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Abstract

Background: A number of large genomic datasets are being generated for studies of human ancestry and diseases.
The ADMIXTURE program is commonly used to infer individual ancestry from genomic data.

Results: We describe two improvements to the ADMIXTURE software. The first enables ADMIXTURE to infer ancestry
for a new set of individuals using cluster allele frequencies from a reference set of individuals. Using data from the
1000 Genomes Project, we show that this allows ADMIXTURE to infer ancestry for 10,920 individuals in a few hours (a
5× speedup). This mode also allows ADMIXTURE to correctly estimate individual ancestry and allele frequencies from
a set of related individuals. The second modification allows ADMIXTURE to correctly handle X-chromosome (and other
haploid) data from both males and females. We demonstrate increased power to detect sex-biased admixture in
African-American individuals from the 1000 Genomes project using this extension.

Conclusions: These modifications make ADMIXTURE more efficient and versatile, allowing users to extract more
information from large genomic datasets.

Keywords: Supervised learning, Reference panels, Pedigrees, Sex-chromosome, Sex bias, Ancestry inference,
Admixture

Background
The ADMIXTURE program [1] estimates individual
ancestry proportions for admixed individuals from
genomic datasets. It uses a likelihood model [2] that
assumes the diploid genotype nij for individual i at
biallelic SNP j, which represents the number of type
“1” alleles observed, is generated by binomial sampling
from a weighted sum of ancestral allele frequencies. For
each individual, the weights are given by the propor-
tions of ancestry derived from each ancestral population.
Given K ancestral populations, genotypes are sampled
as nij ∼ Binomial

(
2,

∑K
k=1 qikpkj

)
where qik the frac-

tion of individual i’s ancestry attributable to population
k and pkj is the frequency of the type 1 allele at SNP j
in population k. ADMIXTURE maximizes the resulting
biconcave log-likelihood (Eq. 1) using a block relaxation
algorithm.
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∑
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log
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1 −
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We describe two extensions to the ADMIXTURE pro-
gram that accelerate the analysis of large datasets and
enable ancestry estimation for sex chromosomes. The first
extension (“projection”) allows ADMIXTURE to estimate
ancestry for a new set of individuals using ancestral pop-
ulations from an earlier ADMIXTURE run. It enables
efficient inference of ancestry on large genomic datasets
using ancestral populations estimated from reference pan-
els like the 1000 Genomes Project. It can also be used
to correctly infer individual ancestry in pedigrees. The
second extension allows ADMIXTURE to model the log-
likelihood for haploid chromosomes. This can be used
to correctly estimate ancestry on sex chromosomes and
therefore estimate sex bias in ancestry between the auto-
somes and sex chromosomes. We demonstrate the utility
of these extensions using data from the 1000 Genomes
Project [3] and the HapMap Project [4].
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Implementation
Projecting new samples on existing population structure
A number of large genome-wide datasets of human pop-
ulations such as the HapMap Project, 1000 Genomes
Project etc. are now publicly available. Many studies (e.g.
[5]) use these datasets as reference panels in combina-
tion with the study sample to estimate individual ancestry
using ADMIXTURE since these large datasets summa-
rize worldwide human population structure. For study
samples which do not include a novel population, an effi-
cient way of estimating individual ancestry is to “project”
the new samples on to the population structure learned
from the reference panels. This is intuitively similar to the
projection operation used in principal components anal-
ysis, though the mathematical details differ. We extended
the ADMIXTURE code to allow loading of trained mod-
els (the .P files with cluster allele frequencies). For two
datasets with the same set of SNPs, clusters can be learned
using the unsupervised mode of ADMIXTURE on the
first dataset and ancestry proportions can be inferred for
the second dataset using these learned clusters. The same
approach can be used to infer ancestry on a set of related
individuals. First, we infer the largest set of unrelated
individuals in the dataset using pedigree information or
methods such as PLINK [6], KING [7] or PRIMUS [8].
Then, ADMIXTURE is run on this set in unsupervised
mode and the remaining individuals are projected on the
resulting population structure.
Mathematically, this requires solving the likelihood

maximization problem of Eq. 1 with respect to Q for a
fixed P. This problem can be solved efficiently using the
optimization described by Alexander et al. [1].

