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Abstract

Ambient energy harvesting is a solution to mitigate the typical finite energy supply of sensor nodes in wireless sensor
networks (WSNs). On the one hand, the uncertainty of energy availability in energy harvesting systems makes network
protocol design challenging. On the other hand, the fact that energy is continuously replenished opens up avenues
for protocol design based on prediction of future energy arrivals. One of the key application scenarios for sensor
networks is task allocation, in which a central entity allocates tasks to a set of geographically distributed sensor nodes
to accomplish an overall objective. In this work, we consider a scenario in which the sensor nodes are equipped with
devices capable of harvesting ambient energy, e.g., solar panels to harvest the Sun’s energy, and focus on
energy-aware strategies for adaptive task allocation. We decompose the static task allocation problem into two
phases: scheduling of the task graph and task mapping to the appropriate sensor nodes. The solution objectives are
to minimize the makespan and maximize the fairness in energy-driven task mapping (i.e., energy-balancing), while
satisfying the task precedence constraints and energy harvesting causality constraints. We employ a novel energy
prediction model which incorporates seasonal changes in solar energy harvesting as well as sudden weather changes.
In case of an error in available energy prediction, a dynamic adaptation phase runs to avoid violation of the task
allocation objectives. The performance of our proposed algorithms, in terms of energy-balancing and scheduling
length, is evaluated through simulation and compared with other approaches, including a genetic algorithm as a
baseline. We achieve more balanced residual energy levels across the network while attaining a near optimum
scheduling length. By utilizing the dynamic adaptation phase, for certain runs of simulation, the missing ratio, which is
the percentage of times in which the task allocation fails due to a temporal shortage of energy availability, is
dramatically decreased.

Keywords: Energy harvesting wireless sensor networks (EH-WSNs), Task allocation algorithms, Solar-powered sensor
nodes, Energy harvesting prediction

1 Introduction
A sensor network, which is a network of collaborating
embedded devices with capabilities of sensing, comput-
ing, and communicating, is used to run specific applica-
tions (such as target tracking and event detection). Energy
is a most precious resource in running these applications
[1]. Hence, nodes will operate for a finite duration which
implies a finite lifetime of the applications of interest or
additional cost to regularly change batteries. An alterna-
tive technique is the use of energy harvesting as a source
of powering sensor nodes. This ensures sustainable oper-
ation of such systems. However, the harvested energy is
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usually not sufficient to allow the sensor nodes to stay
active all the time. Moreover, the time-varying availability
of environmental energy results in dynamic changes of the
system’s available energy. Therefore, the dynamic resource
and task allocation for energy harvesting wireless sen-
sor networks (EH-WSNs) are required, presenting a new
set of problems in the area of networking and commu-
nication [2].
In wireless sensor networks (WSNs), energy-aware task

allocation algorithms deal with energy availability of bat-
teries, which typically have a monotonically decreasing
energy profile. However, in EH-WSNs, due to the fluc-
tuating energy sources, the energy availability profile is
uncertain, making task allocation a challenging problem.
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Generally, two design considerations for energy har-
vesting systems are maximizing performance and ensur-
ing energy-neutral operation. Energy-neutral operation
means operating the network such that, at all times, the
energy used is less than the harvested energy. Also, while
ensuring energy-neutral operation, “what is the best per-
formance level that can be achieved in a given harvesting
environment?”
In this paper, we address the task allocation problem

which allocates and schedules a set of tasks represented by
a task graph to a set of geographically distributed sensor
nodes to achieve an overall system objective. Such a sce-
nario is depicted in Fig. 1.We consider a scenario in which
the sensor nodes are equipped with solar panels.

1.1 Related works
Many applications for energy harvesting sensor networks,
such as structural health monitoring [3], disaster recovery
[4], and health monitoring [5], require real-time reliable
network protocols and efficient task scheduling. In such
networks, it is important to dynamically schedule node
and network tasks based on the remaining energy and
current energy intake, as well as predictions about future
energy availability.
In the literature on task allocation for WSNs [7–9, 12, 13],

given a directed acyclic graph (DAG) and initial avail-
able resources, the set of tasks is assigned to sensor nodes
based on a known static energy model. However, the time-
varying nature of EH-WSNs brings new considerations for
energy model and designing task allocation schemes.
There is some existing work on resource management

for real-time energy harvesting embedded systems in
the literature. In some works, such as [14, 15], dynamic
voltage scaling policies are used to reduce the energy
consumption; however, they may violate the schedul-
ing length constraint for the case of task allocation to

the multiple sensor nodes. In [16, 17], the authors con-
structed lazy scheduling algorithms (LSA), which are
energy-clairvoyant, i.e., the energy generated in the future
is known. Lazy scheduling algorithms can be categorized
as non-work conserving scheduling disciplines where a
lazy scheduler may be idle although waiting tasks are
ready to be processed. Moreover, there is an assumption
that tasks are independent from each other and preemp-
tive. More precisely, the currently active task may be
preempted at any time and have its execution resumed
later, at no additional cost. Also, since LSA is only based
on a “as late as possible” heuristic, it is more likely that
the battery overflows from harvested energy which results
in missed-recharging opportunities. Moreover, the above-
mentioned works mainly focused on the task allocation
to a single processor with the energy harvesting capability
but not on the allocation of a task graph with precedence
constraints to multiple nodes.
The most closely related works are [10, 11]. The work

in [10] proposes a dynamic energy-oriented scheduling
algorithm. By conducting decomposition, combination,
concurrent execution, and admission control, their pro-
posed method allocates tasks based on the dynamically
changed available energy. The work in [11] presents a dis-
tributed mission assignment scheme for wireless sensor
nodes with rechargeable batteries.
Our approach differs from these works in two ways.

