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Abstract

Background: Classification of breast ultrasound (BUS) images is an important step in
the computer-aided diagnosis (CAD) system for breast cancer. In this paper, a novel
phase-based texture descriptor is proposed for efficient and robust classifiers to
discriminate benign and malignant tumors in BUS images.

Method: The proposed descriptor, namely the phased congruency-based binary
pattern (PCBP) is an oriented local texture descriptor that combines the phase
congruency (PC) approach with the local binary pattern (LBP). The support vector
machine (SVM) is further applied for the tumor classification. To verify the efficiency
of the proposed PCBP texture descriptor, we compare the PCBP with other three
state-of-art texture descriptors, and experiments are carried out on a BUS image
database including 138 cases. The receiver operating characteristic (ROC) analysis
is firstly performed and seven criteria are utilized to evaluate the classification
performance using different texture descriptors. Then, in order to verify the
robustness of the PCBP against illumination variations, we train the SVM
classifier on texture features obtained from the original BUS images, and
use this classifier to deal with the texture features extracted from BUS images
with different illumination conditions (i.e., contrast-improved, gamma-corrected
and histogram-equalized). The area under ROC curve (AUC) index is used as the
figure of merit to evaluate the classification performances.

Results and conclusions: The proposed PCBP texture descriptor achieves the
highest values (i.e. 0.894) and the least variations in respect of the AUC index,
regardless of the gray-scale variations. It’s revealed in the experimental results
that classifications of BUS images with the proposed PCBP texture descriptor are
efficient and robust, which may be potentially useful for breast ultrasound CADs.

Keywords: Breast ultrasound, Local binary pattern, Phase congruency, Texture
feature, Tumor classification
Introduction
As one of the most common cancers, breast cancer is one of the leading causes of

death among women. In 2013, the estimated new cases of breast cancer were 232,340

and estimated deaths were 39,620 in the United States [1]. Because of the unknown

causes of breast cancer, early detection is critical to the medical treatment [2].

Mammography is considered as one of the best available modalities for detection

and diagnosis of breast cancer due to its high resolution and sensitivity, which can

provide early detection for its capability of discovering micro-calcifications [2,3].
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However, mammography has limitations in detecting breast cancers in women with

dense breasts [4].

Currently, the ultrasound imaging has been one of the most effective and prevalent

approaches for breast tumor detection for its non-invasive, no radiation and inexpen-

sive properties. Compared with mammography, the breast ultrasound (BUS) has the

ability of revealing hidden lesions in dense breast tissues. Additionally, it could distin-

guish benign tumors from malignant ones by characterizing their shapes, borders,

internal and posterior acoustic behaviors [5]. However, the BUS diagnosis is more

dependent on human expertise, and the results may be subjective and easily affected by

personalized interpretation. Therefore, the computer-aided diagnosis (CAD) system is

emerging as a great helper for analyzing and processing medical images, which offers

more objective evaluation results and helps the radiologists to make diagnostic deci-

sions more precisely.

Generally, an ultrasound CAD system for breast cancer is performed in four stages,

including image preprocessing, lesion segmentation, feature extraction, and classifica-

tion [6]. In these procedures, feature extraction of BUS images is a critical and essential

stage in a CAD system. It aims to find a feature set obtained from BUS images that are

accurate enough for classifying breast cancer lesions. Basically, the features of BUS

images can be categorized into two classes: morphological and texture features.

Morphological features focus on the local characteristics of the mass, such as the

shape and margin. Although morphological features are proven effective and commonly

used in a breast ultrasound CAD [7,8], it requires the tumor contours as prior know-

ledge which could be obtained by the image segmentation stage. Due to the severe

influence of speckles, BUS images often have drawbacks of low contrast, blurry margins

and poor quality. These drawbacks make the segmentation more difficult, and therefore

the segmented result is easily different with real tumor contour. These differences may

directly affect the discriminant abilities of the extracted features.

Texture features depict the tissue scattering properties caused by pathological

changes of the mass [6]. Unlike morphological features, most of texture features are

calculated from the rough region of interests (ROIs) using the gray-level values, without

the need of accurately obtained tumor contours. It has been demonstrated that texture

patterns are efficient in distinguishing benign breast lesions from malignant [9,10].

Chen et al. [11] adopted wavelet transform to extract useful texture features from

transformed BUS images and decomposition coefficients. Similarly, Mogatadakala et al.

[12] extracted mean and variance of the order statistics after wavelet decomposition.

Besides, several studies aimed to investigate useful texture features based on the gray-

level co-occurrence matrix (GLCM) [9,13-17], including the contrast, the correlation

and the covariance of the GLCM, and the great capability of GLCM matrix in classify-

ing BUS images were revealed. Gómez et al. [18] advanced to analyze the behavior of

22 GLCM statistics with six quantization levels, four orientations and ten distances to

select the most discriminative GLCM-based texture feature descriptors. In Ref. [19],

Masumoto et al. proposed to use the local binary pattern (LBP) to extract intensity-

independent and rotation-invariant texture features for classifying solid masses in BUS

images. Furthermore, Yang et al. [20] devoted to focus on the robust texture analysis

using multi-resolution gray-level invariant features via ranklet transform for breast

ultrasound tumor diagnosis, and the experiments suggested the efficiency of ranklet
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transform-based texture features in designing a robust CAD system. Recently, contourlet-

based texture analysis was also introduced for breast tumor classification by Zhang et al.

[21]. Five texture features were extracted from the directional sub-bands after contourlet

transformation, and the results demonstrated that the diagnostic performance was im-

proved contrasted with the classic features.

Generally speaking, in BUS images, benign tumors often appear with round or

ellipsoid shapes, smooth and definite borders, and homogeneous internal echoes;

whereas malignant tumors often appear with irregular shapes, blurry and angular

borders, inhomogeneous internal echoes. Such local structural information is actu-

ally quite significant for distinguishing benign tumors from malignant ones, and it

can be precisely captured by calculating the local phase. As stated in [22], the local

phase of a certain signal contains the local structural information.

