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Mutation and expression analysis in
medulloblastoma yields prognostic variants and a
putative mechanism of disease for i17q tumors
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Abstract

Current consensus identifies four molecular subtypes of medulloblastoma (MB): WNT, sonic hedgehog (SHH), and
groups “3/C” and “4/D”. Group 4 is not well characterized, but harbors the most frequently observed chromosomal
abnormality in MB, i17q, whose presence may confer a worse outcome. Recent publications have identified
mutations in chromatin remodeling genes that may be overrepresented in this group, suggesting a biological role
for these genes in i17q. This work seeks to explore the pathology that underlies i17q in MB. Specifically, we
examine the prognostic significance of the previously-identified gene mutations in an independent set of MBs as
well as to examine biological relevance of these genes and related pathways by gene expression profiling. The
previously-implicated p53 signaling pathway is also examined as a putative driver of i17q tumor oncogenesis. The
data show gene mutations associated with i17q tumors in previous studies (KMD6A, ZMYM3, MLL3 and GPS2) were
correlated with significantly worse outcomes despite not being specific to i17q in this set. Expression of these genes
did not appear to underlie the biology of the molecular variants. TP53 expression was significantly reduced in i17q/
group 4 tumors; this could not be accounted for by dosage effects alone. Expression of regulators and mediators of
p53 signaling were significantly altered in i17q tumors. Our findings support that chromatin remodeling gene
mutations are associated with significantly worse outcomes in MB but cannot explain outcomes or pathogenesis of
i17q tumors. However, expression analyses of the p53 signaling pathway shows alterations in i17q tumors that
cannot be explained by dosage effects and is strongly suggestive of an oncogenic role.
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Introduction
Medulloblastoma (MB) is the most common malignant
brain tumor in children [1,2]. Risk stratification strat-
egies that place patients into standard-risk (SR) and
high-risk (HR) groups show 5-year survival rates of
roughly 86(+/−9)% and 40% respectively [3-5]. However,
clinical staging does not always accurately predict tumor
behavior in the individual patient. Current treatment
strategies, while often curative, frequently result in sig-
nificant lifelong debilitation, and the limited predictive
power of the two-tier stratification system likely signifi-
cantly contributes to overall patient morbidity [6].
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In an attempt to more accurately stratify patients, ef-
forts have utilized the molecular genetics and genomics
of these tumors to identify both prognostic markers and
biological processes that may underlie the cause or pro-
gression of disease. Both the sonic hedgehog (SHH) and
WNT signaling pathways have been known to be in-
volved in subsets of MBs [7-9]. Other relevant prognos-
tic markers in MB include anaplastic/large cell histology
and MYC amplification, although these are of limited
clinical utility due to their relative rarity [10-12]. The
most common genetic abnormality seen in MB is i17q
(or more specifically, idic(17)(p11.2)), a chromosomal re-
arrangement created by non-allelic homologous recom-
bination at 17p11.2 that is relatively specific to MB in
brain tumors [13-18]. Patients with this abnormality
have shown to have early recurrence and worse out-
comes in several studies [8,14,19-24]. Interestingly, this
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rearrangement is much more frequent in male patients.
Due to the nature of this rearrangement, tumors with
i17q are hemizygous for chromosome 17p telomeric to
17p11.2 while the remainder of the chromosome is du-
plicated. To date no specific mechanism has been pro-
posed to explain pathogenesis of these tumors, although
hemizygosity of genes and tumor suppressors on 17p
such as TP53 have been suspected. Anticipated “second-
hit” TP53 mutations have not been described in i17q-
positive MBs and these hypotheses have been largely
overshadowed recently by genomics and expression pro-
filing of tumors [25-27]. However, these initial studies
identified other p53 signal modifiers such as WIP1 that
have not been completely explored and warrant further
study.
Recent attempts to sub-classify tumors based on