First, the problem we address is energy harvesting aware
task allocation at the network level, i.e., how to assign
nodes in the network to the tasks from the task graph
with precedence constraints. Such problem is quite dif-
ferent from the task allocation problem tackled by those
works, which instead focus on individual task schedul-
ing at the node level. Second, they maximize the network
profit within a given time horizon, rather than enabling
the network to operate perennially.

Fig. 1 An illustration of the task allocation problem. The task graph is shown, along with themapping of tasks to nodes in the wireless sensor network
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In this paper, we propose task allocation algorithms
to deal with these issues. These algorithms account for
the energy harvesting characteristics of sensor nodes (i.e.,
uncertainty in energy availability) andmake the best use of
available energy. The solution objectives are to minimize
the scheduling length of the task graph and maximize the
fairness in energy-driven task mapping, while satisfying
energy harvesting causality constraints and the task prece-
dence constraints. The fairness in task mapping means
tasks with longer task lengths are assigned to the nodes
with higher energy levels. The proposed solution results
in the balanced energy levels among all the nodes in the
network and minimum schedule length.

1.2 Contributions of this paper
In this paper, we propose the task allocation algorithms
for EH-WSNs. The main contributions of this work are
summarized as follows:

• We propose a novel task allocation algorithm for
energy harvesting wireless sensor networks that
operates in two phases: task scheduling of DAG and
task mapping to the solar-powered sensor nodes. To
the best of our knowledge, this is the first work on
energy harvesting aware task allocation to multiple
solar-powered sensor nodes.

• The problem is formulated in an optimization
framework as an integer linear program. The
proposed framework for our scheme is operated in
two stages consisting of static and dynamic
adaptation specialized for energy harvesting systems.

• An appropriate energy prediction model and
algorithm are incorporated to increase the accuracy
of our task allocation scheme.

• A genetic algorithm based multi-objective task
allocation strategy has been implemented for the
comparison purpose.

• The performance of our proposed algorithms in
terms of the scheduling length and fairness in the

energy-driven task mapping objectives is evaluated
through simulation.

This paper is structured as follows. In Section 2,
we introduce the system overview considering the task
and application model, prediction model, and proposed
framework for our task allocation scheme in EH-WSNs.
This is followed by the problem formulation in the form of
integer linear programming in Section 4. In Sections 5 and
6, the energy harvesting aware task scheduling and map-
ping algorithms are described. The simulation results are
discussed in Section 7. Section 8 provides a summary and
conclusion.

2 System overview
In this section, the model for the task allocation prob-
lem in EH-WSNs is explained. Figure 2 shows the overall
structure of this model. The centralized manager collects
some initial data from the energy harvesting source. It
then runs the energy prediction algorithms. Given the
predicted energy and the task graph fromWSNs’ applica-
tion, the task allocation algorithm can be run. The output
of this algorithm is the set of actions for sensor nodes.
The main objective is to minimize the scheduling length
of the task graph and maximize the lifetime of the sen-
sor nodes. We assume the communication among the
centralized manager and sensor nodes is done in most
energy-efficient way such that this communication can be
ignored.
We consider a discrete time model. The network con-

sists of multiple solar-powered sensor nodes denoted
as n ∈ N where N is a set of all available sensor
nodes. Tasks are units of execution that make up an
application. The application for wireless sensor networks
can be target tracking, event detection, etc. A single
applicationmay perform a variety of tasks such as sensing,
computation, storage, and communication. Applications
are represented by a DAG, composed of all tasks m ∈ M
where M is the set of tasks that must be completed for

Fig. 2 Structure of resource management for EH-WSNs
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the application. Lm denotes the size of the task m which
refers to the number of time slots required to accomplish
that task (Lm ∈ Z

+). Tasks must be sequentially executed
to satisfy the precedence constraints. A task has one or
more inputs and once all inputs are available, the task is
triggered to execute.
The harvesting period is divided into equal-length time

slots which are indexed as t ∈ T where T ∈ Z
+. We

consider an energy storage device with capacity B and dis-
charge efficiency ηd < 1. Hn

t is the amount of harvested
energy in slot t in node n. The available energy at each
node n and time slot t is denoted asAn

t and calculated as

An
t+1 = [

An
t + Hn

t − ηd.E0.Ym,n
t

]B
0 ,

where E0 denotes the energy which is drained from the
battery during each busy slot. E0 is assumed to be constant
for each node and task. Ym,n

t is a boolean function indicat-
ing whether node n is busy with taskm in time slot t. The
available energy is bounded by the capacity of battery B.