Particularly, the phase information plays a more and more important role in many

fields of pattern recognition in recent years. As introduced by Ref. [23,24], phase infor-

mation had already been applied to texture image retrieval successfully, and the phase-

based feature extraction methods were superior to some popular methods for effective

image retrieval. Besides, phase information was adopted for applications related to

facial recognition [25,26]. Additionally, Shojaeilangari et al. [27] invoked LBP method

with phase information for facial expression recognition, and the results were quite

promising as well. However, there is few reported research works on extracting the

structural-textural features of BUS images using the phase information.

Herein, a novel phase-based texture feature descriptor with the local structural

information incorporated is proposed for efficient and robust classification of BUS

images. The proposed texture feature descriptor, named as the phase congruency-

based binary pattern (PCBP), is an integration of the phase congruency (PC)

approach [28-30] and the LBP-based method [31]. Such an integration takes advan-

tages of both methods where the PC extracts the local structural information such

as edges while the LBP extracts the local textural patterns. It’s constructed by apply-

ing the LBP variance (LBPV) method [32] on oriented PC images, which is able to

capture textural patterns of the local phase information with higher discriminant

ability. Thus, the proposed PCBP texture feature is an oriented local information

(i.e., structural and textural) descriptor that is capable of interpreting various patterns

of BUS images, and can be used in the support vector machine (SVM) for classifying

BUS images. Although Ref. [27] and our work have similarity in adopting the PC ap-

proach together with the LBP-based method to construct feature descriptor, differ-

ences exist and mainly lie in two aspects. Firstly, different LBP methods are adopted

for feature extraction. Instead of using the traditional LBP operator for feature en-

coding as Ref. [27], the proposed PCBP invokes the LBPV method, which utilizes

the variance as an adaptive weight for the PCBP calculation and thereby makes the

features extracted more discriminative. Secondly, the feature extraction units are

also different. In Ref. [27], features are extracted block-by-block in each oriented PC

image, and then concatenated sequentially to form the final feature descriptor;

whereas the proposed PCBP texture features in this manuscript are extracted

directly from each oriented PC image and concatenated. Thus, the feature dimen-

sion of the proposed PCBP is much lower and the computation is remarkably saved

compared with the method in Ref. [27].
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The main contribution of this paper is to develop a novel phase-based texture de-

scriptor for solving the problem of differentiating benign and malignant tumors in BUS

images. The proposed method creatively introduces the PC approach into BUS image

analysis, which can effectively captures the important structural differences between

benign and malignant tumors. Afterwards, the adoption of LBPV method makes it pos-

sible to extract the texture information from the oriented PC images in an efficient and

robust way. Ultimately, the proposed PCBP texture descriptor has been established.

The remaining of this paper is organized as follows. ‘Materials’ introduces the experi-

mental materials. ‘Methods’ describes our proposed PCBP texture descriptor for classi-

fying BUS images in detail. In ‘Experiments and results’, the experimental results

conducted on our BUS image database are illustrated. The ‘Discussions and conclu-

sions’ is presented at last.
Materials
In this study, the BUS image database used for experimental evaluation consists of 138

images, one for each patient, which were acquired from the Department of Ultrasound,

Huashan Hospital in Shanghai, China during June 2004 to March 2005. All BUS images

in database were obtained with an 8–15 MHz linear-array transducer probe equipped

on an ACUSON Sequoia 512 ultrasound system. Informed consent for research use of

the data was obtained from all patients in this study. Note that the BUS images were

captured with the size of 768 × 576 pixels and the image pixel resolution was 0.10 mm/

pixel, meaning that the size of one pixel is 0.10 mm.

From the 138 images, 69 were benign cases and 69 were malignant. All the breast tu-

mors were hispathologically proven by fine-needle aspiration biopsy or core needle

biopsy. Benign cases include fibroadenoma, adenosis and intraduct papilloma; whereas

malignant cases include invasive carcinoma, ductal carcinoma in situ, intraduct papil-

lary carcinoma and medullary carcinoma. Nevertheless, the tumors’ size are approxi-

mately in the range of 5-42 mm when considering the major axis of the tumors, with a

mean value of 19.6 ± 7.8 mm.

To obtain an accurate and effective representation of breast tumors without the triv-

ial information such as labels, rough boundaries of tumor regions were marked by radi-

ologists who have more than 10 years experiences of BUS examinations with four

markers, which are basically at two ends of the major and minor axis of breast tumors.

Then, rough ROIs are manually extracted from original BUS images based on four

markers, where the tumor region located in the center position, as shown in Figure 1.

Note that the sizes of rough ROIs depend on the sizes of tumors, which are between

82 × 104 pixels and 330 × 473 pixels.
Methods
In this study, we focus on extracting efficient and robust texture features with the local

structural information via the phase-based approach for the BUS image classification.

The automatic texture feature extraction and analysis method consists of three stages,

as shown in Figure 2. Firstly, the phase congruency approach is utilized to extract the

local structural information on the ROIs cropped from original BUS images. After-

wards, LBP-based texture features are extracted from each oriented PC image and then



Figure 1 An example of BUS images for analysis. (a) The original BUS image; (b) The extracted ROI.
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merged into one concatenated feature vector, which depicts the texture information

for each BUS image. Finally, the SVM is employed to differentiate benign tumors

from malignant ones because of its reliable, rapid and excellent classification cap-

ability [6,8,20,33].

Phase congruency approach

It has been shown by Oppenheim and Lim [22] that the phase information can provide

more significant information within an image rather than the amplitude information.

More specifically, the phase information contains the structural information (step

edges, ridges, etc.) whereas the amplitude information only depicts the energy.