microarray gene expression profiling have led to a con-
sensus that there are likely four MB molecular variants
[28,29]. These studies have supported the previously
described SHH and WNT variants, and have split
remaining cases into “group 3/C” and “group 4/D”.
Currently it is thought that group 3 tumors are driven
by MYC expression and may have worse outcomes
[28,30,31]. However, to date there has been relatively
little molecular investigation into the pathogenesis of
group 4, the most common subtype. Depending on the
data sets used for the hierarchical clustering analysis of
the expression data, i17q cases fall either primarily into
group 4 (with the remaining cases falling into group 3)
or entirely within group 4, while making up a majority
of its cases. This suggests that this chromosomal aberra-
tion may be critical to the pathogenesis of these tumors.
A recent cytogenetic study of over 1000 tumors identi-
fies i17q in ¾ of all group 4 tumors [24]. Other rare
chromosomal rearrangements such as MYCN/CDK6
amplifications and more recently SNCAIP duplication
have also been associated with group 4 tumors [29,32].
Attempts to identify MB variant-specific mutations

have been recently undertaken with both whole-genome
and exome sequencing in two large MB sample sets to
further define the disease [33,34]. These studies identi-
fied several mutations that were overrepresented or ex-
clusive to MB variants, including those harboring i17q.
Many of the identified mutations in i17q tumors are in
chromatin remodeling genes, including histone methyl-
transferases (MLL3), histone demethylases (KDM6A), and
histone de-acetylases (ZMYM3 and GPS2), suggesting that
these pathways may be key to their pathogenesis.
In this work we explore the specificity and prognostic

significance of mutations in the previously identified
(i17q-associated) chromatin remodeling genes in an in-
dependent cohort of 57 MBs. The expression of genes in
pathways involved in both chromatin remodeling and p53
signaling are also examined in 103 medulloblastomas to
see if these correlate with i17q status or the established
molecular MB variants, and may thus underlie the biology
or oncogenesis of these tumors.

Materials and methods
Patients
Patients for gene sequencing were selected based on a
diagnosis of medulloblastoma from the archives of
WUSM in accordance with an approved institutional re-
view board protocol (# 201104083) (Washington University
HRPO) and their details have been previously published
[19]. SR patients were identified by a documented lack of
residual disease as well as a lack of drop metastases in brain
and spinal magnetic resonance imaging (MRI) status post-
surgical resection, as well as negative CSF cytology. HR
patients typically had either residual disease or drop metas-
tases (as reported in post-surgical or radiological reports).
Patients with MYC amplifications were also placed in the
high-risk group. Patient age was not used as an identifier of
high risk given conflicting literature [35-37]. The data
used for expression analyses are publicly available and the
details of those patients, as well as the methods of expres-
sion profiling, have been published elsewhere [28]. A table
summarizing clinical and molecular information for each
patient can be found in Additional file 1: Table S1.

Sample preparation
Formalin-fixed, paraffin embedded (FFPE) blocks of
patient tumors and control (non-tumor) material were
evaluated for tumor cell content by a pathologist and
cored (G.A.B.). Multiple 2 mm cores of both tumor and
control tissue were obtained per case when available.
Tumor cores were homogeneous with tumor comprising
>90% of the sampled area. DNA was extracted with the
Gentra Purgene Kit (Qiagen, Valencia, CA). Samples
were treated with proteinase K until all tissue was
digested (up to four days). DNA yields ranged from 1–
3100 μg (mean 593 μg, median 218 μg; 93% of samples
> 10 μg). For sequencing, tumor samples were prepared
at a concentration of ~250 ng/μl.

Gene amplification and sequencing
Genes of interest (MLL3, GPS2, KDM6A, and ZMYM3)
were selected based on whole-genome and exome-based
studies as being specific to, or over-represented in i17q +
MB samples and having a role in chromatin remodeling
[33,34]. Amplification of the coding regions was under-
taken with the Fluidigm microfluidics-based Access Array
system (San Francisco, CA). Primer sets were designed by
Fluidigm to cover these regions as 192 unique amplicons
(see Additional file 2: Table S2). After sample target ampli-
fication and barcoding, samples were sequenced with the
Illumina MiSeq 2 × 250 platform (San Diego, CA). The
mean and median percent of amplicons per sample in the
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data set passing quality and coverage thresholds of 30
reads/base were 84% and 92%, respectively. Average and
median depth of coverage across all amplicons was 4795
and 1646 reads/base, respectively.

