provided by Crossref

Nonlinear problem with subcritical exponent in Sobolev space

lqbal H Jebril* ${ }^{*}$

"Correspondence: iqbal501@hotmail.com Department of Mathematics, Taibah University, 344 Almadinah Almunawwarah, Saudi Arabia

Abstract

Using Brouwer's fixed point theorem, we prove the existence of solutions for some nonlinear problem with subcritical Sobolev exponent in S_{+}^{4}.

MSC: Primary 46E35; 47H10; secondary 35J60
Keywords: Sobolev spaces; subcritical exponent; nonlinear problem

1 Introduction and the main result

The exponent Lebesgue space $L^{p}(\Omega)$ is defined by

$$
L^{p}(\Omega)=\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \int_{\Omega}|u(x)|^{p} d x<\infty\right\} .
$$

This space is endowed with the norm

$$
\|u\|_{L^{p}(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p} d x \leq 1\right\} .
$$

The Sobolev space $W^{1, p}(\Omega)$ is defined by

$$
W^{1, p}(\Omega)=\left\{u \in W_{\mathrm{loc}}^{1,1}(\Omega): u \in L^{p}(\Omega) \text { and }|\nabla u| \in L^{p}(\Omega)\right\} .
$$

The corresponding norm for this space is

$$
\|u\|_{W^{1, p}(\Omega)}=\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)} .
$$

Define $W_{0}^{1}(\Omega)=H_{0}^{1}(\Omega)$ as the closure of $C_{c}^{\infty}(\Omega)$ with respect to the $W^{1, p}(\Omega)$ norm which is a Hilbert space [1].

We consider the problem of the scalar curvature on the standard four dimensional half sphere under minimal boundary conditions (S):
(S) $\left\{\begin{array}{lll}L_{g} u:=-\Delta_{g} u+2 u=K u^{3}, & u>0 & \text { in } S_{+}^{4}, \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial S_{+}^{4},\end{array}\right.$
where $S_{+}^{4}=\left\{x \in \mathbb{R}^{5} /|x|=1, x_{5}>0\right\}, g$ is the standard metric, and K is a C^{3} positive Morse function on $\overline{S_{+}^{4}}$.
The scalar curvature problem on S^{n} and also on S_{+}^{n} was the subject of several works in recent years, we can cite for example [2-12].

Recall that the embedding of $H^{1}\left(S_{+}^{4}\right)$ into $L^{4}\left(S_{+}^{4}\right)$ is noncompact. For this reason, we have focused our study on the family of subcritical problems $\left(S_{\varepsilon}\right)$

$$
\left(S_{\varepsilon}\right)\left\{\begin{array}{lll}
-\Delta_{g} u+2 u=K u^{3-\varepsilon}, & u>0 & \text { in } S_{+}^{4} \\
\frac{\partial u}{\partial v}=0 & \text { on } \partial S_{+}^{4}
\end{array}\right.
$$

where ε is a small positive parameter.
Note that the solutions of problem (S) can be the limit as $\varepsilon \rightarrow 0$ of some solutions (u_{ε}) for $\left(S_{\varepsilon}\right)$.

Djadli et al. [13] studied this problem in the case of the three dimensional half sphere. Assuming that the critical points of K_{1} verify $(\partial K / \partial \nu)\left(a_{i}\right)>0$ they demonstrated that there exist solutions $\left(u_{\varepsilon}\right)$ concentrated at the points $\left(a_{1}, \ldots, a_{p}\right)$. Moreover, in [14], we established the existence of another type of solutions $\left(u_{\varepsilon}\right)$ of $\left(S_{\varepsilon}\right)$ such that is concentrated at two points $a_{1} \in \partial S_{+}^{4}$ and $a_{2} \in S_{+}^{4}$.
In this work, we aim to construct some positive solutions of $\left(S_{\varepsilon}\right)$ which are concentrated at two different points of the boundary. To state our result, we will give the following notations. For $a \in \overline{S_{+}^{4}}$ and $\lambda>0$, let

$$
\begin{equation*}
\delta_{(a, \lambda)}(x)=c_{0} \frac{\lambda}{\left(\lambda^{2}+1+\left(1-\lambda^{2}\right) \cos d(a, x)\right)}, \tag{1}
\end{equation*}
$$

where d is the geodesic distance on $\left(\overline{S_{+}^{4}}, g\right)$ and c_{0} is chosen so that $\delta_{(a, \lambda)}$ is the family of solutions of the following problem:

$$
-\Delta u+2 u=u^{3}, \quad u>0, \quad \text { in } S^{4}
$$

The space $H^{1}\left(S_{+}^{4}\right)$ is equipped with the norm $\|\cdot\|$ and its corresponding inner product $\langle\cdot, \cdot\rangle$:

$$
\|f\|^{2}=\int_{S_{+}^{4}}|\nabla f|^{2}+2 \int_{S_{+}^{4}} f^{2}, \quad \text { and } \quad\langle f, g\rangle=\int_{S_{+}^{4}} \nabla f \nabla g+2 \int_{S_{+}^{4}} f g, \quad f, g \in H^{1}\left(S_{+}^{4}\right) .
$$

Theorem 1 Let z_{1} and z_{2} be a nondegenerate critical points of $K_{1}=K_{\mid \partial S_{+}^{4}}$ with $(\partial K / \partial \nu)\left(z_{i}\right)>$ $0, i=1,2$. Then there exists $\varepsilon_{0}>0$ such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(S_{\varepsilon}\right)$ has a solution $\left(u_{\varepsilon}\right)$ of the form

$$
u_{\varepsilon}=\alpha_{1} \delta_{\left(x_{1}, \lambda_{1}\right)}+\alpha_{2} \delta_{\left(x_{2}, \lambda_{2}\right)}+v,
$$

where, as $\varepsilon \rightarrow 0, \alpha_{i} \rightarrow K\left(z_{i}\right)^{-1 / 2} ;\|v\| \rightarrow 0 ; x_{i} \rightarrow z_{i} ; x_{i} \in \partial S_{+}^{4} ; \lambda_{i} \rightarrow+\infty ; \lambda_{1}=c \lambda_{2}(1+o(1))$.

The rest of this work is summarized as follows. In Section 2, we present a classical preliminaries and we perform a useful estimations of functional $\left(I_{\varepsilon}\right)$ associated to the problem $\left(S_{\varepsilon}\right)$ for $(\varepsilon>0)$ and its gradient. Section 3 is devoted to the construction of solutions and the proof of our result.