2.1 Framework of task allocation in EH-WSNs
In this part, the framework of our proposed task allo-
cation scheme for EH-WSNs is described. It is a hybrid
framework of static and dynamic stages.
The static stage is executed offline in the centralized

manager which can be a node with the high computational
capability such as Stargate (http://platformx.sourceforge.
net/home.html). In this stage, the centralized manager
runs the prediction algorithm to extrapolate information
about the harvested energy in the next harvesting period.
It then allocates an energy budget in terms of the har-
vesting rate for each time slot of the next period. The
predicted information and the task graph are the inputs to
our static allocation algorithm. The allocation outcomes
and energy budget for each slots are then communicated
to sensor nodes.
The dynamic stage is executed online in the sensor

nodes. This stage may modify the real-time execution
of the task allocations from the previous stage to adapt
to unpredictable fluctuation in energy availability. At the
beginning of each time slot, the corresponding energy
budget is retrieved from the memory and is compared
with the corresponding baseline error margin. If the
energy budgets from the prediction do not match with
actual harvested energy and the error margin is higher
than the predefined threshold, then the dynamic adapta-
tion method is executed. Adaptation allows the system to
cope with variation in renewable energy source and main-
tain sustainable operation. Moreover, energy harvesting
statistics are sent to the centralized manager to update
the data for the energy harvesting prediction for the next
harvesting period.

3 Prediction algorithm
In this section, the energy harvesting prediction method
is described. An accurate prediction of the near-future
harvested energy has a critical effect on decision-making
for task allocation procedure in energy harvesting sys-
tems. A time series [22] is a sequence of observations of
a random variable such as energy harvesting rate. A time
series analysis provides a proper tool for forecasting future
events. There are several methods for forecasting the
near future of real data such as regression analysis, expo-
nential smoothing, and moving average [22]. Weather-
conditioned moving average (WCMA) is the common
approach adopted for the weather prediction. It first intro-
duced in [19] and then extended for cloud cover case and
wind energy prediction in [20, 21]. Our prediction model
called autoregressive weather-conditioned moving aver-
age (AR-WCMA) has its foundation on WCMA which is
a low overhead solar energy prediction algorithm. The key
idea of our prediction model is to apply an autoregressive
(AR) time series model at the beginning of each day, since
the sun irradiance is a periodic phenomena. It has been
proven in [23] that a simple linear regression model is an
appropriate model for real-time and random data. Then,
the model is further improved by utilizing the moving
average of the information from past days.
For this prediction algorithm, a day is divided into T

equal duration of time slots. The power sampling and
prediction are performed once per slot. To predict the
harvesting energy in the next slot, the algorithm uses the
values of powermeasurement ẽ(j) ∈ ẼT of the current day.
It also utilizes the values of power measurement ẽ(i, j) ∈
ẼD×T of the last D days, D ∈ Z

+. The unit of power
measurements and accordingly the prediction values are
irradiance (W/m2). The matrix ẼD×T and the vector ẼT
are shown in Fig. 3. Assume that t slots have elapsed on
the current day shown shaded in Fig. 3 and ẽ(t + 1) is the
estimation of the power value at the start of slot t + 1 .
The time series analysis begins with some response

measurements of the structure at a particular sensor loca-
tion. Assuming the response to be stationary, an AR
process model is used to fit the discrete measurement
data to a set of linear coefficients from past time history
observations as follows:

ẽ(t + 1) =
k∑

i=1
biẽ(t + 1 − i) + rk . (1)

The response of the structure at sample index t, as
denoted by ẽ(t) , is a function of k previous observations
of the system response, plus a residual constant term ,rk .
Weights of the previous observations ẽ(t + 1 − i) are
denoted by the bi coefficients which are calculated daily
based on the available information of last D days.

http://platformx.sourceforge.net/home.html
http://platformx.sourceforge.net/home.html
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Fig. 3 Prediction framework for solar-powered sensor nodes

The goal is to predict the power ê(t+1) at the beginning
of slot t+1 (marked with a “?” in Fig. 3). In Fig. 3, μ(t+1)
represents average of power measured at beginning of all
t+1 slots for lastD days. The predicted power for the next
slot considers the power measurement from the present
information of last k slots ẽ(t + 1) and the average power
μ(t + 1) of the same slot (t + 1) for past D days:

ê(t + 1) = α.ẽ(t + 1) + (1 − α).μD(t + 1)�K . (2)

The prediction algorithm consists of two terms as shown
in (2). The first term is the effect of the AR, and the latter
one is the conditioned average term. The AR term deter-
mines the effect of the current day to the predicted value,
while the conditioned average term is the average of pastD
days on time slot (t + 1) which scaled by the conditioning
factor �K . The parameter α shows the trade-off between
these two terms (0 ≤ α ≤ 1).
In (2), μD(j) is the average of power measured at begin-

ning of slots j in the past D days:

μD(j) =
∑D

i=1 e(i, j)
D

(3)

�K is a conditioning factor forμ(t+1), and it is a function
of previous K ( K ∈ Z

+) time slots before time slot (t + 1)
of current day (can be seen in Fig. 3).�K shows howmuch
brighter or cloudy the current day is compared to previ-
ous days. It is calculated using (4), which is a weighted
average of ratio η(K) ∈ Hk , (shown in (5)), where each
ratio η(k) compares the current day measured power of
one particular slot to the average of the past days. Since
the slots earlier than t are assumed to be less correlated to
the future slot t + 1, the weights θ(k) ∈ � calculated in 6
decrease from 1 to 1/K starting at the slot t.

�K = (�K )T .HK∑K
k=1 θ(k)

(4)

η(k) = ẽ(t − K + k)
μD(t − K + k)

(5)

θ(k) = k/K (6)

The estimated value ê(t) in following sections are
denoted as Ht . All measurements and estimations are in
irradiance unit (W/m2) which can be converted to the
energy unitAh. The details are explained in the simulation
section.

