
Lu et al. Computational Social Networks 2014, 1:2
http://www.computationalsocialnetworks.com/content/1/1/2

RESEARCH Open Access

Efficient influence spread estimation for
influence maximization under the linear
threshold model
Zaixin Lu*, Lidan Fan, Weili Wu, Bhavani Thuraisingham and Kai Yang

*Correspondence:
zaixinlu@utdallas.edu
Department of Computer Science,
University of Texas at Dallas, 800 W.
Campbell Road, Richardson, TX
75080, USA

Abstract

Background: This paper investigates the influence maximization (IM) problem in
social networks under the linear threshold (LT) model. Kempe et al. (ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 137–146, 2003) showed
that the standard greedy algorithm, which selects the node with the maximum
marginal gain repeatedly, brings a e−1

e -factor approximation solution to this problem.
However, Chen et al. (International Conference on Data Mining, pp. 88–97, 2010)
proved that the problem of computing the expected influence spread (EIS) of a node is
#P-hard. Therefore, to compute the marginal gain exactly is computational intractable.

Methods: We step-up on investigating efficient algorithm to compute EIS. We show
that the EIS of a node can be computed by finding cycles through it, and we further
develop an exact algorithm to compute EIS within a small number of hops and an
approximation algorithm to estimate EIS without the hop constraint. Based on the
proposed EIS algorithms, we finally develop an efficient greedy based algorithm for IM.

Results: We compare our algorithm with some well-known IM algorithms on four
real-world social networks. The experimental results show that our algorithm is more
accurate than others in finding the most influential nodes, and it is also better than or
competitive with them in terms of running time.

Conclusions: IM is a big topic in social network analysis. In this paper, we investigate
efficient influence spread estimation for IM under the LT model. We develop two
influence spread estimation algorithms and a new greedy based algorithm for IM
under the LT model. The performance of the proposed algorithms are analyzed
theoretically and evaluated through simulations.

Keywords: Social network analysis; Expected influence spread estimation;
Influence maximization; Linear threshold model

Background
Social network is a multidisciplinary research area for both academia and industry,
including social network modeling, social network analysis, and data mining. An inter-
esting problem in social network analysis is influence maximization (IM), which can be
applied in marketing to deploy business strategies. Typically, IM is the problem that given
a graph G as a social network, an influence spread model and an integer k select the top

© 2014 Lu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192932135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zaixinlu@utdallas.edu
http://creativecommons.org/licenses/by/4.0

Lu et al. Computational Social Networks 2014, 1:2 Page 2 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

k nodes as seeds to maximize the expected influence spread (EIS) through G. One corre-
sponding issue in marketing is product promotion. In order to advertise a new product
efficiently within a limited budget, a company may choose a few people as seeds who
will be given free samples. It is likely that those people will recommend others, such as
their friends, relatives or co-workers, to try this product. Eventually, a great number of
people may adopt the product due to such ‘word-of-mouth’ effect [1-6]. Intuitively, the
initial seed selection is a key factor that will impact on the success of the product promo-
tion. Therefore, it is important to design applicative influence spread model and efficient
search algorithm to find the most influential people in social networks.
IM was first investigated as an combinatorial optimization problem by Kempe et al.

in [5]. They considered two influence spread models, namely, Independent Cascade (IC;
[2,3]) and Linear Threshold (LT; [7,8]), and proved a series of theoretical results. After
that, the two models have been extensively studied (please see, e.g., [9-15] for recent
works). In this paper, we focus upon the LT model. Let S be a set of initially active nodes;
the influence, under the LT model, propagates in a threshold manner. That is, a node v is
activated if and only if the sum of influence it receives from its active neighbors exceeds a
threshold λ(v) chosen uniformly at random.
As we understand, a crucial part of IM is how to compute the EIS given a node, since

only we know the EIS of each node, and then we could find a seed set to maximize the
combinatorial EIS. The exact EIS computation was left as an open problem in [5] and has
attracted a great deal of attentions in recent years (see, e.g., [9-11,13,15,16]). In [11], Chen
et al. proved that computing the exact EIS under the LT model is #P-hard. Therefore, a
polynomial time exact solution does not exist unless P = NP. But based on the observa-
tions in [11,15], the influence diminishes rapidly during the diffusion in many real-world
social networks under the LTmodel. In other words, the influence spread of a seed is lim-
ited within a small number of hops. It has been shown that the influence spread under
the LT model can be computed by searching simple paths starting from the seeds [11,15].
Therefore, we can define a hop constraint T such that given a seed v, we only take paths
within T hops to estimate the EIS of v. Themain contributions of this paper are as follows:

1. We develop an exact algorithm for computing the EIS within four hops. Instead of
finding simple paths, we compute the EIS of a node by finding cycles through it. In
this study, a cycle of length l is defined as a path visiting a node twice and visiting
other l − 2 nodes exactly once. The detailed algorithm is given in the ‘Methods’
section.

2. For the case that T > 4, we develop an approximation algorithm to estimate EIS
based on random walk. The experimental results in the ‘Results and discussion’
section show that more precise and quick results can be obtained by using a
combination of our exact and approximation algorithms rather than using
methods based on simple path.

3. When applying the standard greedy algorithm to IM, it will repeatedly run EIS
estimation (EISE) until the top k influential nodes are selected. To further reduce
the running time, we construct two lists to save the influence diffused by each node
and the active probability of each node, respectively. Moreover, we develop two
algorithms to update the two lists when adding a new seed so that the next one with
the maximum marginal gain can be directly obtained without running the EISE.

Lu et al. Computational Social Networks 2014, 1:2 Page 3 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

The update algorithms are represented in the ‘Influence maximization’ section. It is
able to say that the two lists contain all the information for doing the seed
selection, and they can be easily and quickly updated by our update algorithms.

4. We compare our algorithm with some well-known IM algorithms on four
real-world social networks. The experimental results show that our algorithm is
more accurate than others in finding the most influential nodes, and it is also better
than or competitive with them in terms of running time.

The rest of this paper is organized as follows: The ‘Related work’ section intro-
duces the related works. ‘Problem description’ section gives the problem descrip-
tions of both EISE and IM. ‘Methods’ and ‘Influence maximization’ sections study
the two problems, respectively. In detail, ‘A deterministic algorithm’ section effi-
ciently solves the EISE assuming that the influence spread is negligible after
four hops. ‘A randomized algorithm’ section presents an approximation algorithm
for general EISE. The ‘Influence maximization’ section presents a fast method
to solve IM by using the algorithms proposed in the ‘Methods’ section. Finally,
‘Results and discussion’ section gives the simulation results, and the ‘Conclusion’ section
concludes this paper.