2 Useful estimations

We introduce the structure variational associated to the problem $\left(S_{\varepsilon}\right)$ for $\varepsilon>0$

$$
\begin{equation*}
I_{\varepsilon}(u)=\frac{1}{2} \int_{S_{+}^{4}}|\nabla u|^{2}+\int_{S_{+}^{4}} u^{2}-\frac{1}{4-\varepsilon} \int_{S_{+}^{4}} K|u|^{4-\varepsilon}, \quad u \in H^{1}\left(S_{+}^{4}\right) . \tag{2}
\end{equation*}
$$

It is well known that there is an equivalence between the existence of solutions for $\left(S_{\varepsilon}\right)$ and the positive critical point of I_{ε}. Moreover, in order to reduce our problem to \mathbb{R}_{+}^{4} we will perform some stereographic projection. We denote $D^{1,2}\left(\mathbb{R}_{+}^{4}\right)$ for the completion of $C_{c}^{\infty}\left(\overline{\mathbb{R}_{+}^{4}}\right)$ with respect to the Dirichlet norm. Recall that an isometry 1: $H^{1}\left(S_{+}^{4}\right) \rightarrow D^{1,2}\left(\mathbb{R}_{+}^{4}\right)$ is induced by the stereographic projection π_{a} about a point $a \in \partial S_{+}^{4}$ following the formula

$$
\begin{equation*}
(1 \phi)(y)=\left(\frac{2}{1+|x|^{2}}\right) \phi\left(\pi_{a}^{-1}(y)\right), \quad \phi \in H^{1}\left(S_{+}^{4}\right), y \in \mathbb{R}_{+}^{4} \tag{3}
\end{equation*}
$$

For every $\phi \in H^{1}\left(S_{+}^{4}\right)$, one can check that the following holds true:

$$
\int_{S_{+}^{4}}\left(|\nabla \phi|^{2}+2 \phi^{2}\right)=\int_{\mathbb{R}_{+}^{4}}|\nabla(1 \phi)|^{2} \quad \text { and } \quad \int_{S_{+}^{4}}|\phi|^{4}=\int_{\mathbb{R}_{+}^{4}}|1 \phi|^{4} .
$$

Furthermore, using (3) with π_{-a}, it is easy to see that $1 \delta_{(a, \lambda)}$ is given by

$$
1 \delta_{(a, \lambda)}=\frac{c_{0} \lambda}{1+\lambda^{2}|x-a|^{2}} .
$$

$\delta_{(a, \lambda)}$ will be written instead of $1 \delta_{(a, \lambda)}$ in the sequel.
Let

$$
\begin{aligned}
M_{\varepsilon}= & \left\{m=(\alpha, \lambda, x, v) \in \mathbb{R}^{2} \times\left(\mathbb{R}_{+}^{*}\right)^{2} \times\left(\partial S_{+}^{4}\right)^{2} \times H^{1}\left(S_{+}^{4}\right): v \in E_{(x, \lambda)},\|v\|<v_{0} ;\right. \\
& \left|\frac{\alpha_{i}^{2} K\left(x_{i}\right)}{\alpha_{j}^{2} K\left(x_{j}\right)}-1\right|<v_{0}, \lambda_{i}>\frac{1}{\nu_{0}}, \varepsilon \log \lambda_{i}<v_{0}, \forall i ; c_{0}<\frac{\lambda_{1}}{\lambda_{2}}<c_{0}^{-1} ;\left|x_{1}-x_{2}\right|>d_{0} ; \\
& \left.\left|-2 c_{3} \frac{\partial K}{\partial v}\left(x_{i}\right) \frac{1}{\lambda_{i}}+\frac{\varepsilon K\left(x_{i}\right) S_{4}}{8}\right|<\varepsilon^{1+\frac{\sigma}{2}}\right\},
\end{aligned}
$$

where v_{0} is a small positive constant, σ, c_{0}, d_{0} are some suitable positive constants, and

$$
E_{(x, \lambda)}=\left\{w \in H^{1}\left(S_{+}^{4}\right) /\langle w, \varphi\rangle=0 \forall \varphi \in \operatorname{Span}\left\{\delta_{i}, \frac{\partial \delta_{i}}{\partial \lambda_{i}}, \frac{\partial \delta_{i}}{\partial x_{i}^{j}}, i=1,2 ; j \leq 4\right\}\right\} .
$$

Here, x_{i}^{j} denotes the j th component of x_{i}. Also

$$
\begin{equation*}
\Psi_{\varepsilon}: M_{\varepsilon} \rightarrow \mathbb{R} ; \quad m=(\alpha, \lambda, x, v) \mapsto I_{\varepsilon}\left(\alpha_{1} \delta_{\left(x_{1}, \lambda_{1}\right)}+\alpha_{2} \delta_{\left(x_{2}, \lambda_{2}\right)}+v\right) . \tag{4}
\end{equation*}
$$

In the sequel, we will write δ_{i} instead of $\delta_{\left(x_{i}, \lambda_{i}\right)}$ and $u=\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}+v$ for the sake of simplicity.
In the remainder of this section, we will give expansions of the gradient of the functional I_{ε} associated to $\left(S_{\varepsilon}\right)$ for $\varepsilon>0$. Thus estimations are needed in Section 3. We need to recall
that [15] proved the following remark when $n=3$, but the same argument is available for the dimension 4.

Remark 2 For $\varepsilon>0$ and $\delta_{(a, \lambda)}$ defined in (1), we have

$$
\delta_{(a, \lambda)}^{-\varepsilon}(x)=1-\varepsilon \log \delta_{(a, \lambda)}+O\left(\varepsilon^{2} \log ^{2} \lambda\right) \quad \text { in } S_{+}^{4} .
$$

Now, explicit computations, using Remark 2, yield the following propositions.