Data analysis
DNA alignments were performed with the Novoalign
software (Novocraft, Selangor, Malaysia). Variant calls
were made with the FreeBayes software package, with
minimum quality and mapping scores of 30 and a mini-
mum alternate allele fraction of 0.20 [38]. Annotation
was performed with the ANNOVAR software package
[39]. Variants were filtered to remove putative synonym-
ous or intronic (non-splice site) changes, as well as poly-
morphisms documented as >1% prevalence in the dbSNP,
1000 genomes, or 6500 exomes databases (located at
http://www.ncbi.nlm.nih.gov/projects/SNP/, http://www.
1000genomes.org/, http://evs.gs.washington.edu/EVS/
respectively) [40,41]. Because amplification-based methods
result in a high number of false positives in FFPE samples
due to crosslinking and deamination events [42], stringent
variant calling conditions were used to maximize specifi-
city. First, microfluidics based amplification and sequen-
cing was repeated for all samples (at least two times) as
recommended by recent publications [43]. This would
serve to validate any variant calls as well as to increase
depth of coverage across a maximum number of ampli-
cons. Secondly, variant calling was conducted across com-
piled BAM files from multiple runs to prevent variant
calling of “jackpotting” events from entering downstream
data analyses. Finally, variants were only considered if they
were identified with the variant caller software and present
in a replicate at a frequency of >5% as identified by the In-
tegrated Genome Viewer [44]. This approach was verified
Table 1 Mutations identified in 57 consecutive medulloblasto

Sample Location Gene Exonic function

32 Exonic; splicing GPS2 Splice site

41 Exonic; splicing KDM6A Frameshift insertion

17 Exonic MLL3 Nonsynonymous

16 Exonic MLL3 Nonsynonymous

16 Exonic MLL3 Nonsynonymous

21 Exonic MLL3 Nonsynonymous

21 Exonic MLL3 Stopgain

13 Exonic MLL3 Stopgain

21 Exonic MLL3 Nonsynonymous

30 Exonic MLL3 Nonsynonymous

28 Exonic MLL3 Nonsynonymous

33 Exonic MLL3 Nonsynonymous

20 Exonic MLL3 Nonsynonymous

“Damaging” is the number of mutation analysis programs (out of four) that predict
programs do not make predictions for stopgain, frameshift, or splice site change m
by Sanger sequencing 17 putative mutations or low
frequency polymorphisms that met these criteria, as well
as Sanger sequencing 154 variants that were identified but
failed to meet this criteria (variants that were called on a
single replicate). This filter technique yielded a specificity
and sensitivity of 100%.
All statistical analyses were performed with the R statis-

tical software and the survival statistical package [45,46].
Kaplan-Meier survival curve significance was measured
with the log-rank test.

Results
Mutations in chromatin remodeling genes are not limited
to i17q positive tumors and seen in the SHH group
Mutations in genes over-represented in i17q tumors
may underscore the biology of the disease by identifying
critical pathways for tumorigenesis and may also explain
the adverse outcomes observed in these patients. To ex-
plore this, the four previously-identified genes involved
in chromatin remodeling associated with i17q (KDM6A,
ZMYM3, MLL3, and GPS2) were sequenced in an inde-
pendent cohort of 57 consecutive medulloblastomas.
Mutations were identified in KDM6A GPS2, and MLL3
(Table 1). 13 mutations were identified in 10 (18%) pa-
tients, more than expected based on the previous reports.
5/10 (50%) patients with mutations were identified in the
standard-risk group. A majority of the mutations were
seen in MLL3 (85%). Missense mutations were a majority
of the variant calls (69%). These variants were assessed for
their putative damage to protein function with AV_SIFT,
PolyPhen, LRT, and the MutationTaser computer pro-
grams. All of the variants identified were predicted to be
damaging by at least one program (see Additional file 3:
Table S3). Mutations were identified in patients with and
ma cases

Damaging Chr Start Ref Obs

– chr17 7217225 C T

– chrX 44969494 - GG

4/4 chr7 151859899 G A

2/4 chr7 151860230 G C

1/4 chr7 151877127 G T

4/4 chr7 151879265 G T

– chr7 151900023 A T

– chr7 151874686 G A

3/4 chr7 151875073 G A

3/3 chr7 151927021 C A

1/4 chr7 151919690 C T

3/4 chr7 151970877 G A

2/4 chr7 151945568 C T

altered protein function as a result of the variant. Please note that these
utations.