Any discrete signal can be represented as s sum of sine and cosine function with

specific amplitudes. In the time domain, these functions form a set of scaled waves and

synthesize the original signal. The phase congruency is a low-level feature detector in

terms of the Fourier analysis, firstly proposed by Morrone and Owens. For a signal at

the position x, the phase congruency is defined as [28]:

PC xð Þ ¼ max�ϕ xð Þ∈ 0;2π½ �

X
n
An cos ϕn xð Þ−�ϕ xð Þð ÞX

n
An

; ð1Þ

where An and ϕn(x) represents the local amplitude and local phase angle of the nth

Fourier component, respectively. The value of �ϕ xð Þ that maximizes the Eq. (1) is the

amplitude weighted mean local phase angle at the position x.
Figure 2 The block diagram of the proposed texture feature analysis method.
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According to Eq. (1), it’s proven that the phase congruency is independent of the

overall magnitude of the signal, thus it is consistent when the image illumination or

contrast varies [28]. However, the measurement of the phase congruency in Eq. (1) has

a main drawback. It does not provide good localization because it is a function of

the cosine of the phase deviation. Although the cosine function is maximized when ϕn

xð Þ ¼ �ϕ xð Þ , it requires a relative significant difference between ϕn(x) and �ϕ xð Þ before

its value apparently decreases.

Inspired by the previous work, Kovesi further modified the phase congruency

approach in his work [29,30] and extended it to two dimensions (2D) by calculating 1D

analysis over several orientations and combined the oriented results together. In order

to obtain the local frequency information, particularly the local phase, banks of filters

in quadrature tuned to different spatial frequencies are required. In this study, log-

Gabor filters are used [29].

Let I denotes a BUS image, Meven
s;o and Modd

s;o denote the even-symmetric and odd-

symmetric filters at the scale s and the orientation o respectively. Then the response

vector can be calculated from the response of the quadrature filter pair as:

es;o i; jð Þ; os;o i; jð Þ� � ¼ ½I i; jð Þ �Meven
s;o ; I i; jð Þ �Modd

s;o �; ð2Þ

where ‘*’ denotes the convolution operation, (i, j) is the pixel coordinate. The amplitude

of the response is:

As;o i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es;o i; jð Þ2 þ os;o i; jð Þ2

q
; ð3Þ

and the phase is given by:

ϕs;o i; jð Þ ¼ atan os;o i; jð Þ=es;o i; jð Þ� �
: ð4Þ

As aforementioned, the measure of the phase congruency proposed by Morrone and
Owens works poorly on localization, so a more sensitive phase deviation measure is

proposed by Kovesi by incorporating the sine of the phase difference in addition to the

cosine [29]:

Δϕs;o i; jð Þ ¼ cos ϕs;o i; jð Þ−�ϕ o i; jð Þ� �
− sin ϕs;o i; jð Þ−�ϕo i; jð Þ� ��� ��: ð5Þ

Considering that the points detected by the phase congruency are significant if they

occur over a wide range of frequencies, a weighting function is constructed that

weakens the phase congruency at locations where the spread of the filter response is

narrow [29]. For each orientation o, the weighting function Wo(i, j) is defined as:

Wo i; jð Þ ¼ 1
1þ eα c−so i;jð Þð Þ ; ð6Þ

where c is the “cut-off” value of the filter response spread, and α is a gain factor that

controls the sharpness of the cut-off. so(i, j) is a fractional measure of the spread that

varies between 0 to 1, which is given by:

so i; jð Þ ¼ 1
S

X
s
As;o i; jð Þ

Amax;o i; jð Þ þ η

 !
; ð7Þ
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where S is the total number of scales, Amax,o is the amplitude of the maximum filter re-

sponse among all scales at the orientation o, and η is a small positive constant to avoid

division by zero.

Thus, the measure of the phase congruency at the orientation o can be defined as:

PCo i; jð Þ ¼
X

s
Wo i; jð Þ⌊As;o i; jð ÞΔϕs;o i; jð Þ−To⌋X

s
As;o i; jð Þ þ ε

; ð8Þ

where ‘⌊ ⋅ ⌋’ denotes zeroing of negative values, To is the orientation-specific noise com-

pensation term [30] and ε is a small positive constant to avoid zero denominator.

In this study, the parameters for phase congruency approach are set as follows,

according to [29]. The cut-off value c of the weighting function in Eq. (6) is set to 0.4

and the gain factor α is set to 10. Both η and ε are set to 0.0001. If we apply the phase

congruency approach to BUS images over six scales and eight orientations, as a result,

eight oriented PC images are obtained for each BUS image, as shown in Figure 3. The

PCo takes value in [0, 1], which suggests smooth regions with a small value and poten-

tial boundaries with a big value. It’s clearly shown in Figure 3(b) that each PC image is

calculated along a specific orientation, uniformly changing from –π/2 to π/2. In order

to combine the oriented phase congruency information together for an overall under-

standing, the total sum of the PCo over all orientations is performed.

It is shown in Figure 4 that the overall phase congruency results of both benign and

malignant cases in BUS images. Benign tumors often possess the characteristics of

regular shape, clearly-defined boundaries and homogeneous internal echoes, whereas

malignant tumors appear with irregular shapes, blurry and angular borders, inhomo-

geneous internal echoes in BUS images. These structural properties can be well

reflected on the overall PC image. As shown in Figure 4(b), most of the in-phase points

are located around the tumor boundary while the rest remain almost zero, indicating
Figure 3 Results of the phase congruency approach applied to a BUS image. (a) The original BUS
image; (b) Eight oriented PC images.



Figure 4 Overall phase congruency results of BUS images. (a) The benign tumor; (b) The overall phase
congruency of (a); (c) The malignant tumor; (d) The overall phase congruency of (c).
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that the tumor has relatively well-defined boundary and smooth foreground/back-

ground regions. However, Figure 4(d) shows a different result, where most of the in-

phase points are disorganized and dispersed, without a clearly illustration of the tumor

location compared with the result in Figure 4(b), which are consistent with the proper-

ties of malignant tumors in BUS images. Herein, the phase congruency possesses great

potentials and capabilities in depicting differences of benign and malignant tumors in

BUS images via structural properties.