Proposition 3 Let $(\alpha, \lambda, x, v) \in M_{\varepsilon}$. Then, for $u=\alpha_{1} \delta_{\left(x_{1}, \lambda_{1}\right)}+\alpha_{2} \delta_{\left(x_{2}, \lambda_{2}\right)}+v$, we have the following expansion:

$$
\left\langle\nabla I_{\varepsilon}(u), \delta_{i}\right\rangle=\frac{\alpha_{i} S_{4}}{2}\left(1-\alpha_{i}^{2-\varepsilon} K\left(x_{i}\right)\right)+O\left(\varepsilon \log \lambda_{i}+\frac{1}{\lambda_{i}}+\varepsilon_{12}+\|v\|^{2}\right)
$$

where

$$
\begin{aligned}
& \varepsilon_{i j}=\frac{1}{\frac{\lambda_{i}}{\lambda_{j}}+\frac{\lambda_{j}}{\lambda_{i}}+\lambda_{i} \lambda_{j}\left|a_{i}-a_{j}\right|^{2}} \\
& S_{4}=64 \int_{\mathbb{R}^{4}} \frac{d x}{\left(1+|x|^{2}\right)^{4}}
\end{aligned}
$$

Proof We have

$$
\begin{equation*}
\left\langle\nabla I_{\varepsilon}(u), h\right\rangle=\int_{S_{+}^{4}} \nabla u \nabla h+2 \int_{S_{+}^{4}} u h-\int_{S_{+}^{4}} K u^{3-\varepsilon} h . \tag{5}
\end{equation*}
$$

A computation similar to the one performed in [16] shows that, for $i=1,2$,

$$
\begin{equation*}
\left\|\delta_{i}\right\|^{2}=\int_{\mathbb{R}_{+}^{4}}\left|\nabla \delta_{i}\right|^{2}=\frac{S_{4}}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S_{+}^{4}} \nabla \delta_{i} \nabla \delta_{j}+2 \int_{S_{+}^{4}} \delta_{i} \delta_{j}=\int_{\mathbb{R}_{+}^{4}} \nabla \delta_{i} \nabla \delta_{j}=\int_{\mathbb{R}_{+}^{4}} \delta_{i}^{3} \delta_{j}=O\left(\varepsilon_{12}\right) . \tag{7}
\end{equation*}
$$

For the other integral, we write

$$
\begin{equation*}
\int_{S_{+}^{4}} K u^{3-\varepsilon} \delta_{i}=\int_{S_{+}^{4}} K\left(\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}\right)^{3-\varepsilon} \delta_{i}+O\left(\varepsilon_{12}^{2} \log \varepsilon_{12}^{-1}+|v|^{2}\right) . \tag{8}
\end{equation*}
$$

We also write

$$
\begin{align*}
\int_{S_{+}^{4}} K\left(\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}\right)^{3-\varepsilon} \delta_{i}= & \alpha_{i}^{3-\varepsilon} \int_{S_{+}^{4}} K \delta_{i}^{4-\varepsilon}+\alpha_{j}^{3-\varepsilon} \int_{S_{+}^{4}} K \delta_{j}^{3-\varepsilon} \delta_{i} \\
& +(3-\varepsilon) \alpha_{i}^{2-\varepsilon} \alpha_{j} \int_{S_{+}^{4}} K \delta_{i}^{3-\varepsilon} \delta_{j}+O\left(\varepsilon_{12}^{2} \log \varepsilon_{12}^{-1}\right) . \tag{9}
\end{align*}
$$

Expansions of K around x_{i} and x_{j} give

$$
\begin{align*}
& \int_{S_{+}^{4}} K \delta_{i}^{4-\varepsilon}=\int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{4-\varepsilon}=K\left(x_{i}\right) \frac{S_{4}}{2}+O\left(\varepsilon \log \lambda_{i}+\frac{1}{\lambda_{i}}\right), \tag{10}\\
& \int_{S_{+}^{4}} K \delta_{j}^{3-\varepsilon} \delta_{i}=\int_{\mathbb{R}_{+}^{4}} K \delta_{j}^{3-\varepsilon} \delta_{i}=O\left(\varepsilon \log \lambda_{i}+\varepsilon_{12}\right), \tag{11}\\
& \int_{S_{+}^{4}} K \delta_{i}^{3-\varepsilon} \delta_{j}=\int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{3-\varepsilon} \delta_{j}=O\left(\varepsilon \log \lambda_{i}+\varepsilon_{12}\right) . \tag{12}
\end{align*}
$$

Combining (5)-(12), we derive our proposition.

Proposition 4 Let $(\alpha, \lambda, x, v) \in M_{\varepsilon}$. Then, for $u=\alpha_{1} \delta_{\left(x_{1}, \lambda_{1}\right)}+\alpha_{2} \delta_{\left(x_{2}, \lambda_{2}\right)}+v$, we have

$$
\begin{aligned}
\left\langle\nabla I_{\varepsilon}(u), \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}\right\rangle= & \alpha_{j}\left(1-\alpha_{j}^{2-\varepsilon} K\left(x_{j}\right)-\alpha_{i}^{2-\varepsilon} K\left(x_{i}\right)\right) c_{2} \lambda_{i} \frac{\partial \varepsilon_{12}}{\partial \lambda_{i}}+\alpha_{i}^{3-\varepsilon} \frac{\varepsilon S_{4} K\left(x_{i}\right)}{8} \\
& +\alpha_{i}^{3-\varepsilon} \frac{2 c_{3}}{\lambda_{i}} \frac{\partial K}{\partial v}\left(x_{i}\right)+O\left(\|\nu\|^{2}+\frac{1}{\lambda_{i}^{2}}+\varepsilon^{2} \log \lambda_{i}+\frac{\varepsilon \log \lambda_{i}}{\lambda_{i}}\right) \\
& +O\left(\varepsilon \varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{1 / 2}+\varepsilon_{12}^{2} \log \varepsilon_{12}^{-1}+\frac{\varepsilon_{12}}{\lambda_{j}}\left(\log \varepsilon_{12}^{-1}\right)^{1 / 2}\right),
\end{aligned}
$$

where

$$
S_{4}=64 \int_{\mathbb{R}^{4}} \frac{d x}{\left(1+|x|^{2}\right)^{4}}, \quad c_{2}=64 \int_{\mathbb{R}^{4}} \frac{d x}{\left(1+|x|^{2}\right)^{3}}, \quad c_{3}=64 \int_{\mathbb{R}_{+}^{4}} \frac{x_{4}\left(|x|^{2}-1\right)}{\left(1+|x|^{2}\right)^{5}} d x .
$$

Proof Observe that (see [16])

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{4}} \nabla \delta_{i} \nabla\left(\lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}\right) & =\int_{\mathbb{R}_{+}^{4}} \delta_{i}^{3} \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}=0, \tag{13}\\
\int_{\mathbb{R}_{+}^{4}} \nabla \delta_{j} \nabla\left(\lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}\right) & =\int_{\mathbb{R}_{+}^{4}} \delta_{j}^{3} \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}=\frac{1}{2} c_{2} \lambda_{i} \frac{\partial \varepsilon_{12}}{\partial \lambda_{i}}+O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)\right) . \tag{14}
\end{align*}
$$