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
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without i17q, as well as in patients in the SHH variant.
Three of the 10 patients (30%) were in the SHH group.
Only one of the variants identified was in a patient with
idic(17)(p11.2). Interestingly, these mutations were seen
in 2/4 patients in this data set with rearrangements out-
side the REPA/REPB region (#32 and #28). These data
suggest that in this cohort of patients, mutations in
these genes are not specific to i17q and thus cannot
explain their biology or outcomes.

Mutations in MLL3 and other chromatin remodeling genes
are associated with recurrence and worse overall survival
Although not specific to i17q samples, chromatin remod-
eling gene mutations were correlated with outcomes with
Kaplan-Meier survival analyses. Patients with mutations
Figure 1 Kaplan-Meier survival curves of 57 patients with and withou
with the log-rank test. The red plot indicates survival of patients with muta
pipeline that consisted of the amplification-based Fluidigm Access Array sy
the Illumina MiSeq (2x250), and post-sequencing variant detection followed
respectively. A. Overall survival (OS) measured in the standard-risk (SR) group
D. DFS in all patients.
in MLL3, KDM6A, and GPS2 had worse outcomes in
terms of overall survival (OS) and disease-free survival
(DFS) than those without mutations (Figure 1). Interest-
ingly, combining prognostic factors shown to be signifi-
cant in this cohort (i17q status and mutations in
chromatin remodeling genes) resulted in a powerful pre-
dictive tool within this data set. This approach identifies
all but one of the patients in the SR group that recur
and all but two patient deaths at 5 years (p = 0.0041
and p = 0.010, respectively (Figure 2). Similar findings
were seen with OS and DFS across all patients (p =
0.033 and p = 0.042, respectively). Combined with i17q
status, the identification of these mutations showed sig-
nificant associations with poor outcomes in terms of OS
and DFS.
t mutations in chromatin remodeling genes. P-values are calculated
tions in MLL3/KMT2C, KDM6A, or GPS2. Mutations were identified in a
stem, massively-parallel sequencing of the exons of select genes with
by annotation with the FreeBayes and ANNOVAR software packages,
. B. OS across all patients. C. Disease-free survival (DFS) in the SR group.
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Figure 2 Kaplan-Meier survival curves combining molecular risk factors shown to be significant in the cohort of 57 patients. The red
survival plot includes patients who had either mutations in chromatin remodeling genes or i17q. A. DFS in the SR group. B. OS in the SR group.
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Expression of chromatin remodeling genes identified by
mutation profiling
The four distinct molecular variants of MB, as they are
currently understood, are classified by their differing
gene expression profiles. It stands to reason that muta-
tions that are subtype-specific may uncover pathways
that when altered are essential for tumor pathogenesis.
If so, the expression of these genes and pathways would
be expected to also be subtype-specific. Chromatin re-
modeling genes identified by mutational analyses were
compared for differences in expression across the four
molecular MB subtypes as well as in the presence or ab-
sence of i17q in 103 MB cases using an Affymetrix exon
array platform. This cohort includes 8 WNT, 33 SHH,
27 group 3, and 35 group 4 cases. As expected based on
the mutation profiling in our cohort, there was no clear
association between molecular variants and expression
of the four chromatin remodeling genes of interest. A
small but significant difference in expression across
molecular subtypes was observed for the histone
methyltransferase-coding MLL3 (p = 2.05 × 10−6, ANOVA),
whose mean expression was higher in groups 3 and 4,
and for ZMYM3, which had a lower expression in the
SHH group, although the magnitude of change is not large
for either gene (p = 0.003) (Figure 3). The presence of i17q
may be indicative of a unique biological entity; however,
similar to what was observed across the different molecu-
lar subtypes there was no clear association between ex-
pression of the identified chromatin remodeling genes and
i17q status. Other than GPS2, none of the identified genes
were differentially expressed in i17q-positive tumors (see
Additional file 4: Figure S1). The fact that GPS2 was seen
in lower levels in i17q tumors is not surprising given its
location (17p13), and this finding is likely explained by
dosage effect due to hemyzygosity of 17p in these cases.
While KDM6A levels are not different between molecular
variants or i17q positive and negative tumors, it must be
added that differences between variants were observed in
EZH2, a methyltransferase that acts opposite to KDM6A
function (see Additional file 4: Figure S2) [47]. These find-
ings suggest that the chromatin remodeling genes identi-
fied by mutational analyses as subtype- or i17q-specific
are not likely critical for pathogenic differences seen be-
tween MB variants, although the role of other such genes
may be relevant to these processes.