Local binary pattern (LBP)-based texture feature extraction

In order to extract texture patterns from oriented PC images to construct the proposed

PCBP texture descriptor, the LBP-based method is employed. The LBP [31] is a non-

parametric gray-scale texture descriptor, which effectively characterizes the spatial

structure of the local image textures by comparing each pixel with its neighboring

pixels. Thus, given a central pixel c with the coordinate (i, j) in an oriented PC image

PCo, an initial PCBP pattern code can be computed as:

PCBPinitial
P;R;o i; jð Þ ¼

XP−1
p¼0

s gp−gc
� 	

2p; s xð Þ ¼ 1; x ≥ 0
0; x < 0

;



ð9Þ

where gc and gp are the gray-level values of the central pixel and P surrounding pixels

in the circle neighborhood with a radius R, respectively. This comparison leads to a

circular binary sequence representation of the neighbor pixels.
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Uniformity of the initial PCBP pattern is defined by calculating the number of spatial

transitions (from 0 to 1 or from 1 to 0) in that pattern:

U PCBPinitial
P;R;o i; jð Þ

� 	
¼ s gP−1−gc

� �
−s g0−gc
� ��� ��þXP−1

p¼1

s gp−1−gc
� 	

−s gp−1−gc
� 	��� ���; ð10Þ

The pattern is considered “uniform” if the U value is no more than 2, which has been

proved as fundamental patterns of the local image texture [31,34]. Furthermore, the ro-

tation invariant property is taken into consideration for a more robust PCBP texture

descriptor. If the patterns are equal when circularly rotated, they will be regarded same.

So a local rotation invariant uniform (denoted as riu2) PCBP pattern can be further

defined as:

PCBPriu2
P;R;o i; jð Þ ¼

XP−1
p¼0

s gp−gc
� 	

if U PCBPinitial
P;R;o

� 	
≤2

P þ 1 otherwise

;

8><
>: ð11Þ

which dramatically reduces the number of PCBP patterns from 2P to (P+2).

Since the PCBPriu2
P;R;o only considers the spatial pattern but ignores the image contrast,

a complementary local variance measure VAR [31] is defined on the circle neighbor-

hood in addition, which incorporates the local contrast of images and is given by:

VARP;R;o i; jð Þ ¼ 1
P

XP−1
p¼0

gp−u
� 	2

; u ¼ 1
P

XP−1
p¼0

gp: ð12Þ

To combine the PCBPriu2
P;R;o and VARP,R,o together for a better characterization of the

local texture, the LBPV method [32] proposed by Guo et al. is adopted in our study.

The core idea of the LBPV is to use the variance VARP,R,o as an adaptive weight for

each PCBPriu2
P;R;o pattern in the histogram calculation, because it has been verified that

the regions with high frequency textures will have higher variance values and they

make more contributions to the discrimination of texture images [35]. Supposing the

oriented PC image PCo is in size of M ×N and both the PCBPriu2
P;R;o and VARP,R,o

patterns have been calculated for each pixel (i, j), a joint PCBP pattern histogram for

representing PCo is computed as:

PCBPjoint
P;R;o kð Þ ¼

XM
i¼1

XN
j¼1

w PCBPriu2
P;R;o i; jð Þ; k

� 	
; k∈ 0;K½ �; ð13Þ

w PCBPriu2
P;R;o i; jð Þ; k

� 	
¼ VARP;R;o i; jð Þ; PCBPriu2

P;R;o i; jð Þ ¼ k
0 otherwise

;



ð14Þ

where K is the maximum PCBPriu2
P;R;o pattern value.

After the joint histograms PCBPjoint
P;R;o for each oriented PC image PCo are obtained,

these PCBPjoint
P;R;o histograms are then normalized and concatenated sequentially to form

the proposed PCBP texture descriptor PCBPP,R. Larger R and P will make it possible to

take more local detail information of the BUS images into account when extracting fea-

tures, thus may lead to a better classification performance. However, this will also make

it more time-consuming. In this study, for ease of calculation, we adopt the simplest
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way, that is, 8 surrounding pixels (P = 8) with 1-pixel radius (R = 1) to calculate the

PCBP texture descriptor as default setting, which means 10 PCBPjoint textures are

obtained from each oriented PCo image. Suggest the total numbers of scales and orien-

tations are defined as S and O, respectively. Therefore, a feature set including (10 × O

orientations) textures is produced as the texture representation of each BUS image. De-

tails of the parameter selection for PCBP texture descriptor are addressed in subsection

‘Parameter selection of the PCBP texture descriptor’ later, in terms of the numbers of

scales S and orientations O.

Texture feature classification with support vector machine

Features extracted by the preceding method are then fed into classifiers to verify the

efficiency for distinguishing benign and malignant tumors in BUS images. From Fisher

linear discriminant analysis (FLDA) [18,36] to artificial neural networks (ANN)

[11,37,38], many classifiers have been successfully applied for classifications of BUS

images. Among these, the SVM is widely used due to its fast and high generalization

performance [6,8]. When dealing with high dimensional data, the kernel functions are

utilized to map the input feature data into higher dimension for better distributions

between two classes (i.e. benign and malignant).

In this study, we use a nonlinear SVM with the radial basis function (RBF) kernel as

our classifier. Before training the SVM classifiers, each feature space is scaled to the

same range of [−1, 1]. The parameters of SVM, namely the regularization parameter C

and kernel parameter γ, are critical to the classification performances, and the best

parameters for one feature space are not necessarily the best for another feature space.