For the other part, we have the expansions of K around x_{i} and using Remark 2,

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{3-\varepsilon} \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}=-\frac{\varepsilon S_{4} K\left(x_{i}\right)}{8}-\frac{2 c_{3}}{\lambda_{i}} \nabla K\left(x_{i}\right) e_{4}+O\left(\varepsilon^{2} \log \lambda_{i}+\frac{1}{\lambda_{i}^{2}}+\frac{\varepsilon}{\lambda_{i}}\right), \tag{15}\\
& \begin{aligned}
\int_{\mathbb{R}_{+}^{4}} K P \delta_{j}^{3-\varepsilon} \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}= & K\left(x_{j}\right) \frac{1}{2} c_{2} \lambda_{i} \frac{\partial \varepsilon_{12}}{\partial \lambda_{i}}+O\left(\varepsilon \varepsilon_{12}\left(\log \left(\varepsilon_{12}^{-1}\right)\right)^{\frac{1}{2}}+\frac{1}{\lambda_{j}^{2}}\right) \\
& +O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)\right), \\
(3-\varepsilon) \int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{2-\varepsilon} \delta_{j} \lambda_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}= & K\left(x_{i}\right) \frac{1}{2} c_{2} \lambda_{i} \frac{\partial \varepsilon_{12}}{\partial \lambda_{i}}+O\left(\varepsilon \varepsilon_{12}\left(\log \left(\varepsilon_{12}^{-1}\right)\right)^{\frac{1}{2}}\right) \\
& +O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)+\frac{\varepsilon_{12}}{\lambda_{j}}\left(\log \left(\varepsilon_{12}^{-1}\right)\right)^{\frac{1}{2}}\right) .
\end{aligned}
\end{align*}
$$

Combining (5), (13), (14), (15), (16), and (17), the proof follows.

Proposition 5 Let $(\alpha, \lambda, x, v) \in M_{\varepsilon}$. Then, for $u=\alpha_{1} \delta_{\left(x_{1}, \lambda_{1}\right)}+\alpha_{2} \delta_{\left(x_{2}, \lambda_{2}\right)}+v$, we have the following expansion:

$$
\begin{aligned}
\left\langle\nabla I_{\varepsilon}(u), \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}\right\rangle= & \left(\alpha_{i} c_{4}\left(1-\alpha_{i}^{2-\varepsilon} K\left(x_{i}\right)\right)+\alpha_{i}^{3-\varepsilon} K\left(x_{i}\right) \varepsilon\left(c_{4} \log \lambda_{i}+c_{7}\right)\right. \\
& \left.+2 \alpha_{i}^{3-\varepsilon} \frac{c_{5}}{\lambda_{i}} \frac{\partial K}{\partial v}\left(x_{i}\right)\right) e_{4}+\alpha_{j}\left(1-\sum \alpha_{i}^{2-\varepsilon} K\left(x_{i}\right)\right) \frac{c_{2}}{\lambda_{i}} \frac{\partial \varepsilon_{12}}{\partial x_{i}} \\
& -2 \alpha_{i}^{3-\varepsilon} c_{5} \frac{\nabla_{T} K\left(x_{i}\right)}{\lambda_{i}}+O\left(\|v\|^{2}+\lambda_{j}\left|x_{1}-x_{2}\right| \varepsilon_{12}^{\frac{5}{2}}+\frac{\varepsilon \log \lambda_{i}}{\lambda_{i}}\left|\nabla_{T} K\left(x_{i}\right)\right|\right) \\
& +O\left(\varepsilon \varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{1}{2}}+\varepsilon_{12}^{2} \log \varepsilon_{12}^{-1}+\frac{\varepsilon_{12}}{\lambda_{j}}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{1}{2}}+\frac{1}{\lambda_{i}^{2}}+\varepsilon^{2} \log ^{2} \lambda_{i}\right),
\end{aligned}
$$

where

$$
c_{4}=132 \int_{\mathbb{R}_{+}^{4}} \frac{x_{4}}{\left(1+|x|^{2}\right)^{5}} d x, \quad c_{5}=16 \int_{\mathbb{R}^{4}} \frac{x_{4}^{2}}{\left(1+|x|^{2}\right)^{5}} d x
$$

Proof We have

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{i} \nabla\left(\frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}\right)=\int_{\mathbb{R}_{+}^{4}} \delta_{i}^{3} \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}=c_{4} e_{4}, \tag{18}\\
& \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{j} \nabla\left(\frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}\right)=\int_{\mathbb{R}_{+}^{4}} \delta_{j}^{3} \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}=\frac{1}{2} \frac{c_{2}}{\lambda_{i}} \frac{\partial \varepsilon_{12}}{\partial x_{i}}+O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)+\varepsilon_{12}^{\frac{5}{2}} \lambda_{j}\left|x_{1}-x_{2}\right|\right) . \tag{19}
\end{align*}
$$

For the other part

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{3-\varepsilon} \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}= & K\left(x_{i}\right) c_{4} e_{4}+2 \frac{c_{5}}{\lambda_{i}} \nabla K\left(x_{i}\right)-\varepsilon \log \lambda_{i} K\left(x_{i}\right) c_{4} e_{4} \\
& -\varepsilon K\left(x_{i}\right) c_{7} e_{4}+O\left(\frac{1}{\lambda_{i}^{2}}+\varepsilon^{2} \log ^{2} \lambda_{i}\right) \tag{20}\\
\int_{\mathbb{R}_{+}^{4}} K \delta_{j}^{3-\varepsilon} \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}= & K\left(x_{j}\right) \frac{1}{2} c_{2} \frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{12}}{\partial a_{i}}+O\left(\varepsilon_{12}^{\frac{5}{2}} \lambda_{j}\left|x_{1}-x_{2}\right|\right) \\
& +O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)+\frac{1}{\lambda_{j}} \varepsilon_{12}\left(\log \left(\varepsilon_{12}^{-1}\right)\right)^{\frac{1}{2}}\right), \tag{21}\\
(3-\varepsilon) \int_{\mathbb{R}_{+}^{4}} K \delta_{i}^{2-\varepsilon} \delta_{j} \frac{1}{\lambda_{i}} \frac{\partial \delta_{i}}{\partial x_{i}}= & K\left(x_{i}\right) \frac{1}{2} c_{2} \frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{12}}{\partial x_{i}}+O\left(\varepsilon_{12}^{\frac{5}{2}} \lambda_{j}\left|x_{1}-x_{2}\right|\right) \\
& +O\left(\varepsilon_{12}^{2} \log \left(\varepsilon_{12}^{-1}\right)+\frac{1}{\lambda_{i}} \varepsilon_{12}\left(\log \left(\varepsilon_{12}^{-1}\right)\right)^{\frac{1}{2}}\right) \tag{22}
\end{align*}
$$

Using (5), (18)-(22), our proposition follows.