Expression of other chromatin remodeling genes can be
variant-specific
Although the expression of chromatin remodeling genes
identified by mutational studies did not seem to be spe-
cific to molecular subtypes, it is still possible that chro-
matin remodeling genes or other epigenetic phenomena
play an essential role in the development of these tu-
mors. Other genes involved in histone modification were
assessed for their relative expression across the different
MB variants to test if there was any specificity to their
expression and thus could be critical to their develop-
ment. The genes of interested included member of the
HDAC gene family as well as other chromatin remodeling
genes associated with MB specificity (Additional file 4:
Figure S2 and Additional file 4: Figure S3). The HDAC
genes often had marked differences in expression amongst
the different MB subtypes (Additional file 4: Figure S2).
HDAC1 expression is significantly decreased in group 4
MBs, while HDAC4 expression is significantly decreased
in group 3. Also identified as a common target for muta-
tion in MB, MLL2, showed differential expression with
significantly lower expression in the SHH group. This is
particularly interesting because mutations in this gene are
also observed in this group [34]. Other selected chromatin
remodeling associated genes that are differentially ex-
pressed among the MB variants can be seen Additional
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Figure 3 Expression of chromatin remodeling genes identified as being over-represented in i17q in prior studies. Boxplots indicate
expression levels as identified in expression microarrays for 103 MBs for each molecular variant. The data are normalized based on the number of
probes per feature, allowing for direct comparisons of expression across different genes. Black lines indicate the mean values while the box
includes data within one standard deviation. P values are calculated as variance from the grand mean of all MB, or ANOVA (one way). A. Expression of
MLL3 in the four molecular MB variants. MLL3 is significantly differentially expressed across the molecular variants with groups 3 and 4 having higher
levels, unlike the other genes identified. B, C, D. Expression levels of KDM6A, ZMYM3, and GPS2 across the four MB variants. There is no significant
difference in expression of these genes from the grand mean that correlate with i17q-associated variants.
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file 4: Figure S3. The epigenetic difference across the mo-
lecular subtypes does not necessarily end with histone
modification. DNA methyltransferase expression profiles
also show clear differences among the different MB vari-
ants, where the SHH tumors have significantly lower
expression of DNMT1 and DNMT3A (Additional file 5:
Figure S4). These data suggest that differences in gene
expression of chromatin remodeling and other epigenetic
pathways appear to be profound in MB variants, but it is
unclear if these changes reflect variant-specific noise or if
they may underlie the biology of disease. Furthermore,
these data hint at possible new targets for differentiating
group 3 and 4 tumors, where existing antibody targets
have not proven reliable [19,20].
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Expression of TP53 pathway genes in i17q-positive tumors
Tumor suppressor p53 has previously been implicated
as a driver mutation in i17q tumors as has as a negative
regulator of p53 signaling, WIP1, whose function is to
inhibit TP53 expression and to promote p53 degradation
[48,49]. The structure of i17q is particularly intriguing in
that its formation causes both hemizygosity of TP53 and
duplication of WIP1 (located on chr17q), hinting that
this may be a tumor-initiation event in this subset of
MB. To test if TP53 or WIP1 were aberrantly expressed
in i17q MB, and if these differences were subtype-
specific, 103 MB tumors were examined for the expres-
sion p53-related genes in i17q-positive and negative
samples (Figure 4). TP53 expression is significantly de-
creased in i17q tumors (p = 4.2 × 10−7). A significant de-
crease in TP53 expression is seen across group 4 tumors
when compared to other variants (p = 1.6 × 10−13,
ANOVA, Figure 4B), a difference that is not as pro-
nounced as in i17q tumors but also not accounted for
by the presence of i17q tumors within this group
(Figure 4D; Additional file 5: Figure S5). This may dem-
onstrate the similar biology underscoring i17q and the
remaining group 4 tumors. As expected due to dosage
effects, WIP1 is over-expressed in i17q-positive tumors
compared to non-17q tumors (p = 1.8 × 10−4) [25]. WIP1
is also overexpressed in group 4 tumors compared to
other MB variants (Additional file 5: Figure S5). These
data support that key regulators of the p53 signaling path-
way are aberrantly expressed in a MB-variant/i17q-specific
manner.
Because TP53 is located on 17p it could be assumed