Besides, they’re also actually very important for reducing the impact of over-fitting,

since C controls the tradeoff between the training error and model complexity, which

ultimately aims to fit the training data and avoiding over-fitting [20]. To effectively deal

with the parameter selection problem for SVM classifiers, grid search is applied to

determine the best SVM parameters, as suggested in Ref. [39]. For a specific feature

space, the best parameters can be determined by employing k-fold cross-validation

(k = 10) on the training data with varied parameter settings, and parameters corre-

sponding to the best classification performance would be chosen to construct the opti-

mal SVM model. Note that all the SVM classification procedures are implemented by

utilizing the LIBSVM package [40].

Several evaluation criteria are used to quantitatively assess the diagnostic perform-

ance of the SVM classification. A receiver operating characteristic (ROC) curve [41] is

most frequently used because of its comprehensive evaluation ability. The area under

the ROC curve (AUC) can be used as a criterion of the overall performance for the

SVM classification. The AUC value locates within [0, 1] where unity stands for ideal

classification. Other criteria include the accuracy (ACC), the sensitivity (SENS), the

specificity (SPEC), the positive predictive value (PPV), the negative predictive value

(NPV) and the Matthew’s correlation coefficient (MCC), which are defined as [6]:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð15Þ

SENS ¼ TP
TP þ FN

ð16Þ
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SPEC ¼ TN
TN þ FP

ð17Þ

PPV ¼ TP
TP þ FP

ð18Þ

NPV ¼ TN
TN þ FN

ð19Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð20Þ

where TP and FN refer to the number of correctly and incorrectly classified malignant

tumors, while TN and FP indicate the number of correctly and incorrectly classified be-

nign tumors, respectively. For the abovementioned six criteria, higher values indicate

better classification performances. Note that the MCC [42,43] is a powerful criterion

for accuracy evaluation, which takes value in [−1, +1] with +1 representing a perfect

prediction. When the number of negative samples and positive samples are obviously

unbalanced, the MCC gives a better evaluation than the accuracy [6].

Experiments and results
In this section, three state-of-art texture feature extraction methods are employed for

the performance comparison with the proposed PCBP texture descriptor, denoted as

PCBP. The methods for comparison are ranklet transform-based texture features [20],

GLCM-based texture features [18] and LBP-based texture features [19], denoted as

Ranklet, GLCM and LBP for simplicity, respectively.

The parameters for each compared feature extraction method are set as below. Note

that texture features corresponding to the best classification performance are extracted,

as concluded in [18-20], and the extracted features are directly used for classification

without selection. More specifically, for Ranklet, each BUS image is decomposed into

two resolutions and corresponding three orientations via ranklet transform, then 12

GLCM-based texture codes are extracted from each ranklet transformed images and

finally 72 (i.e., 2 resolutions × 3 orientations × 12 texture codes) features are obtained

for texture representation, as suggested in Ref. [20]. For GLCM, 17 GLCM features in

different orientations and distances with 32 quantization levels are selected as texture

representation. Details can be referred to Ref. [18]. For LBP, LBP patterns with 24

neighbor pixels (P = 24) and 3-pixel radius (R = 3) are calculated and 26 features are set

as the texture representation, according to Ref. [19]. Thus, the feature dimensions of

Ranklet, GLCM and LBP are 72, 17 and 26, respectively. Experiments are conducted to

clarify the issue about parameter selection for the PCBP texture descriptor firstly, then

to verify the efficiency and robustness respectively, followed by statistical analysis and

computation time evaluation.

Parameter selection of the PCBP texture descriptor

To clarify the issue about parameter selection for the proposed PCBP texture descrip-

tor (i.e. numbers of orientations O and scales S), firstly, we carry out the experiments

with four orientations (i.e., O = {4, 6, 8, 10}) and four scales (i.e., S = {3, 4, 5, 6}) that

are commonly used for PC calculation [29,30]. Feature spaces corresponding to differ-

ent combinations of O and S are produced and then sent into SVM classifiers. Because
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a relatively small database (i.e., including 138 cases) is used for experiments, we adopt

the leave-one-out cross-validation (LOO-CV) method to evaluate the classification per-

formance. As the name suggests, the LOO-CV involves using only one case as testing

data while the remaining cases as training data. This process is repeated until every

case in database is used once as the testing data. Note that for each feature space, grid

search with cross-validation is applied for constructing the optimal SVM classifier. The

AUC values obtained from LOO-CV method are used as the figure of merit, which can

give comprehensive evaluations for the classification performances. The results are

depicted in Figure 5.

Generally speaking, the AUC value is growing as both the numbers of scales S and

orientations O are getting larger, as shown in Figure 5. The highest AUC value (i.e.,

0.894) is achieved in the situations where the number of scales is six and number of

orientations is either eight (i.e., bar in green) or ten (i.e., bar in purple). Recall that the

feature dimension for the PCBP texture descriptor is related to the number of orienta-

tions (i.e., 10 × O orientations). Larger O indicates higher dimensions of feature space,

as a consequence, there is a stronger chance that the SVM classifier would over-fit the

data with limited samples (i.e., 138 cases) [20]. Besides, feature space with higher

dimension is more time-consuming when calculated. Therefore, in this study, the

proposed PCBP texture descriptor is calculated over six scales (S = 6) and eight orien-

tations (O = 8) to avoid the abovementioned problems, and finally 80 (i.e. 10 × 8 orien-

tations) features are extracted as texture representation for each BUS image.
Efficiency of the PCBP texture descriptor for classification

To verify the efficiency of the proposed texture descriptor for classification, all features

including Ranklet, GLCM, LBP and the proposed PCBP are extracted from the same

database and then fed into SVM classifiers separately. The quantitative evaluation

results with the LOO-CV method are detailed listed in Table 1.