3 Construction of the solution

The method of this type of theorem was followed first by Bahri, Li and Rey [17] when they studied an approximation problem of the Yamabe-type problem on domains. Many authors used this idea to construct some solutions to other problems. The method becomes standard. Here we will follow the idea of [17] and take account of the new estimates since
we have an equation different from the one studied in [17]. From the idea of [17], using the coefficients of Euler-Lagrange, we obtain

Proposition 6 Let A point $m=(\alpha, \lambda, x, v) \in M_{\varepsilon}$ is a critical point of the function Ψ_{ε} if and only if $u=\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}+v$ is a critical point of functional I_{ε}, which means the existence of some $(A, B, C) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \times\left(\mathbb{R}^{4}\right)^{2}$ with the following:

$$
\begin{align*}
& \left(E_{\alpha_{i}}\right) \frac{\partial \Psi_{\varepsilon}}{\partial \alpha_{i}}=0, \quad \forall i=1,2, \tag{23}\\
& \left(E_{\lambda_{i}}\right) \frac{\partial \Psi_{\varepsilon}}{\partial \lambda_{i}}=B_{i}\left(\frac{\partial^{2} \delta_{i}}{\partial \lambda_{i}^{2}}, v\right\rangle+\sum_{j=1}^{4} C_{i j}\left(\frac{\partial^{2} \delta_{i}}{\partial x_{i}^{j} \partial \lambda_{i}}, v\right), \quad \forall i=1,2, \tag{24}\\
& \left(E_{x_{i}}\right) \frac{\partial \Psi_{\varepsilon}}{\partial x_{i}}=B_{i}\left(\frac{\partial^{2} \delta_{i}}{\partial \lambda_{i} \partial x_{i}}, v\right)+\sum_{j=1}^{4} C_{i j}\left(\frac{\partial^{2} \delta_{i}}{\partial x_{i}^{j} \partial x_{i}}, v\right), \quad \forall i=1,2, \tag{25}\\
& \left(E_{v}\right) \frac{\partial \Psi_{\varepsilon}}{\partial v}=\sum_{i=1,2}\left(A_{i} \delta_{i}+B_{i} \frac{\partial \delta_{i}}{\partial \lambda_{i}}+\sum_{j=1}^{4} C_{i j} \frac{\partial \delta_{i}}{\partial x_{i}^{j}}\right) . \tag{26}
\end{align*}
$$

Now, by a careful study of equation $\left(E_{v}\right)$, we get the following.

Proposition 7 [12] For any $(\varepsilon, \alpha, \lambda, x)$ with $(\alpha, \lambda, x, 0) \in M_{\varepsilon}$, there exists a smooth map which associates $\bar{v} \in E_{(x, \lambda)}$ with $\|\bar{v}\|<\nu_{0}$ and equation (26) in the previous proposition is verified for some $(A, B, C) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \times\left(\mathbb{R}^{4}\right)^{2}$. Such a \bar{v} is unique, minimizes $\Psi_{\varepsilon}(\alpha, \lambda, x, v)$ with respect to v in $\left\{v \in E_{(x, \lambda)} /\|v\|<v_{0}\right\}$, and

$$
\begin{equation*}
\|\bar{v}\|=O\left(\varepsilon+\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{1 / 2}\right) \tag{27}
\end{equation*}
$$

Proof of Theorem 1 Once \bar{v} is defined by Proposition 7, we estimate the corresponding numbers A, B, C by taking the scalar product in $H^{1}\left(S_{+}^{4}\right)$ of $\left(E_{v}\right)$ with $\delta_{i}, \partial \delta_{i} / \partial \lambda_{i}, \partial \delta_{i} / \partial x_{i}$ for $i=1,2$, respectively. So we get the following coefficients of a quasi-diagonal system:

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{4}}\left|\nabla \delta_{i}\right|^{2}=\frac{S_{4}}{2} ; \quad \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{1} \nabla \delta_{2}=O\left(\frac{1}{\lambda_{2} \lambda_{1}}\right) ; \quad \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{i} \nabla \frac{\partial \delta_{i}}{\partial \lambda_{i}}=0 ; \\
& \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{1} \nabla \frac{\partial \delta_{2}}{\partial \lambda_{2}}=O\left(\frac{1}{\lambda_{1} \lambda_{2}^{2}}\right), \quad \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{2} \nabla \frac{\partial \delta_{1}}{\partial \lambda_{1}}=O\left(\frac{1}{\lambda_{1}^{2} \lambda_{2}}\right) ; \quad \int_{\mathbb{R}_{+}^{4}}\left|\nabla \frac{\partial \delta_{i}}{\partial \lambda_{i}}\right|^{2}=\frac{\Gamma_{1}}{2 \lambda_{i}^{2}} ; \\
& \int_{\mathbb{R}_{+}^{4}} \nabla \frac{\partial \delta_{1}}{\partial \lambda_{1}} \nabla \frac{\partial \delta_{2}}{\partial \lambda_{2}}=O\left(\frac{1}{\lambda_{1}^{2} \lambda_{2}^{2}}\right), \quad \int_{\mathbb{R}_{+}^{4}}\left|\nabla \frac{\partial \delta_{i}}{\partial x_{i}}\right|^{2}=\frac{\Gamma_{2}}{2} \lambda_{i}^{2} ; \quad \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{i} \nabla \frac{\partial \delta_{i}}{\partial x_{i}}=O\left(\lambda_{1}\right) ; \\
& \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{1} \nabla \frac{\partial \delta_{2}}{\partial x_{2}}=O\left(\frac{1}{\lambda_{1}}\right), \quad \int_{\mathbb{R}_{+}^{4}} \nabla \delta_{2} \nabla \frac{\partial \delta_{1}}{\partial x_{1}}=O\left(\frac{1}{\lambda_{2}}\right) ; \\
& \int_{\mathbb{R}_{+}^{4}} \nabla \frac{\partial \delta_{1}}{\partial x_{1}} \nabla \frac{\partial \delta_{2}}{\partial x_{2}}=\frac{n+2}{n-2} \int_{\mathbb{R}_{+}^{4}} \delta_{2}^{\frac{4}{n-2}} \nabla \frac{\partial \delta_{2}}{\partial x_{2}} \frac{\partial \delta_{1}}{\partial x_{1}}=O\left(\frac{1}{\lambda_{1}}\right),
\end{aligned}
$$