Related work
In the literature, the IM problem has been extensively studied under the IC and LT mod-
els. Kempe et al. in [5] first showed that it is NP-hard to determine the optimum for IM
under the two models, and by showing that the EIS function is monotone and submod-
ular, they proved that the standard greedy algorithm brings a e−1

e -factor approximation
solution. In mathematics, a set function f : 2� = R

+ is monotone and submodular if
∀S2 ⊆ S1, we have f (S1) ≥ f (S2) and f (S1 ∪ {u}) − f (S1) ≥ f (S2 ∪ {u}) − f (S2), where u
is an arbitrary item. In such cases, a e−1

e -factor approximation solution can be obtained
by picking the item with the maximummarginal gain repeatedly [17]. In [5], how to com-
pute the exact marginal gain (i.e., compute the EIS increment when adding a node) under
the two models was left as an open problem, and they estimated it by running the Monte
Carlo (MC) simulation, which is not computational efficient (e.g., it takes days to select
50 seeds in a moderate size graph of 30K nodes [11]). Motivated by improving the run-
ning time performance, many algorithms have been proposed. Leskovec et al. developed
a Cost-Effective Lazy Forward (CELF) algorithm, which is up to 700 times faster than the
greedy algorithm with Monte Carlo simulation [16]. But as the results shown in [9], CELF
still cannot be applied to find seeds in large social networks, and it takes several hours to
select 50 seeds in a graph with tens of thousands of nodes. To further reduce the running
time, Goyal et al. [13] developed an extension of CELF, called CELF++, which was showed
0.35 to 0.55 faster than CELF. In [9], Chen et al. proposed two new greedy algorithms,
namely NewGreedy and MixedGreedy. NewGreedy reduces the running time by deleting
edges having no contribution to influence spread (similar idea was also proposed in [18]),
and MixedGreedy which is a combination of NewGreedy and CELF (it uses NewGreedy
as the first step and applies CELF for the remaining rounds). Based on the experiments,
they showed that MixedGreedy is much faster than both NewGreedy and CELF.
Based on the IC model, Chen et al. also proposed a new influence spread model, called

Maximum Influence Arborescence (MIA), to further reduce the running time of EISE.

Lu et al. Computational Social Networks 2014, 1:2 Page 4 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

The efficiency of MIA was demonstrated in [10]. Besides selecting nodes greedily, Wang
et al. [19] proposed a community-based algorithm for mining the top k influential nodes
under the IC model, and Jiang et al. in [14] proposed a heuristic algorithm based on
Simulated Annealing.
In terms of LT model, after Kempe et al. proposed the greedy algorithm [5], the most

recent works for IM under this model are [10,12,15]. In [10], Chen et al. proved that the
EIS under LT model can be computed in linear time in a directed acyclic graph, and they
proposed an algorithm called Local Directed Acyclic Graph (LDAG). Given a general
graph, it first converts the original graph into small acyclic graphs, and it only consid-
ers the EIS of a node within its local graph when computing the marginal gain. In [12],
Narayanam and Narahari developed an algorithm for the LT model that selects the nodes
based on the Shapley Value. In [15], Goyal et al. proposed an algorithm called SIMPATH,
which estimates the EIS by searching for the simple paths starting from seeds. Since it
is computationally expensive to find all the simple paths, they adopted a parameter η to
prune them. They also applied the vertex cover optimization to cut down the number
of iterations. Based on their experimental results, SIMPATH showed its merits from the
aspects of running time and seed quality.

Problem description
Many introductions about the LT model and IM problem can be found in detail in papers
cited above. Here, for the sake of completeness, we give a brief description for the LT
model and formal definitions for IM and EISE.

Definition 1. Let G(V ,E) be a directed graph; we define

• Nin(v) (respectively Nout(v)) to be the set of incoming (respectively outgoing)
neighbors of v (∀v ∈ V).

• λ(v) to be the threshold of v, which is a real number in the range of [0, 1] chosen
uniformly at random.

• x(v) to be a 0 to 1 variable which indicates whether v is active or not.

According to Definition 1, given a weighted directed graph G(V ,E,w), where w(e) ∈
[0, 1] (∀e ∈ E) is a weight function, the sum of influence v receives can be formulated as∑

u∈Nin(v) x(u)w(u, v). Without loss of generality, we assume
∑

u∈Nin(v) w(u, v) ≤ 1 (∀v ∈
V). In the LT model, time is discrete. Given a seed set S, at time 0, we have ∀v ∈ S,
x(v) = 1, and ∀u ∈ (V\S), x(u) = 0. At any particular time t, a node v ∈ V becomes
active if

∑
u∈Nin(v) x(u)w(u, v) ≥ λ(v). Finally, the influence spread process stops at a time

slot when there is no newly activated node.

Definition 2. EISE: Given a weighted directed graph G(V ,E,w) and a set S ⊆ V of
nodes, EISE is the problem of estimating the expected number of active nodes at the
end of the influence spread. EISET is the problem that given an integer T , estimates the
expected number of nodes that are active at time T .

For the rest of this paper, given a seed set S, we denote by σ(S) the expected number
of nodes that are eventually active and denote by σT (S) the expected number of nodes
that are activated within T time slots. We can say that σ(S) is an expected number among

Lu et al. Computational Social Networks 2014, 1:2 Page 5 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

the probability distributions of active nodes given S and σT (S) is a time limited version
of σ(S).

Definition 3. IM: Given a weighted directed graph G(V ,E,w) and a parameter k, the
IM problem is to find a seed set S of cardinality k to maximize σ(S).

As the experimental results shown in [15], under the LTmodel, the EIS is negligible after
a small number of hops (usually three or four hops) in many real-world social networks.
Therefore, to solve the IM problem, it is sufficient to compute σT (S) instead of σ(S) for
some small value of T.

Methods
We first present a deterministic algorithm for computing the exact value of σT (v) for the
case that T ≤ 4 in the ‘A deterministic algorithm’ section and then present a randomized
algorithm for estimating σT (v) for T ≥ 5 in the ‘A randomized algorithm’ section.

Definition 4. In this study, we define

• a path is a sequence of nodes, each of which is connected to the next one in the
sequence; and a path with no repeated nodes is called a simple path.

• a cycle is a path such that the first node appears twice and the other nodes appear
exactly once; and a simple cycle is a cycle such that the first and last nodes are the
same.