From Table 1, it’s noticeable that the performance of the proposed PCBP achieves the

best in AUC value, which demonstrates the discrimination ability of the PCBP from a

comprehensive view. Moreover, the performance of the PCBP ranks the first in five cri-

teria out of the remaining six, especially in terms of the SENS, NPV and MCC values,

the improvements are 5% ~ 10% or more when compared with the second best results.
Figure 5 Classification performance (AUC values) of PCBP texture descriptor using different
numbers of scales (S) and orientations (O).



Table 1 Performance evaluation of Ranklet, GLCM, LBP and PCBP with the LOO-CV method

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) MCC

Ranklet 0.882 81.16 73.91 88.41 86.44 77.22 0.630

GLCM 0.848 77.54 68.12 86.96 83.93 73.13 0.561

LBP 0.850 83.33 81.16 85.51 84.85 81.94 0.667

PCBP 0.894 86.96 86.96 86.96 86.96 86.96 0.739

Note. The best performance for each criterion is highlighted with bold, and the second best is italic.
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As reference, Table 2 gives the SVM classifier parameters C and γ for each texture

descriptor selected by grid search. For objectively comparing the classification perfor-

mances, these parameters are fixed for each specific texture descriptor over the rest of

the experiments.

Considering the performance evaluation with the LOO-CV method might be upward

bias [44], we adopt the bootstrap method (as also used in Ref. [18] and Ref. [20]) with

500 independent bootstrap samples to evaluate the classification performance as well.

For each bootstrap sample, the training data are built by randomly resampling the

database with replacement until the size of the training data is the same as that of the

database, whereas the testing data are selected as those not included in the training

data. To be more specific, we present the performance evaluations with 500 independ-

ent bootstrap samples in Table 3.

As shown in Table 3, the classification performances with the bootstrap method

remain consistent with the results given by Table 1. In Table 3, with respect to both the

mean value and standard deviation, the classification performance of the proposed

PCBP achieves the best in six criteria, but a little lower in SPEC than that of the

Ranklet. Since the ROC analysis has a relatively objective evaluation for the classifica-

tion performance, we adopt the AUC values calculated from 500 independent bootstrap

samples for boxplots to visualize the discrimination power of each texture descriptor.

As depicted in Figure 6, the median values of the AUC for Ranklet, GLCM, LBP and

PCBP are 0.848, 0.834, 0.809 and 0.861 respectively, which are quite similar to their

mean values. It’s observed that the proposed PCBP texture descriptor performs much

better and more stable for classification, providing higher median value (i.e., 0.861),

smaller dispersion range (i.e., from 0.775 to 0.954) and less outliers (i.e., 4).
Robustness of the PCBP texture descriptor for classification

Majority of the existing studies for the texture classification of BUS images [9-12] are

performed under the assumption that the gray-scale range of an image to be classified

is consist with those in the training set. However, with respect to the practical applica-

tions, it is usual that BUS images are captured under different illumination conditions

due to the adjustable parameters of ultrasonic devices [20]. Thus, BUS images would

be in different gray-scale range under different situations. In order to verify the
Table 2 SVM classifier parameters for Ranklet, GLCM, LBP and PCBP

Parameters Ranklet GLCM LBP PCBP

C 1024 0.5000 2.8284 2

γ 0.0110 0.0442 1 0.0884



Table 3 Performance evaluations of Ranklet, GLCM, LBP and PCBP with bootstrap
method (mean ± standard deviation)

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) MCC (%)

Ranklet 0.843 ± 0.044 80.68 ± 5.55 76.68 ± 10.86 85.39 ± 7.24 83.45 ± 7.90 78.61 ± 9.57 0.625 ± 0.105

GLCM 0.832 ± 0.043 78.40 ± 4.80 75.17 ± 11.35 82.36 ± 10.12 81.67 ± 8.83 77.39 ± 9.11 0.583 ± 0.094

LBP 0.807 ± 0.048 77.77 ± 5.53 76.27 ± 10.03 79.87 ± 9.26 79.10 ± 8.95 77.61 ± 8.50 0.564 ± 0.108

PCBP 0.862 ± 0.037 83.17 ± 4.81 83.36 ± 7.64 83.42 ± 8.32 84.25 ± 7.24 83.58 ± 7.23 0.670 ± 0.094

Note. The best performance for each criterion is highlighted with bold.
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robustness of the proposed PCBP texture descriptor against gray-scale variations,

experiments with variable contrast settings are conducted.

One linear monotonic gray-scale transformation and two nonlinear monotonic gray-

scale transformations, namely the contrast improvement (CI), the gamma correction

(GC) and the histogram equalization (HE) are applied to the original BUS image data-

base to change the illumination artificially. Contrast improvement linearly maps the

gray-scale values of the processed image to a new range; gamma correction, however,

non-linearly maps the gray-scale values of the processed image by a power-law func-

tion; histogram equalization is a non-linear gray-scale transformation as well, which

spreads the distribution of the gray-scale values evenly over the entire range [45]. The

gray-scale transformed databases are denoted as CI, GC and HE for simplicity. The

phase congruency approach is performed to derive PC images from the original BUS

image and three gray-scale transformed images respectively, as depicted in Figure 7. To

illustrate the theoretical contrast-invariant property of the phase congruency, instead of

presenting eight oriented PC images separately, we present the corresponding overall

PC image, which is the total sum of oriented PC images. From Figure 7, it’s observed

that overall PC images derived from an original BUS image or enhanced images basic-

ally remain consistent in the corresponding tumor region of the BUS image. In other

words, with the solid foundation constructed by the phase congruency approach, we

can extract the PCBP texture descriptor from oriented PC images, which are invariant
Figure 6 Boxplots of AUC values calculated from 500 independent bootstrap samples. The black
point in each box indicates the mean value.



Figure 7 A BUS image with varied contrast settings. (a) The original BUS image; (b) The contrast-
improved image; (c) The gamma-corrected image; (d) The histogram-equalized image; (e) ~ (h) The corre-
sponding overall PC images of (a) ~ (d), respectively.
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to gray-scale variations. It is proven that the proposed PCBP descriptor is able to pro-

vide robust classification performances for BUS images.