Analyzing haploid sex-chromosomes
Admixture between populations is often sex-biased, i.e.,
different proportions of males and females from the
source populations contribute to the admixed popula-
tions. In human populations, sex-biased admixture has
been observed in African-Americans and Latinos, often
using evidence from Y-chromosome or mitochondrial
DNA [9–11]. An alternative way to study sex-biased
admixture is to examine individual ancestry estimates on
the autosomes vs the sex chromsomes [5, 12]. Therefore,
we are interested in inferring individual ancestry using
ADMIXTURE on the sex chromosomes, in particular on
the haploid X-chromosome in males.
For a haploid sex-chromosome SNP, we assume

that hemizygous genotypes are coded as homozy-
gotes for the observed allele. Then, using the same
notation as before, genotypes can be sampled as
nij
2 ∼ Binomial (1,

∑K
k=1 qikpkj). The corresponding log-

likelihood for a haploid sex-chromosome SNP in an indi-
vidual is half of that for a homozygous autosomal diploid
SNP in Eq. 1, as described in Eq. 2. We account for this

in ADMIXTURE by keeping track of the sex of each indi-
vidual and the chromosome each SNP belongs to and
adjusting the log-likelihood accordingly.

Lhaploid(Q,P) =
∑
i,j

{
nij
2

log
( K∑
k=1

qikpkj

)

+
(
2 − nij

)
2

log
(
1 −

K∑
k=1

qikpkj

)} (2)

To enable correct handling of haploid sex-chromosomes
in multiple species, we implemented the --haploid
option, which takes a single colon-separated argument
describing the haploid sexes and the haploid chromo-
somes. For instance, for human data, sex-chromsomes
can be supplied as an argument for ADMIXTURE as
--haploid=“male:23,24” with 23 and 24 represent-
ing the X and Y chromosomes respectively.

Results
We demonstrate the utility of the newly implemented
options using experiments on human genomic datasets.

Using reference panels for inferring ancestry proportions
with projection
We duplicated data from Phase 1 of the 1000 Genomes
Project to create a dataset with 10,920 individuals. The
data was filtered to include only SNPs with minor allele
frequency (MAF) ≥ 5 % and thinned for linkage disequi-
librium (LD) to have pairwise r2 ≤ 0.1 in 50 kb windows.
We compared the running time and accuracy of two anal-
yses, with the number of clusters (K) ranging from 2
to 10:

• Unsupervised: Unsupervised ADMIXTURE was run
on the entire dataset of 10,920 individuals.

• Projection: Unsupervised ADMIXTURE was first
run on the original 1092 individuals from the 1000
Genomes Project and the remaining 9828 individuals
were projected on to the learned population structure.

Each analysis was performed with 5 random starts, with
running time limited to 72 h. All experiments were run on
a single core of a server with Xeon E5-2660 processors,
using 3.7 GB memory.
Figure 1 shows the comparison of running times for

ADMIXTURE on the 10,920 individuals using the two
approaches. The projection approach is much faster than
unsupervised ADMIXTURE, with speed gains increasing
with K, the number of clusters. We find that the ancestry
proportions inferred using both approaches are identical.

Comparisonwith iAdmix
The projection step we describe has been recently
independently implemented by Bansal et al. [13] in the
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Fig. 1 Running time comparison. Running times for ADMIXTURE on a dataset of 10,920 individuals constructed from the 1000 Genomes project

software iAdmix, using a different optimization algo-
rithm.We compared our ADMIXTURE projection imple-
mentation to the iAdmix projection implementation by
running unsupervised ADMIXTURE on the first 1092
individuals from the previous analysis and using the
learned allele frequencies to infer ancestry for the remain-
ing 9828 (copied) individuals by projection using either
ADMIXTURE or iAdmix. Figure 2 shows that projection
using ADMIXTURE is approximately 4 times faster than
using iAdmix1.

Ancestry estimation for related individuals using projection
ADMIXTURE infers individual ancestry proportion
and ancestral population allele frequencies simultane-
ously in an alternating optimization [1]. Inferring allele
frequencies (AF) from related individuals without suit-
able correction for relatedness can lead to high variance in
estimates [14].We demonstrate that relatedness can affect
the inferred population clusters when ADMIXTURE is
run on related individuals using the CEPH (Utah residents

with ancestry from northern and western Europe, CEU)
and Yoruba in Ibadan, Nigeria (YRI) individuals from
HapMap Phase 3. We also show how projection can be
used to obtain more accurate AF estimates.
We used 165 CEU individuals (112 unrelated and 53

related) and 113 unrelated YRI indviduals to construct a
dataset with 278 individuals. After filtering for LD (r2 <

0.2) and MAF > 0.05, the dataset had 180,591 SNPs. The
dataset then was then analyzed using ADMIXTURE with
K = 2 population clusters in two ways:

• All individuals: ADMIXTURE was run on the entire
dataset.