A deterministic algorithm

According to the observation in [15], the EIS of a node v after three or four hops is neg-
ligible in most cases. Therefore, we are interested in how to compute σT (v) for T ≤ 4. In
[11], it has been shown that the EIS of a seed set S under the LT model can be formulated
as

σ(S) =
∑

π∈P(S)

∏
e∈π

w(e) + |S| [15] ,

whereP(S) denotes the set of simple paths starting from nodes in S, π denotes an element
in P(S), and e denotes an edge in π . Thus, ∀v ∈ V , we have

σ(v) =
∑

π∈P(v)

∏
e∈π

w(e) + 1,

where P(v) denotes the set of simple paths starting from node v.
As an example shown in Figure 1, considering v0 is an active node, then the probability

that v4 can be activated by v0 is w(0, 1)w(1, 4) + w(0, 2)w(2, 4) + w(0, 3)w(3, 4), which is

v1
v4v2v0

v3

Figure 1 An illustration of computing σT (v0).

Lu et al. Computational Social Networks 2014, 1:2 Page 6 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

the sum of weight products of all the simple paths from v0 to v4. Although the example is
easy to understand, in a general graphG, it requires exponential time to enumerate all the
simple paths. Thus, to compute the exact value of σ(v) is computational intractable, and
a hop constraint T is used in this paper to balance the accuracy of EISE and the program
efficiency in terms of running time.
In order to find a node v with the maximum σT (v), we have to compute σT (v) for all

the nodes v ∈ V . Let σ0(v) = 1 (∀v ∈ V); we first consider the simple case that T = 1.
In such cases, we have σ1(v) = σ0(v) + ∑

u∈Nout(v) w(v,u), because there is only direct
influence spread without propagation.When T > 1, we can compute σT (v) by recursively
finding all the simple paths of length no more than T , starting from v, which requires
O(�T) time by using the depth-first search (DFS) algorithm, and � denotes the node
maximum degree. Thus, let G be a weighted directed graph; computing σT (v) for all the
nodes in G requires O(n�T) time if we use the above simple path method [15], where n
denotes the number of nodes inG. To further improve the running time performance, we
develop a dynamic programming (DP) approach to compute σT (v) for T ≤ 4. It is based
on searching cycles instead of simple paths.
As an example shown in Figure 2, there are three types of cycles of length 4, and only

the third one is a simple cycle. Let Cl(v) denote the set of cycles of length l, starting from
v, and let

�T (v) =
∑

l=2···T

∑
π∈Cl(v)

∏
e∈π

w(e),

we have

σT (v) = σ0(v) +
∑

u∈Nout(v)
w(v,u) · (σ

V\v
T−1(u))

= σ0(v) +
∑

u∈Nout(v)
w(v,u) · (σT−1(u))

−�T (v),

where σ
V\v
T−1(u) denotes the EIS of node u in the induced graph of V\v within T − 1 hops,

and �T (v) denotes the invalid influence spread involving cycles.

v1 v2

v0

(III)

v3

v1 v2

v0

(II)

v3

v1 v2

v0

(I)

v3

Figure 2 Three cases of cycles with length 4.

Lu et al. Computational Social Networks 2014, 1:2 Page 7 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

v1

v3

v2

v0 v4

Figure 3 An illustration of computing �3(v0).

Figure 3 shows an example, in which v3 and v4 are v0’s outgoing neighbors. It is easy to
see σ2(v3) = 1 + w(3, 0) + w(3, 1) + w(3, 0)w(0, 4) and σ2(v4) = 1. Thus,

σ0(v0) +
∑

u∈Nout(v0)
w(v0,u) · (σ2(u))

= w(0, 3) + w(0, 4) + w(0, 3)w(3, 0) + w(0, 3)w(3, 1)

+w(0, 3)w(3, 0)w(0, 4) + 1,

in which the terms w(0, 3)w(3, 0) and w(0, 3)w(3, 0)w(0, 4) have to be removed since they
involve cycles. The rest of this section is devoted to investigating how to compute �T (v)
for T ≤ 4.

Lemma 1. Given a weighted directed graph G(V ,E,w) and an arbitrary node v ∈ V,
�T (v) can be computed in O

(
�2) time when T ≤ 4.

A brief description for the idea of our method is presented before the formal algo-
rithm and its proof. Firstly, �T (v) involves all the cycles of length no more than T ,
starting from v. In order to compute �4(v) efficiently, we divide �4(v) into three parts:∑

π∈Cl(v)
∏

e∈π w(e) (l = 2, 3, 4) to carry on the analysis. If each part can be com-
puted in O(�2) time, �4(v), which is the sum of them, can be obtained in O(�2)

time. Secondly, considering Cl(v) (2 ≤ l ≤ 4), we can further classify the cycles in
Cl(v) into l − 1 types. Note that a cycle of length l, starting from v, consists of a
sequence of l + 1 nodes, two of which are v and others are distinct. Therefore, we can
label a cycle according to the position in the sequence where the second v appears.
∀v ∈ V , let ClT (v) denote the set of cycles of length T, whose lth node is v, we
have

�T (v) =
∑

l=2,··· ,T

∑
π∈Cl(v)

∏
e∈π

w(e)

=
∑

l=2,··· ,T

∑
l′=3,··· ,l+1

∑
π∈Cl′

l (v)

∏
e∈π

w(e).

In order to compute �T (v), our method will compute each
∑

π∈Cl′
l (v)

∏
e∈π w(e)

separately.

Proof. Wewill prove Lemma 1 by showing that
∑

π∈Cl(v)
∏

e∈π w(e) can be computed in
O(�2) time when l = 4, and for the case that l < 4,

∑
π∈Cl(v)

∏
e∈π w(e) can be computed

in O(�2) time or less via a similar method. As we have mentioned above, there are only
three types of cycles of length 4, as shown in Figure 2.

Lu et al. Computational Social Networks 2014, 1:2 Page 8 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Consider case (I). Such a cycle consists of a simple cycle of length 2 and a simple path
of length 2. Let P2(v) denote the set of simple paths of length 2, starting from v, and C32(v)
denote the set of simple cycles of length 2 through v.P2(v) can be obtained inO(�2) time
by DFS, and C32(v) can be obtained by finding the set of nodes that are both incoming and
outgoing neighbors of v, i.e.,

C32(v) = {
(v,u, v) : u ∈ Nout(v) ∩ Nin(v)

}
.

The intersection of two lists can be obtained in linear time if the two lists are sorted.
Let I(v) = Nout(v) ∩ Nin(v) and κ = ∑

u∈I(v) w(v,u)w(u, v); we have∑
π∈C3

4 (v)

∏
e∈π

w(e)

=
∑

π∈P2(v)

∑
u∈I(v)\π

w(v,u)w(u, v)
∏
e∈π

w(e)

=
∑

π∈P2(v)

⎛
⎝κ −

∑
u∈π∩I(v)

w(v,u)w(u, v)

⎞
⎠ ∏

e∈π

w(e)

=
∑

π∈P2(v)

⎛
⎝κ −

∑
u∈π\v

w(v,u)w(u, v)

⎞
⎠ ∏

e∈π

w(e),

in which I(v)\π denotes the set of nodes in I(v) but not in π , e ∈ π denotes an edge
in π , and u ∈ π denotes a node in π . Note that if u
∈ I(v), we have (v,u)
∈ E or
(u, v)
∈ E. In such cases, w(v,u)w(u, v) = 0. Therefore,

∑
u∈π∩I(v) w(v,u)w(u, v) =∑

u∈π\v w(v,u)w(u, v). Since P2(v) consists of at most �2 elements, each of which
includes only two edges,

∑
π∈P2(v)(κ − ∑

u∈π\v w(v,u)w(u, v))
∏

e∈π w(e) can be com-
puted in O(�2) time.
Consider case (II).