Afterwards, texture features are extracted from the CI, GC and HE databases,

respectively. A cross-contrast training/testing scheme is then employed for performing

the classification. In this scheme, the training phase is carried out on the original BUS

image database while the testing phase is performed on the gray-scale transformed

databases (i.e., CI, GC and HE respectively), excluded in the training phase. The AUC

index is used as the figure of merit for evaluation. Experiments are firstly conducted

using LOO-CV method, and the results are illustrated in Figure 8. in form of bar plot.

It is noted that AUC values presented in last subsection (i.e., in Table 1 and Table 3)

are also included as Origin, and AUC values related to the Origin, CI, GC, HE databases

are expressed as {Origin, CI, GC, HE} for simplicity.

As shown in Figure 8, the blue, red, green and purple bars represent the AUC values

derived from the Origin, CI, GC and HE databases by each method, respectively. In

terms of the AUC values, the classification performances of the PCBP, which are

{0.894, 0.895, 0.896, 0.896}, achieve the best no matter which gray-scale transformed

database is selected for testing. Furthermore, the variations of AUC values among
Figure 8 The performance evaluation (AUC values) of the cross-contrast training/testing scheme
with the LOO-CV method.
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databases are very small as well. Ranklet transformed images are also claimed to be

very robust against gray-scale variations, since ranklet transformation deals with the

rank of pixels rather than their gray-scale intensities [20,46]. Therefore, Ranklet also

performs well when dealing with linear/nonlinear monotonic gray-scale variations, and

the results are {0.882, 0.881, 0.879, 0.881}. As for GLCM and LBP, the performances are

regarded as less effective, taking both the AUC value and its variations into consider-

ation. GLCM obtains performance upgrades with the testing phase carried on all three

databases, whereas the LBP suffers from performance degradations, suggesting that the

LBP is less effective in handling both linear and nonlinear monotonic gray-scale

variations.

Experiments are also conducted using bootstrap method. Table 4 gives AUC values

calculated from 500 independent bootstrap samples when adopting the cross-contrast

training/testing scheme for the classification. Similarly, the performance evaluations of

the proposed PCBP outperform those of other methods with the highest AUC values

and smallest standard deviations. Nevertheless, the corresponding boxplots of AUC

values obtained from bootstrap samples are depicted in Figure 9, where the PCBP

achieves the highest median value, smallest dispersion range and least outliers in all

three different gray-scale transformed situations.
Statistical analysis

Even though that both the ROC analysis and boxplots are effective ways for visualizing

the discrimination power of texture features, it is also important to conduct the statis-

tical analysis to make more objective evaluations. Thus, we use AUC values generated

by the bootstrap method (i.e., Table 4) to perform the statistical analysis. The results

obtained by the cross-contrast training/testing scheme are also included.

The statistical analysis is conducted in two experiments: 1) determining the differ-

ences in AUC values between the PCBP and the three compared texture descriptors

(i.e., Ranklet, GLCM and LBP) in each database and 2) evaluating the differences in

AUC values between Origin database and other three gray-scale transformed databases

(i.e., CI, GC and HE) of each texture descriptor, which can statistically verify the classi-

fication efficiency and robustness of the proposed PCBP texture descriptor.

Instead of performing the significance tests directly, the Shapiro-Wilk test is firstly

applied to test the distribution normality of AUC values obtained from each evaluated

group. Since AUC values for all groups present normal distribution, the F-test is further

used to verify whether two different groups have the same variance. It is found that the

variances between data of different texture descriptors at the same database are
Table 4 The performance evaluation (the AUC value) of the cross-contrast training/testing
scheme with the bootstrap method (mean± standard deviation)

Methods Origin CI GC HE

Ranklet 0.843 ± 0.044 0.850 ± 0.042 0.842 ± 0.044 0.845 ± 0.045

GLCM 0.832 ± 0.043 0.848 ± 0.040 0.845 ± 0.039 0.840 ± 0.040

LBP 0.807 ± 0.048 0.805 ± 0.047 0.763 ± 0.054 0.787 ± 0.051

PCBP 0.862 ± 0.037 0.865 ± 0.037 0.861 ± 0.035 0.857 ± 0.038

Note. The best performance for each criterion is highlighted with bold.



Figure 9 Boxplots of AUC values obtained with the bootstrap method after employing cross-contrast
training/testing scheme. The black point in each box indicates the mean value. (a) Contrast-improved;
(b) Gamma-corrected; (c) Histogram-equalized.
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unequal, whereas the variances between data of different databases for one texture

descriptor are equal. Hence, to carry out the first experiment we employ the Welch’s

t-test and for the second experiment we use the Student’s t-test.

Concerning that both experiments depicted previously involve multiple testing,

Bonferroni correction is performed to account for Type I error [47]. Recall that

the p-value less than 0.05 indicates statistical significance when considering a

single comparison only. Three significant tests are made on the basis of one

compared data, and therefore, the corrected significant value for p is set as 0.0167

(i.e., 0.05/3). Details of the statistical analysis are shown in Table 5 and Table 6, in

terms of the p-value.

On one hand, it’s notable from Table 5 that all the p-values listed are far less than the

significant level 0.0167 (i.e., 1.67e-2), and we can conclude that the proposed PCBP

statistically outperforms the Ranklet, GLCM and LBP in the classification efficiency of

BUS images, regarding all comparisons presented in Table 5.