that the differences in expression between i17q positive
and negative tumors are due to dosage effects alone, and
thus the differences of expression could be a “passenger
effect” of the tumor despite the fact that i17q-negative
tumors are also likely suppressing TP53 via mutation,
epigenetics, or other means [26,50]. Alternately, robust
changes in p53 signaling, as well as alterations in TP53
expression beyond that expected by position effects
alone suggests that p53 alterations are not a mere reflec-
tion of changes in chromatin content. Specifically, two
hypotheses arise: first, that TP53 expression is impacted
by the same dosage effects that affect all of 17p genes in
i17q as a result of hemizygosity; and second, that the
unique formation of idic(17)(p11.2) suppresses p53 sig-
naling beyond that which is expected by dosage effects
alone and could be an oncogenic event. If the first hy-
pothesis is correct, expression of TP53 should behave
similarly to other genes on 17p when comparing a ratio
of expression in i17q to non-i17 cases. The alternate
hypothesis predicts TP53 expression to be significantly
lower than other genes within 17p in the same scenario.
To test whether TP53 expression is more dysregulated
than expected by position effects alone in i17q cases,
expression of all gene positions in i17q were normalized
by non-i17q tumor samples (2637 features) and the
expression of TP53 was compared to other similarly
hemizygous genes in i17q tumors. This analysis shows
that TP53 expression is significantly decreased compared
to all other genes in 17p affected by the same dosage
effects (corrected p = 8.4 × 10−7) (Figure 5A). Further-
more, several genes that are either targets or mediators
of p53 as established in the literature or found via chIP-
seq experiments are significantly altered in i17q-positive
tumors (Figure 5B) [51]. These data strongly suggest that
i17q tumors have a unique alteration of the p53 signal-
ing pathway that is known to be tumorigenic and could
underlie the pathogenesis of this disease. However, such
observations would need to be seen on other patient
cohorts for validation and be supported by functional
studies.

Sex-specific nature of i17q suggests hormonal role in
pathogenesis
Yet to be thoroughly explored is the reason for the male
bias in i17q cases. In three studies alone [19,28,33] boys
comprised 31/37, 16/18, and 10/13 i17q-positive MBs
(~84%). One possible explanation is sex hormonal differ-
ences between boy and girls and their impact on p53 sig-
naling. Recent studies have suggested that prepubescent
girls may have significantly higher levels of estradiol than
boys [52]. If true, this could be of significance as such
hormones have complex regulatory interactions with
p53 signaling. Specifically, data have demonstrated that
estradiol increases p53 levels in a time and dose-
dependent manner [53]. The estrogen-related receptor γ
(ERRγ) has been shown to be able to repress estradiol-
induced estrogen response elements, thereby inhibiting
the effects of estradiol in certain conditions [54]. ESRRG,
which codes for ERRγ, is expressed at significantly
higher levels in i17q-positive and group 4 tumors in our
data set; differences that cannot be accounted for by
sex-specific expression (t-test, p = 1.5 × 10−5) (Additional
file 5: Figure S6). While these findings are highly specu-
lative, it is possible that circulating estradiol in females is
often sufficient to prevent tumors with the formation of
i17q by maintaining a minimum threshold level of p53
activity.

Discussion
Group 4 is the most common variant of MB and in-
cludes the most common genetic abnormality, yet little
is known about the pathogenesis of these tumors. The
data presented supports the idea that the formation of
idic(17)(p11.2) may be sufficient to cause oncogenesis.
We hypothesize that the REPA/REPB-mediated forma-
tion of idic(17)(p11.2) does two things; first, it creates
hemzigosity of 17p lowering p53 levels due to dosage
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Group 3        Group 4            SHH WNT