∑
π∈C4

4 (v)
∏

e∈π w(e) can be computed by a similar method. A cycle in
C44(v) consists of a simple cycle of length 3, in which the first and last nodes are v. There-
fore, instead of directly constructing a set of simple cycles of length 3, we can construct
a set P2(v) of simple paths of length 2. Let l(π) denote the last node of a path π ∈ P2(v)
and let τ = ∑

u∈Nout(v) w(v,u); we have∑
π∈C4

4 (v)

∏
e∈π

w(e)

=
∑

π∈P2(v)
w(l(π), v)

⎛
⎝ ∑

u∈Nout(v)\π
w(v,u)

⎞
⎠ ∏

e∈π

w(e)

=
∑

π∈P2(v)
w(l(π), v)

⎛
⎝τ −

∑
u∈π\v

w(v,u)

⎞
⎠ ∏

e∈π

w(e),

in which w(l(π), v) = 0 if l(π)
∈ Nin(v). Therefore,
∑

π∈C4
4 (v)

∏
e∈π w(e) can also be

computed in O(�2) time.
Consider case (III). The analysis is somewhat more complicated. Instead of comput-

ing
∑

π∈C5
4 (v)

∏
e∈π w(e) directly, we first show that

∑
π∈(C5

4 (v)∪C′(v))
∏

e∈π w(e) can be
computed in O(�2) time, where C′(v) denotes the set of cycles as shown in Figure 4.
That is, cycles consist of three nodes in which the first two nodes are visited twice.
Let ρ2(v, v′) denote the probability that v′ is reachable from v with exact two hops, i.e.,

Lu et al. Computational Social Networks 2014, 1:2 Page 9 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

v0 v1 v2

Figure 4 An invalid case.

ρ2(v, v′) = ∑
u∈Nout(v)∩Nin(v′) w(v,u)w(u, v′). LetN2

out(v) be the set of nodes that are reach-
able from v with exact two hops. To compute ρ2(v, v′) for all the nodes v′ ∈ N2

out(v), we
can build up an outgoing tree rooted at v, in which the nodes are repeatable among dif-
ferent paths. This can be done in O(�2) time by DFS. In addition, let N2

in(v) be the set of
nodes that can reach v with exact two hops, we can build up an incoming tree rooted at v
to compute ρ2(v′, v) for all the nodes v′ ∈ N2

in(v) in the same way. Then, we have

∑
π∈(

C5
4 (v)∪C′(v)

)
∏
e∈π

w(e)

=
∑

v′∈N2
out(v)∩N2

in(v)

ρ2(v, v′)ρ2(v′, v),

which can be computed in O(�2) time. It is easy to see

∑
π∈C5

4 (v)

∏
e∈π

w(e)

=
∑

π∈(
C5
4 (v)∪C′(v)

)
∏
e∈π

w(e) −
∑

π∈C′(v)

∏
e∈π

w(e).

Therefore, to show
∑

π∈C5
4 (v)

∏
e∈π w(e) can be computed in O(�2) time, it is sufficient

to show that
∑

π∈C′(v)
∏

e∈π w(e) can be computed in O(�2) time. We have

∑
π∈C′(v)

∏
e∈π

w(e)

=
∑

v′∈I(v)

∑
u∈I(v′)

w(v, v′)w(v′,u)w(u, v′)w(v′, v),

where I(v) = Nout(v) ∩ Nin(v) and I(v′) = Nout(v′) ∩ Nin(v′). Therefore,∑
π∈C′(v)

∏
e∈π w(e) can be computed in O(�2) time.

In sum, we prove
∑

π∈C4(v)
∏

e∈π w(e) (∀v ∈ V) can be computed in O(�2) time. It can
be shown that

∑
π∈Cl(v)

∏
e∈π w(e) (l < 4) can be computed in O(�2) time or less by a

similar method. Therefore, it requires only O(�2) time to compute �4(v) (∀v ∈ V).

Theorem 1. Given a weighted directed graph G(V ,E,w), Algorithm 1 can compute σ4(v)
for all the nodes v ∈ V in O(n�2) time, where n denotes the number of nodes in V , and �

denotes the maximum node degree.

Lu et al. Computational Social Networks 2014, 1:2 Page 10 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Algorithm 1 EISE4
0: input: a weighted directed graph G = (V ,E,w).
1: let σ1(v) = ∑

u∈Nout(v) wv,u (∀v ∈ V);
2: for l = 2 · · · 4 do
3: σl(v) = σ1(v) − �l(v) + ∑

u∈Nout(v) wv,u · σl−1(u);
4: end for
5: output: a list of σ4(v) for all the nodes v ∈ V .

Proof. Without considering the possible numerical computation error, the solution of
Algorithm 1 is exact, and the time complexity analysis easily follows the algorithm. The
computation of σl(v) only depends on σl−1(u) (u ∈ Nout(v)) and �l(v). Therefore, σ4(v)
for all the nodes v ∈ V can be computed by a DP approach. The number of subproblems is
O(n) and each subproblem can be solved in O(�2) time. Therefore, Algorithm 1 requires
O(n�2) time.

Compared with the method based on a simple path, which requiresO(�4) time to com-
pute σ4(v) for a node v, the core advantage of Algorithm 1 is its running time performance.
Based on our experiments in the ‘Results and discussion’ section, when T ≤ 4, Algorithm
1 can compute the σT (v) for all the nodes in a moderate size graph in about 1 s.