4 Problem formulation
In this section, we explain the problem formulation for the
task allocation in sensor networks equipped with energy
harvesting devices. Task allocation problem which con-
sists of task scheduling andmapping plays an essential role
in parallel processing. Solving this problem results in exe-
cution sequence of tasks and assignment of tasks to the
sensor nodes. The main objectives are to minimize the
makespan and maximize the fairness (energy-balancing),
while satisfying the task precedence constraints and
energy harvesting causality constraints.

4.1 Decision variables
The decision variable for this problem is defined as
follows:
X: valid mapping and scheduling of tasks m ∈ M to the
sensor nodes n ∈ N at time slot t ∈ T :
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Xm,n
t =

⎧⎨
⎩

1, if taskm ∈ M is assigned to sensor
node n ∈ N at time slot t ∈ T

0, otherwise.
(7)

Although, we have one decision variable, it is useful to
define the following quantities, which depend upon X.
Sm: start time slot of scheduled task m ∈ M. It can be
calculated as follows:

Sm = argmax
t

(
max
n

Xm,n
t

)
(8)

Y : an indicator function to show the busy time slot.

Ym,n
t =

⎧⎨
⎩

1, if node n is busy with taskm
at time slot t

0, otherwise.
(9)

This value can be calculated as a function of Sm andXm,n
t

as follows:

Ym,n
t =

⎧⎨
⎩

1, t = Sm, Sm + 1, . . . , (Sm + Lm);
∀ n = argmaxm maxt Xm,n

t
0, otherwise.

(10)

4.2 Objective function and constraints
The following objective function and linear-integer con-
straints describe the optimization problem to be solved in
order to compute an optimal task allocation.

min
X

w1

(
max
m∈M(Sm + Lm)

)
+ w2

∑
t ∈ T
n ∈ N
m ∈ M

gm,n
t .Xm,n

t

(11)

Subject to:

Sk ≥ Sj + Lj + Tc, ∀(j, k) ∈ M, Pj,k > 0. (12)

Xm,n
t ∈ {0, 1} ∀n ∈ N , ∀m ∈ M, ∀t ∈ T . (13)

∑
t∈T

∑
n∈N

Xm,n
t = 1, ∀m ∈ M. (14)

∑
m∈M

Ym,n
t ≤ 1, ∀n ∈ N ∀t ∈ T . (15)

An
t+1 = [An

t + Hn
t − ηd.E0.Ym,n

t ]B0 , ∀n ∈ N , ∀t ∈ T . (16)

where Tc is the communication cost between immediate
tasks precedence. gm,n

t is the cost associated with assign-
ing taskm ∈ M to sensor node n ∈ N , at time slot t ∈ T .
This cost value is a linear function of An

t and task size
(Lm). The cost function is defined as follows:

gm,n
t = Lm × (

An
t
)−1 . (17)

The objective function shows the trade-off between the
two task allocation objectives with weights w1 and w2.
The first part corresponds to minimizing the scheduling

length by minimizing the maximum of the finish times of
all the tasks. The second part relates to minimizing the
task mapping cost in order to achieve a balanced energy
availability through the network.
The constraint in (12) states the precedence constraint

where a task cannot start until its predecessors are com-
pleted, and data has been communicated to it if the pre-
ceding job were executed on different node, illustrated as
a constant value Tc. As stated before, Lm is the size of task
m, which refers to the number of time slots required to
accomplish that task.
The constraint in (13) refers to boolean task mapping

constraint. (14) and (15) show task allocation constraints.
More precisely, (14) specifies that each task must be
assigned once to exactly one node and (15) specifies
that at most one task can be assigned to each sensor
node at each time slot. The constraint shown in (16)
indicates the energy harvesting causality constraint. This
constraint keeps track of energy availability at each time.
Moreover, this constraint avoids the energy harvest-
ing overflow at each node by considering the capacity
of the battery (B) as an upper bound for energy
availability.
Altogether, the task allocation problem for wireless sen-

sor networks equipped with energy harvesting systems is
described in the abovementioned objective function and
constraints. This problem is NP-complete in general [24],
and heuristic algorithms are applied to obtain a practical
solution. Our proposed heuristic approach is presented in
the next section.

5 Proposed algorithm for task allocation in
EH-WSNs

This section describes our solution approach for task
allocation. The proposed scheme consists of a hybrid
framework of static and dynamic stages. The static task
allocation problem is divided into two phases. The first
one is the task scheduling phase to determine the proper
sequence of tasks. The main objective for the first phase
is to minimize the scheduling length (shown in the first
part of the objective function) and also satisfy the prece-
dence constraint (12). This phase, which is explained in
Section 5.1, results in the lower and upper bounds for the
starting time of each task.
Given the bounds from the first phase, the second phase,

explained in Section 5.2, runs the task mapping to the
appropriate sensor nodes. The objective of the second
phase is to maximize the energy-balancing among the
nodes, considering the energy harvesting characteristics.
It addresses the second part of the objective function as
well as the constraints (13) to (16).
If the error margin, which is the difference between the

energy predicted value and the actual harvested energy,
is higher than some predefined thresholds, the dynamic
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adaptation stage (Section 5.3) is executed. Adaptation
allows the system to cope with variation in renewable
energy supply and maintain the system’s sustainability.