with $\left|x_{1}-x_{2}\right| \geq c>0$ and Γ_{1}, Γ_{2} are positive constants.
We have also

$$
\left\langle\frac{\partial \Psi_{\varepsilon}}{\partial v}, \delta_{i}\right\rangle=\frac{\partial \Psi_{\varepsilon}}{\partial \alpha_{i}} ; \quad\left\langle\frac{\partial \Psi_{\varepsilon}}{\partial v}, \frac{\partial \delta_{i}}{\partial \lambda_{i}}\right\rangle=\frac{1}{\alpha_{i}} \frac{\partial \Psi_{\varepsilon}}{\partial \lambda_{i}} ; \quad\left\langle\frac{\partial \Psi_{\varepsilon}}{\partial v}, \frac{\partial \delta_{i}}{\partial x_{i}}\right\rangle=\frac{1}{\alpha_{i}} \frac{\partial \Psi_{\varepsilon}}{\partial x_{i}} .
$$

Using Propositions 3, some computations yield

$$
\begin{equation*}
\frac{\partial \Psi_{\varepsilon}}{\partial \alpha_{i}}=-S_{4} \beta_{i}+V_{\alpha_{i}}(\varepsilon, \alpha, \lambda, x), \tag{28}
\end{equation*}
$$

with $\beta_{i}=\alpha_{i}-1 / K\left(z_{i}\right)^{\frac{1}{2}}$ and

$$
\begin{equation*}
V_{\alpha_{i}}=O\left(\beta_{i}^{2}+\varepsilon \log \lambda_{i}+\frac{1}{\lambda_{i}}+\left|x_{i}-z_{i}\right|^{2}\right) \tag{29}
\end{equation*}
$$

In the same way, using Propositions 4, we get

$$
\begin{equation*}
\frac{\partial \Psi_{\varepsilon}}{\partial \lambda_{i}}=\frac{1}{K\left(z_{i}\right)}\left(\frac{2 c_{3}}{\lambda_{i}^{2}} \frac{\partial K}{\partial v}\left(x_{i}\right)+\frac{\varepsilon K\left(x_{i}\right) S_{4}}{8 \lambda_{i}}\right)+V_{\lambda_{i}}(\varepsilon, \alpha, \lambda, x) \tag{30}
\end{equation*}
$$

where c_{2} and c_{3} are defined in Proposition 4 and

$$
\begin{equation*}
V_{\lambda_{i}}=O\left[\frac{1}{\lambda_{i}}\left(\frac{1}{\lambda_{i}^{2}}+\varepsilon^{2} \log \lambda_{i}+\frac{\varepsilon \log \lambda_{i}}{\lambda_{i}}\right)+\left(|\beta|+\varepsilon+\left|x_{i}-z_{i}\right|^{2}\right)\left(\frac{\varepsilon}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right)\right] . \tag{31}
\end{equation*}
$$

Lastly, using Propositions 5, we have

$$
\begin{equation*}
\frac{\partial \Psi_{\varepsilon}}{\partial x_{i}}=-2 c_{5} \nabla_{T} K\left(x_{i}\right)+V_{x_{i}}(\varepsilon, \alpha, \lambda, x) \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{x_{i}}=O\left(\frac{1}{\lambda_{i}}+\left(|\beta|+\varepsilon \log \lambda_{i}+\left|x_{i}-z_{i}\right|^{2}\right)\left|x_{i}-z_{i}\right|\right) . \tag{33}
\end{equation*}
$$

From these estimates, we deduce

$$
\begin{aligned}
& \frac{\partial \Psi_{\varepsilon}}{\partial \alpha_{i}}=O\left(|\beta|+\varepsilon \log \lambda_{i}+\frac{1}{\lambda_{i}}+\left|x_{i}-z_{i}\right|^{2}\right) \\
& \frac{\partial \Psi_{\varepsilon}}{\partial \lambda_{i}}=O\left(\frac{\varepsilon^{1+\sigma / 2}}{\lambda_{i}}\right) ; \quad \frac{\partial \Psi_{\varepsilon}}{\partial x_{i}}=O\left(\left|x_{i}-z_{i}\right|+\frac{1}{\lambda_{i}}\right) .
\end{aligned}
$$

By solving the system in A, B, and C, we find

$$
\left\{\begin{array}{l}
A_{i}=O\left(|\beta|+\varepsilon \log \lambda_{i}+\frac{1}{\lambda_{i}}+\left|x_{i}-z_{i}\right|^{2}\right) \tag{34}\\
B_{i}=O\left(\varepsilon^{1+\sigma / 2} \lambda_{i}\right) ; \quad C_{i}=O\left(\frac{\left|x_{i}-z_{i}\right|}{\lambda_{i}^{2}}+\frac{1}{\lambda_{i}^{3}}\right)
\end{array}\right.
$$

Now, we can evaluate the right hand side in $\left(E_{\lambda_{i}}\right)$ and $\left(E_{x_{i}}\right)$,

$$
\begin{align*}
& B_{i}\left\langle\frac{\partial^{2} \delta_{i}}{\partial \lambda_{i}^{2}}, \bar{v}\right\rangle+\sum_{j=1}^{4} C_{i j}\left\langle\frac{\partial^{2} \delta_{i}}{\partial x_{i}^{j} \partial \lambda_{i}}, \bar{v}\right\rangle=O\left(\left(\frac{\varepsilon^{1+\sigma / 2}}{\lambda_{i}}+\frac{\left|x_{i}-z_{i}\right|}{\lambda_{i}^{2}}+\frac{1}{\lambda_{i}^{3}}\right)\|\bar{v}\|\right) \tag{35}\\
& B_{i}\left\langle\frac{\partial^{2} \delta_{i}}{\partial \lambda_{i} \partial x_{i}}, \bar{v}\right\rangle+\sum_{j=1}^{4} C_{i j}\left\langle\frac{\partial^{2} \delta_{i}}{\partial x_{i}^{j} \partial x_{i}}, \bar{v}\right\rangle=O\left(\left(\varepsilon^{1+\sigma / 2} \lambda_{i}+\left|x_{i}-z_{i}\right|+\frac{1}{\lambda_{i}}\right)\|\bar{v}\|\right), \tag{36}
\end{align*}
$$

where

$$
\left\|\frac{\partial^{2} P \delta_{i}}{\partial \lambda_{i}^{2}}\right\|=O\left(\frac{1}{\lambda_{i}^{2}}\right) ; \quad\left\|\frac{\partial^{2} P \delta_{i}}{\partial x_{i} \partial \lambda_{i}}\right\|=O(1) ; \quad\left\|\frac{\partial^{2} P \delta_{i}}{\partial x_{i}^{2}}\right\|=O\left(\lambda_{i}^{2}\right) .
$$