A randomized algorithm

Theorem 1 shows that Algorithm 1 can efficiently compute σ(v), if the EIS from node v
is negligible after four hops. For the case that the EIS within a large number T hops is
not negligible, it has been shown that computing σT (v) is #P-hard [11]. To estimate σT (v)
approximately, we can use MC simulation, i.e., simulate the influence spread process a
sufficient number of times, re-choosing the thresholds uniformly at random, and use the
arithmetic mean of the results instead of the EIS. Let X1,X2, · · · ,Xr be the numbers of
active nodes at time T for r runs, and let E[X] be the EIS within time T . By Hoeffding’s
inequality [20], we have

Pr
(|X − E[X] | ≥ ε

) ≤ exp
(

− 2ε2r2∑r
i=1(bi − ai)2

)
,

where ai and bi are the lower and upper bounds for Xi, respectively. Apparently, ai ≥ 0
and bi ≤ n, where n is the number of nodes in the graph. Thus, ∀0 < δ < 1, when
r ≥ n ln 1

δ

2ε2 , the probability that |X − E[X] | ≥ ε is at most δ. Therefore, the EIS estimated
by using MC simulation with a sufficient number of runs is nearly exact. However, as
the experiments shown in [5,11,15], applying the MC simulation to estimate the EIS is
computational expensive, and the standard greedy algorithm with MC simulation (run
10,000 times to get the average) requires days to select 50 seeds in some real-world social
networks with tens of thousands of nodes.
To improve the computation efficiency, we developed a randomized algorithm, com-

puting σT (v) for T ≥ 5. We first give the main idea of our method. Recall that the
EIS of a node v can be computed by searching simple paths starting from v; thus,
σT (v) = ∑

π∈PT (v)
∏

e∈π w(e). Let avg(PT (v)) be the arithmetic mean of
∏

e∈π w(e) for

Lu et al. Computational Social Networks 2014, 1:2 Page 11 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

all the elements π ∈ PT (v), and let | · | be the number of elements in ‘·’; we have
σT (v) = avg(PT (v))|PT (v)|. However, obtaining avg(PT (v)) and |PT (v)| requires the
knowledge of PT (v) and is therefore as difficult as the original problem. We propose an
alternative approach. Instead of computing σT (v) directly, we relax PT (v) to ṔT (v) that
contains all the paths starting from v, instead of simple paths. Let x(π ∈ PT (v)) be a 0 to
1 variable denote whether π is a simple path or not; we have

σT (v) =
∑

π∈ṔT (v)

x
(
π ∈ PT (v)

) ∏
e∈π

w(e).

The next question is how to estimate avg(ṔT (v)) and |ṔT (v)| to obtain σT (v).

Lemma 2. Given a directed graph G(V ,E) and an integer T, there is a polynomial time
algorithm to compute |ṔT (v)| for all the nodes v ∈ V.

Proof. We can compute |ṔT (v)| by iteration or recursion. ∀1 ≤ l ≤ T , we have{
|Ṕl(v)| = |Pl(v)| = |Nout(v)|, l = 1
|Ṕl(v)| = ∑

u∈Nout(v) |Ṕl−1(v)|, otherwise.

|Ṕ1(v)| equals to the number of outgoing neighbors of v, and |Ṕl(v)| (l > 1) can be
obtained by a DP approach. Since there areO(nT) subproblems and each subproblem can
be solved in O(�) time, |ṔT (v)| can be obtained in O(nT�) time.

Theorem 2. Let ε and δ be two positive constants in the range of (0, 1). There is a random
walk algorithm such that given a weighted directed graph G(V ,E,w) and a node v ∈ V,
it gives a (1 ± ε)-factor approximation solution to avg(ṔT (v)) in O

(
1
ε2

ln 1
δ

+ nT�
)
time

with probability greater than 1 − δ.

Proof. We can use uniform random sampling, which selects elements with equal prob-
ability from ṔT (v). By Lemma 2, we can obtain |ṔT (v)| for all the nodes v ∈ V inO(nT�)

time. Let the probability Pr(yi+1 = u′|yi = u) = |ṔT−i(u′)|
|ṔT−i+1(u)| and Pr(y1 = v) = 1;

then, a path of length T can be generated by taking T successive random steps. ∀ a path
π = (v1, v2, · · · , vT) in ṔT (v), we have

Pr(π) =
∏

i=1,··· ,T−1
Pr(yi+1 = vi+1|yi = vi)

=
∏

i=1,··· ,T

|ṔT−i(vi+1)|
|ṔT−i+1(vi)|

= 1
|ṔT (v)| .

Therefore, we can generate paths π1,π2, · · · ,πr uniformly at random. By Hoeffding’s
inequality, we have

Pr
(|∑i=1,··· ,r

∏
e∈πi w(e)r

− avg
(
ṔT (v)

)
| ≥ ε

)

≤ exp

⎛
⎜⎝− 2ε2r2∑r

i=1

(
maxπ∈ṔT (v)

∏
e∈π w(e)

)2
⎞
⎟⎠ ,

Lu et al. Computational Social Networks 2014, 1:2 Page 12 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

where maxπ∈ṔT (v)
∏

eπ w(e) is the maximumweight product of a path of length T starting
from v. Since w(e) ≤ 1 (∀e ∈ E), we have max

π∈ṔT (v)
∏

eπ w(e) ≤ 1. Thus, Theorem 2 is
proved.

Based on Theorem 2, we now describe our randomized algorithm for computing σT (v)
for all the nodes v ∈ V . It runs in O(nT� + nr) time, where r is a constant and does not
depend on the input graph.
In Algorithm 2, it first computes |ṔT (v)| (step 1) and then estimates σT (v) by uniform

random sampling. As far as the running time, the most time-consuming part is steps 2
to 8, in which r is independent of the input graph. It is clear that when r is small, the
accuracy of EISE is low, but the estimation time is short, and vice verse. Compared with
MC simulation, Algorithm 2 is much faster. In order to estimate the EIS of a node, it
only generates a constant number of paths, while if MC simulation is applied instead of
Algorithm 2, each time we have to re-choose the thresholds for all the nodes, and the
time complexity is O((|V | + |E|)r), when most of the edges are accessed each time. In the
experiment, we observed that the error is less than 3% when T = 5, using an appropriate
number of samples (r = 1, 000).

Algorithm 2 EISET
0: input: a weighted directed graph G = (V ,E,w) and two integers T and r.
1: construct |Ṕl(v)| (1 ≤ l ≤ T) for all the nodes v ∈ V ;
2: for v ∈ V do
3: let σT (v) = 0;
4: for i = 1, · · · , r do
5: let πr be the path of length T , generated by the random walk technique;
6: σT = σT + x(πr ∈ PT (v))

∏
e∈πr w(e);

7: end for
8: end for
9: σT (v) = σT (v) |Ṕl(v)|

r ;
10: output: a list of σT (v) for all the nodes v ∈ V .

Influencemaximization
Considering the computational efficiency, we define a hop constraint for EISE, and we
present two algorithms in ‘Methods’ section to compute σT (v) in v’s local area (T hops).
The proposed algorithms are worth applying to solve the IM problem greedily. Given a
weighted directed graph G(V ,E,w), the standard greedy algorithm will run EISE O(n)

times to select a seed, where n denotes the number of nodes. To further reduce the run-
ning time, we construct an influence list IL to store the EIS of nodes in the induced
graph of G\S, where S is the current seed set. Let v1, v2, · · · , vn be the nodes in the input
graph. Given a parameter T , initially we have IL = {l1 = σT (v1), · · · , ln = σT (vn)}, since
S = ∅. After adding a node vi into S, all the nodes, whose local area include vi, have to be
updated. Instead of running EISE, we update them by building an incoming tree rooted at
vi (Algorithm 3).