5.1 List scheduling and critical nodes path tree (CNPT)
Heuristic

This part presents the list scheduling algorithm. It uses to
satisfy the first constraint (12) while optimizing the first
part of the objective function. It computes a task sequence
provided by a DAG to obtain the earliest start time (EST)
and the latest start time (LST) of each task considering
a critical path (CP). A CP of a task graph is defined as a
path with the maximum sum of node and edge weights
from an entry node to an exit node. Given these values,
the tasks are queued into a list. The EST and LST for a
task i can be computed recursively by traversing the DAG
downward from the entry node and upward from the exit
node respectively as follows:

ESTm = maxi∈pred(m) ESTi + Li (18)
LSTm = mini∈succ(m) LSTi − Li (19)

where pred(m) and succ(m) are the set of immediate
predecessors and successors of m respectively and Li is
the length of the task i. After the listing phase, the task
graph is sequentialized into a queue and ready for the
task assignment phase. The main objective of this part
of the scheduling process is to determine the minimum
scheduling length (makespan) while satisfying all prece-
dence constraints. The tasks are queued for assignment to
sensor nodes based on LST. This is because it may give a
sensor node the chance to harvest more energy before the
task is assign to it.

5.2 Energy harvesting aware task assignment heuristic
In this phase, the proposed heuristic algorithm assigns the
tasks to maximize the energy-balancing considering the
energy harvesting characteristics. It satisfies the energy-
neutral constraint and avoids the energy overflows.
The following steps describe the basic idea of our pro-

posed energy harvesting aware task allocation heuristic:

Step 1. Sort all the tasks based on LST from List
Scheduling and CNPT in queueQ
Step 2. Update the energy availabilityAn

t of all nodes
based on the predicted energy for the current slot
Step 3. For the task dequeued from queueQ,
calculate the cost associated with assigning the
correspond task m to all sensor nodes n ∈ N at the
current time slot t as

Cm,n
t = gm,n

t ant

where gm,n
t cab be calculated from (3.10). ant is an

indicator defined as

ant =
{
0, An

t ≥ B ∀ node n ∈ N at time slot t ∈ T
1, otherwise. (20)

This indicators shows that the cost is zero if the
overflow occurs at the node. Hence, we immediately
allocate the first task from the queue to that node.

As a result, since the listing in the queue is based on
LST, it increases the chance that the node can harvest
enough energy and gains the failure tolerance. In the other
word, the task scheduling is as late as possible but within
a boundary that results in the minimum schedule length.
Since the task mapping is based on the available energy,
in “STEP 2” the available energy for each slot is updated.
“STEP 3” assigns the task based on the cost associated
with each node for accomplishing the corresponding task
and handles the overflow situation when the harvested
energy may become greater than the maximum capacity.
The proposed algorithm is shown in Algorithm 1.

Algorithm1: EnergyHarvesting Aware Task Allocation
Given: EST and LST of all the tasksm ∈ M from
CNPT,An

t ∀ n ∈ N and t ∈ T ,Lm ∀ m ∈ M.
Sort all the tasks in respect to LST in queueQ.
For all tasksm dequeued fromQ,

For all n ∈ N ,
For ESTm < t < LSTm,

IfAn
t ≥ B,

Assign taskm to sensor node n,
Sm = t,

Else
gn,mt = Lm × (An

t )
−1

EndIf
EndFor

EndFor
n∗ = argmint,n(gn,mt ) (finding the best node)
Sm = argminn,t(gn,mt ) (finding the best schedule)

EndFor

We briefly explain a potential extension of the cur-
rent model to multi-hop scenario. In this case, a task i
and its immediate predecessor task j might be allocated
to nodes that are in one or more hops away of each
other. Assume that j needs the data from i for execu-
tion. Hence, one needs to find the way to communicate
this data through multi-hop. In WSNs, the communica-
tion is broadcast in nature. To represent the broadcast
feature of wireless communication, the DAG representa-
tion of application is extended to Hyper-DAG. The weight
of edges between two computation tasks is represented
as a separate communication task. Unlike in single-hop
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networks, there might be multiple simultaneous commu-
nications in multi-hop networks. In order to schedule
the communication task, one models multi-hop chan-
nel as a virtual node on which only the communication
task can be scheduled. To avoid the interference between
simultaneous communication tasks, one may consider the
penalty of infinity cost for the case of interference and
zero otherwise. In case that the source and destination of a
communication task are one or more hop away from each
other, one can schedule based on the path generated by a
low complexity routing algorithm [25].

5.3 Online dynamic adaptation stage
This stage is based on the real-time execution of these
tasks allocated to the sensor nodes based on the actual
energy harvesting data. At the beginning of each time
slot, the corresponding energy budget is retrieved from
memory and a corresponding baseline error margin
is looked up. If the energy budget from the predic-
tion does not match with actual harvested energy and
the error margin is higher than predefined thresh-
old, the dynamic adaptation phase is executed. Adap-
tation allows the system to cope with the variation in
the renewable energy and maintain system sustainabil-
ity. In addition, energy harvesting statistics with new
updates are sent to the centralized manager to update
energy harvesting prediction of the next harvesting
period.
The basic idea is that if a sensor node due to an envi-

ronmental uncertainty does not have enough energy to
execute the task, then it slows down the processor rate
and stretches the execution time of that task. As a result,
one may gain more time for the sensor node to harvest
energy from environment at the price of operating at the
lower processor power. This technique is called dynamic
voltage and frequency scaling (DVFS)[6]. Based on the ini-
tial schedule, all tasks are executed at the full speed of the
processor (Pmax), which is not an energy-efficient scheme.
We need to make use of the task slacks for the energy sav-
ing. DVFS is applied to stretch the execution time of each
task and slow down the power of processor. Then, we shift
all other potentially affected tasks accordingly. Assume
the DVFS-enabled processor has K discrete operating fre-
quencies fk : {fk|1 ≤ k ≤ K , fmin = f1 < f2 < ... <

fK = fmax} and the power consumption with regards to fk
is denoted as Pk . We assume a linear relationship between
the power Pk used for executing tasks and their execution
time L. We can say the higher the power Pk , the shorter
the execution time L.
We define a decelerate factor νk as the normalized fre-

quency of fk with respect to the maximum frequency fmax,
that is:

νk = fk/fmax (21)

If task m is stretched by a slowdown factor νk , then its
actual execution time at frequency fk is Lm/νk .
Assume that initially the taskm is assigned to the sensor

node n considering the full speed of the processor. Let stm
and ftm denote the starting time and finish time of the task
m accordingly. The task m has enough energy to finish its
execution if the following inequality holds:

A(stm) + H(stm, ftm) ≥ D
(
stm, ftm

)
(22)

where C(stm) is the energy available at time instant stm
and H(stm, ftm) is the harvested energy during task exe-
cution and D(stm, ftm) is the energy demand of executing
task. If this inequality does not hold, the decelerate factor
is adjusted until the following equality holds,

A(stm) + H(stm, stm + f tm−stm
νn

) = D
(
stm, stm + ftm−stm

νn

)
.(23)

Subsequently, all of the tasks τ ∈ succ(m) need to
be delayed dlm which is the delay caused by stretching
the task via DVFS. The result of this dynamic adaptation
phase is to reserve time for the sensor node with lack
of energy to harvest from the environment and execute
with lower CPU frequency. Note that the schedule length
in our formulation is not a hard constraint (or deadline).
In the dynamic adaptation phase, the task is missed only
if extending the task length to meet the energy-neutral
condition causes the frequency fk to be below fmin. The
sequence of the algorithm is shown in Algorithm 2.

Algorithm 2: Dynamic Adaptation Phase
Require: initial schedule, actual harvesting rate, actual
energy available;
For taskm ∈ M′ whichM′ is a set of tasks mapped to
sensor node n ∈ N ,

IfA(stm) + H(stm, ftm) < D(stm, ftm),
Calculate νn from (23);

For all the task τ ∈ succ(m),
stm → stm + dlm;

EndFor
EndIf

EndFor

5.4 Computational complexity
In this part, the complexity of the proposed heuristics
is calculated. Considering an application with m tasks, a
network with n sensors and ε which is defined as ε =
maxm∈M (LSTm − ESTm) the complexity of the listing
stage isO(m) and the energy harvesting aware task assign-
ment heuristic has the complexity of O(n m ε) for the
worst case. Hence, worst-case total complexity is O(m) +
O(n m ε) 	 O(n m ε). The dynamic adaptation phase
has a low complexity of O(k l) where k is the number of
tasks mapped to the sensor node which has the energy
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prediction error higher than predefined threshold and l is
the number of those tasks’ successors in the DAG.

6 Multi-objective genetic algorithm for task
allocation

The task scheduling and mapping into a parallel and dis-
tributed computing system is a well-defined NP-complete
problem. It is considered as one of the most challenging
problems in parallel computing [29]. The task alloca-
tion problem is included in this class of combinatorial
optimization problems.
Genetic algorithms (GAs) have been widely used as ben-

eficial meta-heuristics for obtaining high-quality solutions
for a broad range of combinatorial optimization problems
including the task allocation problem [30]. Another dis-
tinct feature of the genetic search is that its inherent paral-
lelism can be exploited to further reduce its running time.
Hence, as a baseline, with which to compare our task allo-
cation scheme, we implement a multi-objective genetic
algorithm. This algorithm starts with an initial population
of feasible solutions. Then, by applying some operators,
the best solution can be found after some generations.
The selection of the best solution is determined according
to the value of the fitness function. In this section, the
detailed implementation is presented.
Representation: The first step in designing a genetic

algorithm for a particular problem is to develop a suitable
representation scheme, i.e., a way to represent individuals
in the GA population. A chromosome represents a map-
ping of tasks to sensor nodes. Figure 4 shows an example
of such a representation of the chromosome. Tasks 2,
3, 6, and 9 will be scheduled on sensor node 1, tasks 5
and 8 on sensor node 2, and tasks 1, 4, and 7 on sensor
node 3.

Fitness function: A fitness function attaches a value to
each chromosome in the population, which indicates the
quality of the schedule. The main objectives of the task
allocation, which are minimizing scheduling length and
maximizing energy-balancing considering the energy har-
vesting, are represented in the fitness function. In this
case, the fitness function (F) needs to express two differ-
ent objectives as follows:

F = w1

(
max
m∈M(Sm + Lm)

)
+ w2

(
1
n

n∑
i=1

(
Ai − A

)2)

(24)

where Sm + Lm is the finish time of task m and
maxm∈M(Sm + Lm) is the schedule length of a task graph.
Ai is the available energy level of sensor node i consid-
ering the recharging with the energy harvester. A is the
mean value which is calculated asA = 1

n
∑n

i=1Ai where n
is the number of sensor nodes. In order to show how bal-
anced the energy levels are, the deviation from themean of
the remaining energy level of all the sensor nodes is eval-
uated. The lower this value is, the more balanced available
energy level among all the sensor nodes. Also, the lower
scheduling length is better. So, our objective is to mini-
mize the defined fitness function which is proportional to
the schedule length and the energy variance. w1 and w2
are the weights to set the priority for the objectives.
Selection operator: There are two selection phases used

for the genetic algorithm. The first one is parent selec-
tion. This selection phase is used to select the parents
for mutation and crossover based on the fitness. We have
applied the fitness-proportional roulette wheel selection
and tournament selection. The second selection phase is
survival selection among the reproductive chromosome