Now, we consider a point $\left(z_{1}, z_{2}\right) \in \partial S_{+}^{4} \times \partial S_{+}^{4}$ such that z_{1} and z_{2} are nondegenerate critical points of K_{1}. We set

$$
\frac{1}{\lambda_{i}}=\varepsilon \frac{S_{4}}{16 c_{3}} K\left(z_{i}\right)\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-1}\left(1+\zeta_{i}\right) ; \quad x_{i}=z_{i}+\xi_{i}
$$

where $\zeta_{i} \in \mathbb{R}$ and $\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ are assumed to be small.
Using (28) and these changes of variables, $\left(E_{\alpha_{i}}\right)$ becomes

$$
\begin{equation*}
\beta_{i}=V_{\alpha_{i}}(\varepsilon, \beta, \zeta, \xi)=O\left(\beta^{2}+\varepsilon|\log \varepsilon|+|\xi|^{2}\right) \tag{37}
\end{equation*}
$$

Also, we use (30), we have

$$
\begin{aligned}
\frac{2 c_{3}}{\lambda_{i}^{2}} & \frac{\partial K}{\partial v}\left(z_{i}+\xi_{i}\right)+\frac{\varepsilon K\left(z_{i}+\xi_{i}\right) S_{4}}{8 \lambda_{i}} \\
= & \frac{\varepsilon^{2} S_{4}^{2} K\left(z_{i}\right)^{2}}{128 c_{3}}\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-2}\left(1+2 \zeta_{i}\right)\left(-\frac{\partial K}{\partial v}\left(z_{i}\right)+D^{2} K\left(z_{i}\right)\left(e_{4}, \xi_{i}\right)\right) \\
& +\frac{\varepsilon^{2} S_{4}^{2} K\left(z_{i}\right)^{2}}{128 c_{3}}\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-1}\left(1+\zeta_{i}\right)+O\left(\varepsilon^{2}\left(\zeta_{i}^{2}+\left|\xi_{i}\right|^{2}\right)\right) \\
= & -\frac{\varepsilon^{2} S_{4}^{2} K\left(z_{i}\right)^{2}}{128 c_{3}}\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-1} \zeta_{i} \\
& +\frac{\varepsilon^{2} S_{4}^{2} K\left(z_{i}\right)^{2}}{128 c_{3}}\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-2} D^{2} K\left(z_{i}\right)\left(e_{4}, \xi_{i}\right) \\
& +O\left(\varepsilon^{2}\left(\zeta_{i}^{2}+\left|\xi_{i}\right|^{2}\right)\right)
\end{aligned}
$$

Combining this with (31), then $\left(E_{\lambda_{i}}\right)$ becomes

$$
\begin{align*}
-\zeta_{i}+\left(\frac{\partial K}{\partial v}\left(z_{i}\right)\right)^{-1} D^{2} K_{1}\left(z_{i}\right)\left(e_{4}, \xi_{i}\right) & =V_{\lambda_{i}}(\varepsilon, \beta, \zeta, \xi) \\
& =O\left(\varepsilon|\log \varepsilon|+|\beta|^{2}+\zeta_{i}^{2}+|\xi|^{2}\right) \tag{38}
\end{align*}
$$

Using (32), (33), and (36), ($E_{x_{i}}$) is equivalent to

$$
\begin{equation*}
D^{2} K_{1}\left(z_{i}\right) \xi_{i}=V_{x_{i}}(\varepsilon, \beta, \zeta, \xi)=O\left(\varepsilon^{1 / 2}+|\beta|^{2}+|\zeta|^{2}+|\xi|^{2}\right) . \tag{39}
\end{equation*}
$$

Observe that the functions $V_{\alpha_{i}}, V_{\lambda_{i}}$, and $V_{x_{i}}$ are smooth.
We can also write the system as

$$
\left\{\begin{array}{l}
\beta=V(\varepsilon, \beta, \zeta, \xi) \tag{40}\\
L(\zeta, \xi)=W(\varepsilon, \beta, \zeta, \xi)
\end{array}\right.
$$

where L is a fixed linear operator on \mathbb{R}^{8} defined by

$$
\begin{aligned}
L(\zeta, \xi)= & \left(-\zeta_{1}+\left(\frac{\partial K}{\partial v}\left(z_{1}\right)\right)^{-1} D^{2} K_{1}\left(z_{1}\right)\left(e_{4}, \xi_{1}\right) ;-\zeta_{2}+\left(\frac{\partial K}{\partial v}\left(z_{2}\right)\right)^{-1} D^{2} K_{1}\left(z_{2}\right)\left(e_{4}, \xi_{2}\right)\right. \\
& \left.D^{2} K_{1}\left(z_{1}\right) \xi_{1} ; D^{2} K_{1}\left(z_{2}\right) \xi_{2}\right)
\end{aligned}
$$

and V, W are smooth functions satisfying

$$
\left\{\begin{array}{l}
V(\varepsilon, \beta, \zeta, \xi)=O\left(\varepsilon^{1 / 2}+|\beta|^{2}+|\xi|^{2}\right) \\
W(\varepsilon, \beta, \zeta, \xi)=O\left(\varepsilon^{\frac{1}{2}}+|\beta|^{2}+|\zeta|^{2}+|\xi|^{2}\right)
\end{array}\right.
$$

Now, by an easy computation, we see that the determinant of the linear operator L is not 0 . Hence L is invertible, and according to Brouwer's fixed point theorem, there exists a solution $\left(\beta^{\varepsilon}, \zeta^{\varepsilon}, \xi^{\varepsilon}\right)$ of (40) for ε small enough, such that

$$
\left|\beta^{\varepsilon}\right|=O\left(\varepsilon^{1 / 2}\right) ; \quad\left|\zeta^{\varepsilon}\right|=O\left(\varepsilon^{1 / 2}\right) ; \quad\left|\xi^{\varepsilon}\right|=O\left(\varepsilon^{1 / 2}\right)
$$