Lu et al. Computational Social Networks 2014, 1:2 Page 13 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Algorithm 3 UpdateIL
0: input: G = (V ,E,w), v, S, and IL.
1: construct an incoming tree of depth T rooted at v in the induced graph of G\S

(without loss of generality, assume that the simple paths are π1,π2, · · · ,πm);
2: for i = 1 · · ·m do
3: let i0, i1, · · · , iT be the nodes visited by πi sequentially and li0 , li1 , · · · , liT be the

corresponding elements in IL (in which i0 = v);
4: for j = 1 · · ·T do
5: lij = lij −

∏j
l=1 w(il, il−1)(1 + σ

V\S\{i1,··· ,ij}
T−j (v));

6: end for
7: end for
8: output: IL.

In Algorithm 3, the incoming tree is node repeated, including all the simple path of
length T ending at v.

∏j
l=1 w(il, il−1) denotes the EIS from ij to i0 via path (ij, ij−1, · · · , i0),

where i0 = v, and σ
V\S\{i1,··· ,ij}
T−j (v) denotes the EIS of v in the induce graph of

V\S\{i1, · · · , ij}. Thus, ∏j
l=1 w(il, il−1)(1 + σ

V\S\{i1,··· ,ij}
T−j (v)) denotes the entire influence

diffused from ij through path (ij, ij−1, · · · , i1,π), where π is a path of length no more than
T − j starting from v and does not contain any node in {i1, i2, · · · , ij}. It is clear that after
steps 2 to 7, ∀u ∈ (V\S), the influence diffused from u through v is removed from the
corresponding element in IL. Consider now the running time. Algorithm 3 generates at
most O(�j) nodes in depth j (1 ≤ j ≤ T). For each node ij in depth j, σV\S\{i1,··· ,ij}

T−j (v) can
be computed by building an outgoing tree of depth T − j rooted at v, which can be done
by DFS in O(�T−j) time. Therefore, Algorithm 3 runs in O(�T) time, considering T as a
constant. Compared with running EISE for all the nodes, it is much faster when T and �

are relatively small.
In addition to IL, we construct another list, namely, probability list PL, to store the

nodes’ active probabilities at time T. When S = ∅, obviously PL = {p1 = 0, · · · , pn = 0}.
Similarly, after adding a node vi into S, the active probabilities of nodes in vi’s local area
need to be updated. The algorithm of updating PL is given in Algorithm 4.

Algorithm 4 UpdatePL
0: input: G = (V ,E,w), v, S, and PL.
1: construct an outgoing tree of depth T rooted at v in the induced graph of G\S

(without loss of generality, assume the simple paths are π1,π2, · · · ,πm);
2: for i = 1 · · ·m do
3: let i0, i1, · · · , iT be the nodes visited by πi sequentially and pi0 , pi1 , · · · , piT be the

corresponding elements in PL;
4: for j = 1 · · ·T do
5: pij = pij + (1 − pv)

∏j−1
l=0 w(il, il+1);

6: end for
7: end for
8: output: PL.

Lu et al. Computational Social Networks 2014, 1:2 Page 14 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Algorithm 4 searches the simple paths of lengthT starting from v and updates the active
probability of a node ij according to step 5, in which

∏j−1
l=0 w(il, il+1) is the influence spread

from v to ij through path (i0, · · · , ij), and 1 − pv is the increment of v’ active probability
when it is added into S. In the outgoing tree, there are O(�T) nodes; thus, PL can be
updated in O(�T) time.
Assume vi is a newly added node; then, the marginal gain is li(1 − pi). Since both

Algorithms 3 and 4 run inO(�T) time, we can find the node with the maximummarginal
gain in O(�T + n) time. Next, we present an algorithm, which consists of two steps, for
influence maximization based on a time parameter T (IMT). Given a weighted directed
graph G(V ,E,w), the first step is to compute the EIS of each node v ∈ V . Such computa-
tion is based on the assumption that the EIS is negligible after T hops. The second step
contains two parts, the first part is to choose a node with the maximum marginal gain
and the second part is to update the two lists: IL and PL. Let v be the last added node; the
updating is limited to the local area of v (T hops from v).
The running time of Algorithm 5 highly depends on T and the maximum degree �. In

[15], when estimating the EIS of a node by searching simple paths, a parameter η is used
to prune a path once its influence spread is less than η. To further reduce the running
time, when building the incoming and outgoing trees (step 6), we prune the paths in the
same way. It is worthy to mention that in [15], the EISE of a node vmisses all the outgoing
simple paths of v whose product of weights is less than η. When building the incoming
(respectively outgoing) tree rooted at v, our algorithm also neglects a number of paths;
however, the losses are now evenly distributed to all the nodes in v’s local area. Thus, the
impact is less significant.

Algorithm 5 IMT
0: input: a weighted directed graph G = (V ,E,w) and two integers T and k.
1: let S = ∅;
2: let IL be the list resulted by Algorithm 1 and Algorithm 2 and let PL = 0;
3: while |S| < k do
4: let vi be the node in V\S that has the maximum li · (1 − pi);
5: add v into S;
6: update IL and PL by Algorithm 3 and Algorithm 4;
7: end while
8: output: S.

Results and discussion
We perform three experiments to evaluate the proposed algorithms. The performance
metrics are average influence spread (AIS) and program running time (PRT). Since our
algorithm is based on a parameter T , we will first analyze how it impacts the time per-
formance and the quality of seed selection. In the second experiment, we will compare
IMT (Algorithm 5) with some well-known IM algorithms in terms of AIS. In the last
experiment, we will investigate the accuracy of our EISE (Algorithms 1 and 2) and the
accuracy of SIMPATH [15]. The data sets used in this paper are introduced in detail in the
‘Simulation environments’ section, and the algorithms are described in the ‘Algorithms’
section.

Lu et al. Computational Social Networks 2014, 1:2 Page 15 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Simulation environments

The experiments are conducted on four real-world networks: ‘Hep’, ‘Phy’, ‘Amazon’, and
‘Flixster’, which have been widely used for evaluating IM algorithms under different mod-
els [5,9-11,15]. The dataset statistics are summarized in Table 1. Briefly, ‘Hep’ and ‘Phy’
are academic author networks extracted from http://www.arXiv.org, where nodes denote
authors and edges denote collaborations. ‘Amazon’ is a product network, where nodes
denote products and edge (u, v) denote product v which is often purchased with product
u. ‘Flixster’ is a social network allowing users to rate movies, in which nodes denote users
and edges denote friendships.
In all types of social networks, let degin(v) = |Nin(V)| be the in-degree of node v;

we use a classic method proposed in [5] to add the weights to edges, i.e., w(u, v) =
c(u, v)/degin(v), where c(u, v) is the number of edges from u to v.