On the other hand, in Table 6, no statistical differences are observed for PCBP when

comparisons of AUC values between Origin and other databases are performed, since

all the p-values are greater than 1.67e-2. As for Ranklet, statistical difference is

occurred in the comparison between AUC values of the Origin and CI databases, while

no differences are shown in the rest two comparison groups. With respect to GLCM

and LBP, the statistical differences of classification performances between varied



Table 5 The p-value of the Welch’s t-test for determining differences in AUC values
between the PCBP and other methods at the Origin, CI, GC and HE databases

Methods Origin CI GC HE

PCBP vs. Ranklet 4.53e-13* 8.12e-9* 2.63e-13* 8.56e-6*

PCBP vs. GLCM 3.32e-30* 1.82e-12* 3.31e-11* 2.37e-12*

PCBP vs. LBP 1.98e-75* 1.37e-89* 9.88e-169* 9.50e-106*

Note. *indicates the performance difference between two methods is statistically significant.
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contrast settings are relatively significant. The conclusions derived from Table 6 is

consistent with those from last subsection, which demonstrate the robustness of the

proposed PCBP texture descriptor against gray-scale variations for BUS image classifi-

cation in a statistical perspective.
Computation time analysis

In addition to the classification performances presented above, the computation time

for extracting each feature descriptor (i.e., Ranklet, GLCM, LBP and PCBP) is also

taken into consideration for the evaluation. For fair comparison, all the algorithms were

performed on the same BUS image database and executed on the same platform

(MATLAB R2010b, 2.10-GHz Intel Xeon E5 CPU). Average time cost of each method

is given in Table 7.

As listed in Table 7, although the average time cost for the proposed PCBP (0.79 s) is

little larger than that of the GLCM (0.10s), it achieves much more efficient and robust

classification performances for BUS images. Besides, Ranklet could sometimes achieve

comparable classification results with the PCBP, however, it requires a much larger time

cost (69.83 s). Even though the extraction of the PCBP includes a step of LBP-based

calculation, it takes much less time than that of the LBP (212.80s). That is because the

proposed PCBP is calculated in the simplest way (i.e., P = 8 and R = 1), as aforemen-

tioned in subsection ‘Local binary pattern (LBP)-based texture feature extraction’;

whereas the LBP is calculated with P = 24 and R = 3 to achieve better classification

performances, as described in Ref. [19]. Larger P and R make the LBP extraction pro-

cedure much more time-consuming than that of the PCBP. As a result, the average

time cost of the PCBP is actually acceptable, considering its discrimination power for

performing efficient and robust classification of BUS images.
Discussions and conclusions
In this study, we proposed a novel phase-based texture descriptor, namely the phase

congruency-based binary pattern for discriminating benign breast tumors from
Table 6 The p-value of the Student’s t-test for evaluation differences in AUC values
between the Origin and other databases of the PCBP, Ranklet, GLCM and LBP

Databases Ranklet GLCM LBP PCBP

Origin vs. CI 8.57e-3 1.01e-08 4.39e-01 † 2.35e-1 †

Origin vs. GC 6.72e-1 † 8.24e-07 5.83e-36 5.83e-1 †

Origin vs. HE 4.37e-1 † 2.50e-03 8.16e-10 3.56e-2 †

Note. † indicates no statistical difference is observed for the comparison.



Table 7 The average time cost comparison

Methods Ranklet GLCM LBP PCBP

Average time cost (s) 69.83 0.10 212.80 0.79
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malignant ones in BUS images. The proposed PCBP is an oriented local texture

descriptor, constructed by applying the local binary pattern based-method on oriented

phase congruency images, which combines the advantages of both the phase congru-

ency approach and the LBP method together.

The advantages of the PC approach mainly lie in two aspects. On one hand, the

boundaries of breast tumors includes rich structural information to distinguish benign

and malignant tumors, which is often extracted in morphological features after image

segmentation, but rarely incorporated in texture features. Besides, internal echo pat-

terns are also significant characteristics to differentiate benign and malignant tumors.

Due to the use of local phase information to extract discontinuities (e.g., edges and cor-

ners) in BUS images, the abovementioned structural information can be well reflected

on PC images, as shown in Figure 4. On the other hand, the phase congruency is

invariant to variations of the image illuminations and contrast, which acts as a solid

foundation for extracting robust texture features against gray-scale variations. As for

the LBP, the most important properties are its tolerance regarding illumination changes

and its computational simplicity [30], therefore it could efficiently describe various tex-

tural patterns in PC images to form the PCBP texture descriptor for the classification.

Herein, the utilizing of both the PC approach and the LBP can well reinforce the classi-

fication efficiency and robustness of the proposed texture descriptor against illumin-

ation changes of BUS images caused by parameter adjustments in ultrasonic devices.

It is revealed in the experiments that the proposed PCBP texture descriptor achieves

the best classification performance, evaluated by using both the LOO-CV method and

the bootstrap method. Besides, a cross-contrast training/testing scheme is employed to

verify the robustness of the texture descriptor against gray-scale variations of BUS im-

ages, and it is demonstrated in the experimental results that the proposed PCBP texture

descriptor gets the highest AUC values and smallest variations, which suggests that the

PCBP texture descriptor outperforms the Ranklet, the GLCM and the LBP. Addition-

ally, the results of the statistical analysis further confirm the excellent performances of

the PCBP for BUS image classification. Therefore, it can be concluded that the pro-

posed PCBP texture descriptor is potentially useful in discriminate benign tumors from

malignant ones in BUS images, and further helpful for breast ultrasound CADs.

The limitations of our work are twofold. Firstly, the ROIs used in our study are

manually generated, which makes the CAD system not fully automatic and may intro-

duce potential variations in ROI delineation process. Secondly, the size of the BUS

image database is limited, which may have impact on experimental verifications. Since

limitations exist, future work will be carried out for improvements. One is to apply le-

sion segmentation techniques to obtain ROIs automatically, thus minimizing the poten-

tial variations of manual delineation and making the CAD system more user-

independent. The other is to establish a larger BUS image database, which will widen

the case range and benefit our study. Finally, other effective textures based on multi-

resolution and multi-orientation approaches, such as contourlet-based method [21],

will also be considered in our future research.
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