Fig. 4 Representation of a chromosome and crossover operation
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after crossover. For this phase, we use the Genitor selec-
tion, a.k.a. “delete worst” which means among parents and
offsprings deleting the worst.
Crossover and mutation operator: Each chromosome in

the population is subjected to crossover with probability
Pc. Two chromosomes are selected from the population,
and a randomnumber r ∈ [0, 1] is generated for each chro-
mosome. If r < Pc , these chromosomes are subjected
to the crossover operation using single point crossover
as shown in Fig. 5. For this work, the non-uniform self-
adaptation mutation, which is a fitness-dependent muta-
tion rate, is utilized. The mutation rate initially set to be
some high values then the lower value once it reaches to
near to optimal fitness.

7 Simulation results
The performance of our proposed algorithms are eval-
uated through simulation. We have run several sets of
simulations to investigate the following aspects:

• Performance of the energy harvesting prediction
algorithm

• Performance of the task allocation scheme in
terms of energy balancing and scheduling length
objectives

• Performance of the dynamic adaptation phase

To the best of our knowledge, this is the first work
that addresses an energy harvesting aware task allo-
cation at the network level. For small scale problems,
we are able to solve mixed-integer linear programming
(MILP) by the optimization toolbox in Matlab using syn-
tax intlinprog. The results can be used as a base-
line for our proposed heuristic. A multi-objective genetic
algorithm based task allocation scheme (explained in
details in Section 6) is also implemented. For large scale

problems, the proposed scheme is validated by com-
paring the results of the genetic algorithm approach
and some modified heuristics such as the critical node
path tree (CNPT) algorithm [18] and extended CNPT
(E-CNPT) algorithm [13]. The strategy for extended
CNPT (E-CNPT) algorithm in [13] is to assign the tasks
along the most critical path first to the nodes with earliest
execution start times. This algorithm operates by adjust-
ing the number of sensors in each scheduling iteration
and then choosing the schedule with the minimum energy
consumption.
The energy harvesting profile is retrieved from the

National Renewable Energy Lab website [26]. The data for
the power consumption of a sensor node is extracted from
the Mica-2 data sheet [27]. Some of the implementation
specifications are shown in Table 1.
The example of a task graph and its corresponding

task allocation to five sensor nodes are shown in Fig. 5.
The results from the convergence of a genetic algorithm
based multi-objective fitness function for the minimum
and average value after several generations are shown in
the Fig. 6.

7.1 Simulation results for the energy harvesting
prediction algorithm

To evaluate the performance of the proposed algorithm,
simulations are carried out based on the available solar
irradiance data from the solar energy received at differ-
ent times of day and night. We consider the measurement
trace of a solar panel in four consecutive days, with both
the sunny and cloudy conditions from National Renew-
able Energy Lab [26]. The reported data is from California
Solar Initiative (CSI) from 26October 2011 for 4 days. The
unit of this data is an average solar irradiance

(
mW/m2),

and it is for every 1 h. An irradiance unit is converted to an
energy unit by linear conversion considering a solar panel

Fig. 5 Convergence of multi-objective fitness function of genetic algorithm-based task allocation
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Table 1 Simulation configuration

Recombination Single point crossover with
probability 0.6 − 0.9

Parent selection a) roulette wheel b) binary
tournament

Survivor selection GENITOR, a.k.a. “delete worst”

Population size 10 chromosomes

Number of task in the task graph 7 − 30

Number of sensor nodes 2 − 50

Maximumnumber of predecessors
in task graph

2 or 3

Stopping criterion for genetic
algorithm

10 unchanging generations

size 9.6× 6.4 cm, a solar cell efficiency 10% and a harvest-
ing efficiency 80%. We use “Ah” as the unit of the energy
quantity because the voltage is fixed at 1.2 V.
To present the algorithm evaluation results, the follow-

ing values used as algorithm parameters are as follows:
T = 24 , α = 0.7, D = 4, and K = 4. Recall that α, K,
and D denote weighing factor, number of previous slots,

Fig. 6 Task graph and corresponding task allocation based on our
scheme

and number of previous days for each solar power data
set. Figure 7 shows how closely our prediction algorithm
can track the actual measured data. The evaluation met-
ric used for this part is the average prediction error. It is
computed as

ε = 100
n

n∑
i=1

|e(i) − ẽ(i)|
e(i)

where n is the time horizon of the predication which is
D × T .
We compare the energy prediction accuracy of WCMA,

ARMA, and AR-WCMA. WCMA and AR-WCMA are
addressed in the prediction algorithm part. ARMA refers
to autoregressive moving average. This comparison can
be seen in Fig. 8 for the different weather conditions (i.e.,
sunny day and cloudy day).
ARMA only uses values from the previous day; hence,

if the weather conditions change from one slot to another,
this method has a large error in prediction (i.e., close to
30%). On the other hand, WCMA only takes into account
the last few slots but not the useful information about the
weather condition of the past few days. AR-WCMA pro-
duces much better results because it uses the values of
the same slot over previous days and also the previous
slots of the same day, which helps to calibrate against the
actual weather condition. To conclude, WCMA, ARMA,
and AR-WCMA results in the average error of 23.6, 28.6
and 8.7%, respectively.