Algorithms

For the comparison purposes, we evaluate some well-known algorithms designed for IM
under the LT model and some model independent heuristics for IM as follows:

• MC: The greedy algorithm with MC simulation and CELF optimization. Each time,
we simulate 10K runs to get the EIS of a seed set.

• LDAG: The LDAG algorithm proposed in [11]. As recommended by the authors, the
pruning threshold η = 1

320 .
• SP: The SIMPATH algorithm proposed in [15]. As recommended by the authors, the

pruning threshold η = 1
1,000 .

• MAXDEG: A heuristic algorithm [5] based on the notion of ‘degree centrality’,
considers higher-degree nodes are more influential.

• PR: The PAGE-RANK algorithm proposed for ranking the importance of pages in
web graphs. We can compute the PR value for each node by the power method with a
damping value between 0 and 1. In the experiments, it is set to 0.15, and the
algorithm stops when two consecutive iterations differ for at most 10−4.

• RANDOM: The RANDOM algorithm chooses the nodes uniformly at random. It
was proposed in [5] as a baseline method for comparison purposes.

We run 10KMC simulations to approximate the AIS of seed set S resulted by the above
algorithms. All the experiments are run on a PC with a 2.6-Ghz processer and 6-GB
memory.

Experimental results

To understand how effectively the hop constraint T can help us to balance the algorithm
efficiency and quality of seed selection, we run IMT on the four data sets, with T varying

Table 1 Statistics of datasets

Dataset Hep Phy Amazon Flixster

Number of nodes 12K 37K 257K 720K

Number of edges 60K 348K 1.2 million 10 million

Maximum out-degree 64 178 5 1,010

Maximum in-degree 62 178 420 319

http://www.arXiv.org

Lu et al. Computational Social Networks 2014, 1:2 Page 16 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Figure 5 Simulation results of IMT when T varies in the range of [1,5] (spread of influence). (a) Hep,
(b) Phy, (c) Amazon, and (d) Flixster.

in the range of [1, 5]. The simulation results are shown in Figure 5 and Table 2, in which
MaxDeg and Random are considered as baselines. When T ≤ 4, the EIS is estimated by
Algorithm 1; and when T = 5, it is estimated by Algorithm 2 with parameter r = 1, 000.
Figure 5 shows the AIS of seed sets resulted by IMT, MaxDeg, and Random. First, the AIS
of IMT in all the datasets is non-decreasing as T increases. This agrees with our intuition
in that increasing the number of hops brings more accurate EISE. Second, the increments
of AIS are tiny when increasing T from 4 to 5, which implies that the seed quality of
IMTT=4 is as good as that of IMT5. From Figure 5, we also can get that the performance of
IMTT=2 is much better than that of IMTT=1 for the first three data sets, and it is slightly
worse than IMTT=4. In the ‘Flixster’ data set, all the algorithms perform similarly, except
Random, which is always the worst one in all the experiments.
Consider now the running time performance. Table 2 shows the PRT of IMT, in which

the file reading and writing time are not counted. When T ≤ 4, on the first three data
sets, IMT is extremely fast, since the maximum out-degree in those data sets is not large.
For instance, IMTT=4 only requires less than 1 s to finish in ‘Hep’. In ‘Flixster’, IMT is fast
when T ≤ 2, and it is relatively slow when T ≥ 4. When T = 5, the PRT of IMT increases
in certain degree for all the data sets. It is reasonable since in such a case, Algorithm 1
does not work, and Algorithm 2 is applied.
According to the first experiment, one notes that, in general, IMTT=4 is an efficient

algorithm for seed selection. When the running time is of first priority or the data set is
extremely large, IMTT=2 is a good replacement.
In the second experiment, we compare IMTT=2 and IMTT=4 with the algorithms intro-

duced in the ‘Algorithms’ section. The results are exhibited in Figure 6. Since MC is not
scalable, its results are omitted for the last three data sets. As shown in Figure 6a, IMTT=4
and MC perform similarly in ‘Hep’. SP is about 2% lower than IMTT=4 and MC in spread
achieved when the number of seeds is 35, and its performance matches IMTT=4 and MC
when the number of seeds is greater or equal to 40. In the other three data sets, IMTT=4

Table 2 Running time performance (seconds)

Dataset Hep Phy Amazon Flixster

IMTT=1 0.14 0.28 0.37 1.32

IMTT=2 0.26 0.41 0.53 2.57

IMTT=3 0.46 0.92 1.01 30.54

IMTT=4 0.73 2.44 2.41 126.95

IMTT=5 5.71 11.18 81.83 363.42

Lu et al. Computational Social Networks 2014, 1:2 Page 17 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

Figure 6 Simulation results of multiple methods on four datasets (spread of influence). (a) Hep,
(b) Phy, (c) Amazon, and (d) Flixster.

is able to produce seed sets of the highest quality, and IMTT=2 is also compatible with
other algorithms in terms of AIS. In general, IMTT=4 is the best one. In ‘Phy’, IMTT=4
outperforms SP by about 0% to 10%, and in ‘Amazon’ and ‘Flixster’, they perform similarly.
IMTT=2 outperforms PR and LDAG in ‘Hep’ and ‘Amazon’, and they perform similarly in
‘Phy’. In ‘Flixster’, all the methods perform well. More than 20K nodes can be activated
by the seed set resulted by any algorithm in ‘Flixster’. It is probably because there are a
lot of high-degree nodes in ‘Flixster’ (as shown in Table 1, the maximum degree node in
‘Flixster’ has 1,010 outgoing neighbors).
AlthoughMC is able to produce high-quality seed sets, it is not scabble. In terms of PRT,

IMTT=2 is orders of magnitude faster thanMC, and IMTT=4 is alsomuch faster thanMC.
According to the experiments, MC takes 8,532.6 s to finish in ‘Hep’. As shown in Table 2,
the running time of IMTT=2 and IMTT=4 is only 0.26 and 0.73 s, respectively. Therefore,
IMT is much more scalable than MC. In sum, IMT is better than other algorithms in
terms of AIS except MC, and it is more suitable than MC for finding seed set in large
social networks.
Finally, we would also like to evaluate the accuracy of our EISE algorithms. To do this,

we compute the EIS for the most influential node in each data set by our EISE algorithms
and by the SP algorithm, respectively. The results are compared with the exact solutions.
Figure 7 shows the comparisons, in which ‘Ext’ denotes the exact EIST which is computed
by enumerating all the simple paths of length no more than T . Our results exactly match
the exact solutions when T ≤ 4, which validates our conclusion in the ‘A deterministic
algorithm’ section (EISE4 is exact). For the case that T = 5, when r = 1, 000, the errors of
EISE are about 1%, 2%, 0.1%, and 1% in the four data sets, where r denotes the number of
uniform random samples. When r = 10, 000, the error is much lower. Compared with the

Figure 7 Accuracy of EISE when T Varying in the range of [2,5]. (a) Hep, (b) Phy, (c) Amazon, and
(d) Flixster.