Figure 4 Expression of TP53 and related genes in i17q and across the MB variants. A. Mean expression of TP53 in i17q-positive and negative
patients. “1” indicates i17q-positive status. There was significantly lower expression (p = 4.2 × 10−7, t-test) in i17q-positive tumors. B. TP53 expression
was similarly decreased across group 4 tumors, which contain a majority of i17q-positive cases. C. When comparing only within group 4 cases, tumors
with i17q express significantly lower levels of TP53. This suggests that the presence of i17q is a significant cause of lower TP53 expression. D. WIP1 is
overexpressed in i17q-positive cases and functions to suppress p53 signaling on both a DNA and protein level, further altering this signaling pathway
in these tumors.
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effects; and second, the duplication of WIP1 (and poten-
tially other factors) further suppresses TP53 expression
and thus p53 signaling to levels that render it ineffective.
This may explain why TP53 mutations are not observed
in i17q-positive tumors- there may be no selective advan-
tage to additional loss in p53 when it is already markedly
reduced in these cases. How chromatin remodeling may
affect this process is not immediately clear.
The chromatin remodeling gene mutations tested were

not specific to i17q tumors in this cohort and there was
no evidence that these genes were important to the patho-
genesis of disease. Admittedly, however, no ZMYM3
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Figure 5 i17q tumors have significantly altered p53 signaling, and lowered levels of TP53 expression cannot be explained by dosage
effects alone. A. Relative expression across all chromosome 17 genes for i17q cases. All features in the 103 MB expression microarray across
chromosome 17 in i17q-positive tumors were normalized by negative cases and plotted by fold-expression on the X-axis. The green-shaded box
contains all the genes in the hemizygous region telomeric to 17p11.2, while the red-shaded box contains all features centromeric to 17p11.2 and
17q. Although the latter contains more DNA, it is represented by fewer features on the microarray chip. The green box shows that there is a very
broad distribution of expression of genes in the hemizygous region, and suggests very uniform lower levels of expression caused by dosage
effects. With bonferroni correction, TP53 is significantly reduced in i17q patients (p = 8.41 × 10−7, t-test). More so, it is expressed at levels greater
than 2 standard-deviations less than the average gene in the hemizygous region across all i17q-positive patients, as represented by the red bar.
The dotted line represents 2 standard deviations from the mean expression across the hemizygous region of i17q patients. B. Relative expression
of genes in the p53 signaling pathway in i17q patients. Fold expression of genes thought to be related directly or indirectly to p53 signaling by
chIP-seq experiments or the literature were measured. The blue box contains TP53 and WIP1. The yellow box contains genes identified by chIP-seq
experiments to be targets of p53 [51]. The green box contains genes understood to be p53 signal transducers in the literature. A single asterisk
represents a p < 0.05 with Bonferroni correction and two asterisks represent p < 0.01. These data demonstrate a significant dysregulation of a majority
of p53-related genes in i17q tumors.
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mutations were identified, and only single KDM6A and
GPS2 variants were observed, so it is possible that in a lar-
ger sample set these mutations would have shown a simi-
lar distribution to other reports. Other limitations of this
study constrain our analyses. The lack of available germ-
line material prohibits absolute certainty that the variant
calls are not rare polymorphisms absent from the estab-
lished databases. Similarly, the nature of the Fluidigm
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platform limits our ability to interpret allelic ratios and is
more likely to yield false-positive and false-negative calls
in this setting compared to other methods. Regarless, the
number of MLL3 variants observed were more than
expected based on the results of the works of Pugh or
Robinson et al. [33], and were similar to the number of
mutations identified in Parsons et al. [55], suggesting that
either there is still a heterogeneity of samples available in
the literature or that genomic approaches of variant detec-
tion require further refinement, particularly in the arduous
task of variant filtering and validation [33,34,55]. Patients
with mutations in these genes did have worse outcomes,
in terms of disease-free survival and overall survival. This
is consistent with other tumors that have similarly shown
that mutations in chromatin remodeling genes purport
worse patient outcomes [56]. It is possible that aggressive
tumors are acquiring mutations and epigenetic changes
that help promote tumor growth, and mutations in chro-
matin remodeling genes may simply be a reflection of this
process as it may have global effects on gene expression.
The differences in HDAC or DNMT genes may reflect the
molecular and cellular origins of the tumors or may reflect
the pathogenesis of disease. Further studies on these path-
ways are warranted to address such questions.
The analyses provided in this cohort of 57 MB cases