7.2 Discussion on results for energy-balancing and
scheduling length objectives

In this section, the performance evaluation of our scheme
in terms of our objectives which are minimizing the
scheduling length and maximizing the energy-balancing
considering energy harvesting characteristics are pre-
sented. The quantity that used for energy-balancing

Fig. 7 Predicted value for four consecutive days
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Fig. 8 Comparison of prediction results

evaluation is the energy variance over all nodes which
calculated as follows:

ν = 1
n

n∑
i=1

(Ai − A)2

where Ai is the energy availability level of sensor node
i after the allocation and A is the mean value. We first
conducted simulations for small scale problems, with 3–4
sensor nodes and 7–10 tasks with maximum 2 prede-
cessors. The results are averaged over more than 100
instances where each point has a 95% confidence interval
with a 10% precision. The optimization toolbox in Mat-
lab is used that calls the solver by syntax intlinprog
to solve MILP for this small scale problem. The perfor-
mance ratios of our proposed heuristic (νh) and genetic
algorithm

(
νg

)
over the optimum solution (νo) are shown

in Fig. 9. We can see that the heuristic achieved up to 70%
of the solution obtained by the MILP-based approach for
the conducted simulations. Moreover, the results from the
genetic algorithm are good enough (up to 82%) that can
be later used as a baseline for the larger scale problem.

Fig. 9 Performance comparison of optimum approach with genetic
algorithm and the heuristic approach

We then consider the simulations for larger scale prob-
lems. Task graph with 30 tasks and the maximum 3 pre-
decessors are generated randomly. Similarly, the results
shown in Fig. 10 are averaged over more than 100
instances so that each point has a 95% confidence inter-
val with a 10% precision. This result shows the variance
of energy level over 2 to 16 nodes. The lower energy
variance means achieving the more balanced energy level
among the nodes. This result shows that the energy level
of nodes using our scheme is more balanced than the E-
CNPT algorithm in [13]. This is because although the
E-CNPT is an energy-efficient algorithm which schedules
based on the the energy consumption of tasks, it considers
constant energy profiles for nodes and it does not con-
sider the energy variation of the harvested energy. The
energy-balancing results from the GA-based scheme with

Fig. 10 Energy variance level over different number of nodes
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optimum result and our heuristic are fairly close to each
other.
In Fig. 11, the scheduling length resulted from our

scheme is compared with the CNPT algorithm proposed
in [18], whose only objective is to minimize the scheduling
length for each energy budget. Hence, in the best case,
we can have the scheduling length near to the optimum
scheduling length over different energy budgets as can be
seen in Fig. 11. It is observed that for the different number
of available sensor nodes, the results are fairly near to the
CNPT and GA-based schemes.
In order to validate the performance of our approach,

more complex system parameters such as the num-
ber of tasks and precedences in DAG and num-
ber of sensor nodes are considered. This result is
shown in Table 2. Our method attains more bal-
anced residual energy level while achieving a near opti-
mum scheduling lengths, for different system parameter
settings.

7.3 Discussion on results for dynamic adaptation stage
In this section, the performance of our proposed dynamic
adaptation algorithm in the presence of the variable solar-
based energy harvesting is evaluated. For this evalua-
tion, we consider eight different prediction error ratios
between 0 and 40 percentage points. For each error ratio
point, 100 runs of the task allocation simulation with
the random initial available energy of all the nodes are
executed. Then, the percentage of the allocation failure,
called missing ratio, is measured for the “static allo-
cation” and “static allocation with the dynamic phase.”
An allocation failure occurs once tasks and their prece-
dences are missed due to unavailability of resources.
In the dynamic adaptation phase, the task is missed
only if stretching the task length to meet the energy-
neutral condition causes the frequency fk to be below fmin.

Fig. 11 Scheduling length over different number of nodes

Table 2 Results from different system parameters

Number of
sensor
nodes

Number
of tasks

Number of
precedence

Schedule
length
(ms)

Variance

Our approach 30 15 2 29 0.23

GA 30 15 2 29 0.19

E-CNPT 30 15 2 29 0.37

Our approach 40 22 3 36 0.27

GA 40 22 3 35 0.24

E-CNPT 40 22 3 35 0.48

Our approach 50 30 3 48 0.32

GA 50 30 3 47 0.28

E-CNPT 50 30 3 46 0.55

Figure 12 shows the significant improvement in terms of
themissing ratio by implementing the dynamic adaptation
phase.

8 Conclusions
In this paper, the task allocation problem for a sensor
network powered by harvesting energy from natural envi-
ronmental phenomenon is considered. The goals are to
minimize the makespan and maximize the fairness in
energy-driven task mapping (i.e., energy-balancing), while
satisfying the task precedence constraints and energy har-
vesting causality constraints. The problem is precisely
formulated as a mixed integer linear problem. The pro-
posed framework for this problem has a hybrid framework
of static and dynamic adaptation stages. Heuristic algo-
rithms are proposed to solve the static problem in two
phases: scheduling of the task graph and mapping to

Fig. 12 Allocation missing ratio with different prediction error ratio
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the appropriate solar-powered sensor nodes. The perfor-
mance of our proposed algorithms, in terms of energy-
balancing and scheduling length, is evaluated through
simulation and compared with other approaches, includ-
ing a genetic algorithm as a baseline. We achieve more
balanced residual energy levels across the network while
attaining a near optimum scheduling length. The results
also show the significant improvement in terms of allo-
cation failure ratio due to implementing the dynamic
adaptation stage.
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