Lu et al. Computational Social Networks 2014, 1:2 Page 18 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

SP method with a pruning threshold η, EISE is much more accurate in computing the EIS
in data sets: ‘Hep’, ‘Phy’, and ‘Flixster’. In ‘Amazon’, the results of both EISE and SP match
the exact solution. Note that in the second experiment, IMTT=4 outperforms SP in ‘Hep’
and ‘phy’, and they perform similarly in ‘Amazon’. Thus, we can say that an accurate EISE
algorithm is indeed important for solving the IM problem.

Conclusion
IM is a big topic in social network analysis. In this paper, we investigate efficient influence
spread estimation for IM under the LT model. We analyze the problem both theoreti-
cally and practically. By adding a hop constraint T, we show that the influence estimation
problem can be solved efficiently when T is small, and it can be approximated well by
uniform random sampling. Based on the two points, we develop a new algorithm called
IMT for the LT model. The efficiency of IMT is demonstrated through simulations on
four real-world social networks.
In future research, we plan to extend our work to other influence propagation models

such as the IC model. Furthermore, we will study constraints under which the optimal
solution for IM can be obtained.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ZL, LF, and KY formulated the problem and did the algorithm design and implementation. WW and BT contributed to the
theoretical part of algorithm design and organized this research. All authors read and approved the final manuscript.

Acknowledgements
This research work was supported in part by the US National Science Foundation (NSF) under grants CNS 1016320 and
CCF 0829993.

Received: 14 April 2014 Accepted: 22 May 2014

References
1. Domingos, P, Richardson, M: Mining the network value of customers. In: 2001 ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pp. 57–66 San Francisco, CA, USA, (August 26-29, 2001)
2. Goldenberg, J, Libai, B, Muller, E: Using complex systems analysis to advance marketing theory development. Acad.

Market. Sci. Rev. 9(3), 1-18 (2001)
3. Goldenberg, J, Libai, B, Muller, E: Talk of the network: a complex systems look at the underlying process of

word-of-mouth. Marketing Lett. 12(3), 211–223 (2001)
4. Richardson, M, Domingos, P: Mining knowledge-sharing sites for viral marketing. In: the 2002 International

Conference on Knowledge Discovery and Data Mining, pp. 61–70 Edmonton, AB, Canada, (July 23-25, 2002)
5. Kempe, D, Kleinberg, J, Tardos, É: Maximizing the spread of influence through a social network. In: The 2003 ACM

SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 137–146 Washington, DC, USA, (August 24-27,
2003)

6. Ma, H, Yang, H, Lyu, MR, King, I: Mining social networks using heat diffusion processes for marketing candidates
selection. In: The 2008 ACM Conference on Information and Knowledge Management, pp. 233–242 Napa Valley, CA,
USA, (October 26-30, 2008)

7. Granovetter, M: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)
8. Schelling, T: Micromotives and Macrobehavior. W.W. Norton, New York, USA, (1978)
9. Chen, W, Wang, Y, Yang, S: Efficient influence maximization in social networks. In: The 2009 ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, pp. 199–208 Paris, France, (June 28 - July 01, 2009)
10. Chen, W, Wang, C, Wang, Y: Scalable influence maximization for prevalent viral marketing in large-scale social

networks. In: The 2010 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1029–1038
Washington DC, DC, USA, (July 25-28, 2010)

11. Chen, W, Yuan, Y, Zhang, L: Scalable influence maximization in social networks under the linear threshold model.
In: The 2010 International Conference on Data Mining, pp. 88–97 Sydney, Australia, (December 14-17, 2010)

12. Narayanam, R, Narahari, Y: A Shapley value based approach to discover influential nodes in social networks. IEEE
Trans. Automation Sci. Eng. 8(1), 130–147 (2011)

13. Goyal, A, Lu, W, Lakshmanan, LVS: CELF++: optimizing the greedy algorithm for influence maximization in
social networks. In: The 2011 International World Wide Web Conference, pp. 47–48 Hyderabad, India, (March 28 - April
01, 2011)

Lu et al. Computational Social Networks 2014, 1:2 Page 19 of 19
http://www.computationalsocialnetworks.com/content/1/1/2

14. Jiang, Q, Song, G, Cong, G, Wang, Y, Si, W, Xie, K: Simulated annealing based in influence maximization in social
networks. In: The 2011 AAAI Conference on Artificial Intelligence. San Francisco, CA, USA, (August 7-11, 2011)

15. Goyal, A, Lu, W, Lakshmanan, LVS: SIMPATH: an efficient algorithm for influence maximization under the linear
threshold model. In: The 2011 IEEE International Conference on Data Mining, pp. 211–220 Vancouver, Canada,
(December 11-14, 2011)

16. Leskovec, J, Krause, A, Guestrin, C, Faloutsos, C, VanBriesen, J, Glance, NS: Cost-effective outbreak detection in
networks. In: The 2007 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 420–429 San Jose,
CA, USA, (August 12-15, 2007)

17. Nemhauser, G, Wolsey, L, Fisher, M: An analysis of the approximations for maximizing submodular set functions.
Math. Program. 14(1978), 265–294 (1978)

18. Kimura, M, Saito, K, Nakano, R: Extracting influential nodes for information diffusion on social network. In: The 2007
AAAI Conference on Artificial Intelligence, pp. 1371–1376 Vancouver, British Columbia, (July 22-26, 2007)

19. Wang, Y, Cong, G, Song, G, Xie, K: Community-based greedy algorithm for mining top-k influential nodes in mobile
social networks. In: The 2010 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1039–1048.
Washington DC, DC, USA, (July 25-28, 2010)

20. Hoeffding, W: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

doi:10.1186/s40649-014-0002-3
Cite this article as: Lu et al.: Efficient influence spread estimation for influence maximization under the linear
threshold model. Computational Social Networks 2014 1:2.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Related work
	Problem description
	Methods
	A deterministic algorithm
	A randomized algorithm

	Influence maximization
	Results and discussion
	Simulation environments
	Algorithms
	Experimental results

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