show that patients with mutations in the chromatin re-
modeling genes MLL3, GPS2, and KDM6A have sig-
nificantly worse outcomes in terms of DFS and OS.
Combining these results with previously published data
on these cases regarding i17q status identifies a majority
of all recurrences in this data set. These data suggests
that there may be clinical utility in screening SR patients
for both i17q status and chromatin remodeling gene mu-
tations, particularly MLL3. Furthermore, these data dem-
onstrate that cytogenetic and molecular studies could be
readily implemented for more specific patient stratifica-
tion and prognostication without the need for expression
profiling of cases; a labor that is impractical in the
current laboratory setting and currently has no validated
alternatives for the separation of group 3 and 4 tumors
[19,20]. Screening for these mutations in other MB
cohorts is warranted to validate these findings, and the
results may ultimately add to the growing literature of
molecular markers shown to be useful in characterizing
and stratifying MB patients.
Additional files

Additional file 1: Table S1. Clinical and molecular information for the
57 MB samples. A “1” designates the presence of a characteristic and a
“0” signifies its absence.

Additional file 2: Table S2. Location and name of the amplicons used
for the Fluidigm platform and subsequent sequencing.
Additional file 3: Table S3. In silico analyses of amino acid changes
with different predictive software. Allelic ratios reflect the range of ratios
observed in the different Fluidigm runs. The variance is due to the nature
of this platform being amplification based, and the frequency of
“jackpotting” events. Great caution should be taken when attempting to
derive meaning from these ratios.

Additional file 4: Figure S1. Expression of differentially-expressed
chromatin remodeling genes in the four MB variants. Differential expression
(mean values) was seen in histone deacetlyases, histone demethylases,
histone methyltransferases, and other chromatin remodelers. These data
suggest that, in general, group 3 and 4 tumors tend to increase histone
methyltransferase activity while suppressing demethylase activity. Histone
deacetylases vary tremendously by MB variant. Figure S2. Expression of
chromatin remodeling genes differentially expressed across the four MB
variants or previously associated with differential expression. Histone
deacetylase genes HDAC1 and HDAC2 show differential expression across
the MB variants, with decreased expression in groups D and C respectively.
Histone methyltransferase-coding MLL2 is decreased in SHH MB, and is also
frequently mutated in that group. EZH2 is involved in the H3K27 trimethyla-
tion, which is removed by KDM6A. Its gene EZH2 is relatively over-expressed
in group 3 and 4 tumors. Previous studies had suggested that UTY (a
paralog of KDM6A) and CDH7 may be decreased in expression in group 3
and 4 tumors in an effort to maintain an epigenetic stem-like state [40].
Significant differences for expression in these groups were not seen in this
data set; however, this does not imply a stem-like epigenetic state is not
maintained through other means in these tumors. Figure S3. Expression of
chromatin remodeling genes whose mutations are over-represented in
group 4/i17q in patients with and without i17q. Other than GPS2, there is
no statistical significance (student t-test, 2-tailed) in expression of these
genes between i17q-positive and negative tumors. The difference in GPS2 is
likely explained by dosage effect as it is positioned in chromosome 17p.

Additional file 5: Figure S4. Expression of DNA-methyltransferases is
differentially expressed across MB variants. The SHH variant shows lower
levels of expression for both DNMT1 and DNMT3A. Figure S5. Expression
of TP53 and WIP1 in the molecular variants of MB. The top panel shows
expression of TP53 in the MB molecular variants independent of any
i17q-positive cases. Group 4 shows significantly lower expression,
although it is not as low as seen in in i17q + tumors. The bottom figure
shows that WIP1 is also differentially expressed among the MB variants,
with significantly higher expression in Group 4. Figure S6. ESRRG expression
in MB variants, i17q, and male and female sexes. ERRγ is an estrogen
receptor that has no known ligand but can interfere with estradiol signaling.
It has been shown than in ESRα-expressing cells, overexpression of ERRγ
suppresses estradiol-mediated expression of its response elements. A. ESRRG
codes for ERRγ and is significantly overexpressed in i17q tumors (p = 1.5 ×
10−5, t-test). B. Similarly, group 4 tumors showed significantly higher levels
compared to the other groups. C. Although male patients are significantly
overrepresented in i17q-positive tumors and group 4 cases, male gender
alone was not significantly associated with increased ESRRG expression,
suggesting that this is intrinsic to group i17q/4 tumors.
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