Hence, we have constructed $m^{\varepsilon}=\left(\alpha_{1}^{\varepsilon}, \alpha_{2}^{\varepsilon}, \lambda_{1}^{\varepsilon}, \lambda_{2}^{\varepsilon}, x_{1}^{\varepsilon}, x_{2}^{\varepsilon}\right)$ such that $u_{\varepsilon}:=\sum \alpha_{i}^{\varepsilon} \delta_{\left(x_{i}^{\varepsilon}, \lambda_{i}^{\varepsilon}\right)}+\overline{v_{\varepsilon}}$, verifies (23)-(27). From Proposition $6, u_{\varepsilon}$ is a critical point of I_{ε}, which implies that u_{ε} verify

$$
\begin{equation*}
-\Delta u_{\varepsilon}+2 u_{\varepsilon}=K\left|u_{\varepsilon}\right|^{2-\varepsilon} u_{\varepsilon} \quad \text { in } S_{+}^{4}, \quad \partial u_{\varepsilon} / \partial v=0 \quad \text { on } \partial S_{+}^{4} . \tag{41}
\end{equation*}
$$

We multiply equation (41) by $u_{\varepsilon}^{-}=\max \left(0,-u_{\varepsilon}\right)$ and we integrate on S_{+}^{4}, we get

$$
\begin{equation*}
\int_{S_{+}^{4}}\left|\nabla u_{\varepsilon}^{-}\right|^{2}+2 \int_{S_{+}^{4}}\left(u_{\varepsilon}^{-}\right)^{2}=\int_{S_{+}^{4}} K\left(u_{\varepsilon}^{-}\right)^{4-\varepsilon} \tag{42}
\end{equation*}
$$

We know also from the Sobolev embedding theorem that

$$
\begin{equation*}
\left|u_{\varepsilon}^{-}\right|_{4-\varepsilon}^{2}:=\left(\int_{S_{+}^{4}} K\left(u_{\varepsilon}^{-}\right)^{4-\varepsilon}\right)^{\frac{2}{4-\varepsilon}} \leq C\left\|u_{\varepsilon}^{-}\right\|^{2} \tag{43}
\end{equation*}
$$

Equations (42) and (43) imply that either $u_{\varepsilon}^{-} \equiv 0$, or $\left|u_{\varepsilon}^{-}\right|_{4-\varepsilon}$ is far away from zero. Since $m^{\varepsilon} \in M^{\varepsilon}$, we have $\left\|\overline{\nu_{\varepsilon}}\right\|<\nu_{0}$, where ν_{0} is a small positive constant (see the definition of M_{ε}). This implies that $\left|u_{\varepsilon}^{-}\right|_{4-\varepsilon}$ is very small. Thus, $u_{\varepsilon}^{-} \equiv 0$ for ε small enough. Then u_{ε} is a nonnegative function which satisfies (41). Finally, the maximum principle completes the proof of our theorem.

4 Conclusion

Thus it has been concluded that under some assumptions on the function K, there exist solutions of the nonlinear problem $\left(S_{\varepsilon}\right)$ which are concentrated at two different points of the boundary.

Competing interests

The author declares to have no competing interests.

Acknowledgements

I would like to thank Deanship of Scientific Research at Taibah University for the financial support of this research project.

Received: 28 July 2016 Accepted: 14 November 2016 Published online: 25 November 2016

References

1. Diening, L, Harjulehto, P, Hasto, P, Ruzicka, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2011. Springer, Heidelberg (2011) MR2790542
2. Ambrosetti, A, Garcia Azorero, J, Peral, A: Perturbation of $\Delta u+u^{\frac{n+2}{n-2}}=0$, the scalar curvature problem in \mathbb{R}^{n} and related topics. J. Funct. Anal. 165, 117-149 (1999)
3. Bahri, A, Coron, JM: The scalar curvature problem on the standard three dimensional spheres. J. Funct. Anal. 95, 106-172 (1991)
4. Bianchi, G, Pan, XB: Yamabe equations on half spheres. Nonlinear Anal. 37, 161-186 (1999)
5. Chang, SA, Yang, P: A perturbation result in prescribing scalar curvature on Sn. Duke Math. J. 64, 27-69 (1991)
6. Cherrier, P: Problèmes de Neumann non linéaires sur les variétés riemaniennes. J. Funct. Anal. 57, 154-207 (1984)
7. Escobar, J: Conformal deformation of Riemannian metric to scalar flat metric with constant mean curvature on the boundary. Ann. Math. 136, 1-50 (1992)
8. Escobar, J, Schoen, R: Conformal metrics with prescribed scalar curvature. Invent. Math. 86, 243-254 (1986)
9. Han, $\mathrm{ZC}, \mathrm{Li}, \mathrm{YY}$: The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature. Commun. Anal. Geom. 8, 809-869 (2000)
10. Hebey, E: The isometry concentration method in the case of a nonlinear problem with Sobolev critical exponent on compact manifolds with boundary. Bull. Sci. Math. 116, 35-51 (1992)
11. Li, YY: Prescribing scalar curvature on S^{n} and related topics, Part I. J. Differ. Equ. 120, 319-410 (1995); Part II. Existence and compactness. Comm. Pure Appl. Math. 49 437-477 (1996).
12. Ould Bouh, K: Blowing up of sign-changing solutions to a subcritical problem. Manuscr. Math. 146, 265-279 (2015)
13. Djadli, Z, Malchiodi, A, Ould Ahmedou, M: Prescribing the scalar and the boundary mean curvature on the three dimensional half sphere. J. Geom. Anal. 13, 233-267 (2003)
14. Ben Ayed, M , Ghoudi, R, Ould Bouh, K: Existence of conformal metrics with prescribed scalar curvature on the four dimensional half sphere. Nonlinear Differ. Equ. Appl. 19, 629-662 (2012)
15. Rey, O: The topological impact of critical points at infinity in a variational problem with lack of compactness: the dimension 3. Adv. Differ. Equ. 4, 581-616 (1999)
16. Bahri, A: An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension. A celebration of J. F. Nash jr. Duke Math. J. 81, 323-466 (1996)
17. Bahri, A, Li, YY, Rey, O: On a variational problem with lack of compactness: The topological effect of the critical points at infinity. Calc. Var. Partial Differ. Equ. 3, 67-94 (1995)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field
Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

