ (, ) (i = , . . . , m).
Assume that there is a nondecreasing function f : [,∞) → [,∞) with f () = , f (r) > 
for all r >  such that for some i = , . . . , m,

d
(
xn, Ti(xn)

) ≥ f
(
d(xn,F )

)
. ()

Then {xn} defined by () converges strongly to some point in F .

Proof It follows from Lemma  and () that

d
(
xn, PTi (xn)

)
= d

(
xn, Ti(xn)

) ≥ f
(
d(xn,F )

)
= f

(

d

(

xn,
m⋂

i=

F(PTi )

))

for some i = , . . . , m. Next we show that PTi (x) is closed for any i = , . . . , m and x ∈ D. In
fact, let {yn} ⊂ PTi (x) and limn→∞ yn = y for some y ∈ D. Then

d(x, yn) = d
(
x, Ti(x)

)
and lim

n→∞ d(x, yn) = d(x, y).

It follows that d(x, y) = d(x, Ti(x)) and hence y ∈ PTi (x). Now applying Theorem  to the
mappings PTi , we conclude that the sequence {xn} defined by () converges strongly to
some point in F . The proof is completed. �

Remark  Theorem  improves and extends the corresponding results in Abkar and Es-
lamian [, Theorem .] and Panyanak [, Theorem .].
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