• Unrelated individuals: The dataset was divided into
two sets - one containing only the 225 unrelated CEU
and YRI individuals and another containing the 53
related CEU individuals. ADMIXTURE was run on
the unrelated set. The related individuals were then
projected on the allele frequencies inferred from the
unrelated set.

Fig. 2 Running time comparison with iAdmix. Running times for the projection step using ADMIXTURE and iAdmix on a dataset of 10,920 individuals
constructed from the 1000 Genomes project. Allele frequencies were inferred from the first 1092 individuals using ADMIXTURE
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For both analyses, we then compared the inferred allele
freqencies for the European components to AF estimates
from the Exome Aggregation Consortium (ExAC [15])
data at a common set of 939 SNPs (with frequency
between 5 and 95 % in ExaAC). We find that European
component AF estimates are closer to ExAC allele fre-
quencies for the unrelated analysis (root mean square
error = 0.040) than for the analysis using all individu-
als (root mean square error = 0.041), with p = 0.005
for a one-tailed paired t-test when the squared errors
are compared for each SNP. However, this error includes
(1) the variance of the estimate due to the sample size
from which the AF is estimated and (2) the variance
of the estimate due to the relatedness of the samples.
Assuming the Exac AF f to be the true underlying fre-
quency, a normal approximation for the sample AF fn
estimated from n unrelated diploid samples is given by
fn ∼ Normal

(
f , f (1−f )

2n

)
[16]. Therefore, we can con-

struct a z-score that accounts for sampling variance as
z =

√
2n(fn−f )√
f (1−f )

. Comparing z-scores, we find that the z-
score for the analysis using only unrelated individuals
(mean |z| = −0.19) is smaller than the z-score for the
analysis using all individuals (mean |z| = −0.25), with
p < 2.2e–16 for a one-tailed paired t-test. The z-score
using only unrelated individuals also has a smaller vari-
ance (var(z) = 1.80) than that for the z-score using all
individuals (var(z) = 2.74). This suggests that the allele
frequency estimates from the analysis using unrelated
individuals are more accurate than those using all individ-
uals. An alternative way of evaluating the accuracy of esti-
mated allele frequencies is discussed in Additional file 1:
Section S1.

Inference of sex bias from autosomal and X-chromosome
ancestry
To demonstrate the utility of ancestry inference on hap-
loid sex chromosomes, we examine sex-biased admixture
in the African-American population in the southwestern
United States (ASW). We used 1092 individuals from
Phase 1 of the 1000 Genomes project including the
ASW with populations from Europe, Africa, Asia and the
Americas. We removed 5 ASW individuals (ids NA19921,
NA19625, NA20414, NA20299, NA20314) who had very
high (greater than 5 %) Native American ancestry based
on results reported by the 1000 Genomes Project [3].
SNPs were filtered to include only those with MAF ≥ 5 %
and then thinned for LD to have pairwise r2 ≤ 0.1 in 50 kb
windows.
Sex bias was analyzed by running ADMIXTURE on the

1087 individuals with K = 3 clusters on the autosomes
and X-chromosome separately and comparing ancestry
proportions for each individual on the two chromosome
subsets. If there was no sex-bias during admixture, then

the ancestry proportions on the two chromosome sets
should be (nearly) equal.
We compared two ways of analyzing sex bias:

• Females only: Since ADMIXTURE (without the new
--haploid option) requires diploid data, we subset
the dataset to 562 females and ran ADMIXTURE on
the autosomes and X-chromosome separately.

• Males and Females: Using the --haploid option
(the X chromosome was denoted haploid in males
with --haploid=“male:23”), we ran
ADMIXTURE separately on the autosomes and
X-chromosome on the entire set of 1087 individuals.

Table 1 shows the results of the analysis. From both
analyses, we can see that autosomes have an excess of
European ancestry and X-chromsomes have an excess
of African and Native American ancestry. Since the
ancestry proportions for each component (European/
African/Native American) are not normally distributed,
a t-test is not suitable for assessing statistical signifi-
cance. Therefore we used a Wilcoxon signed-rank test to
compare the paired X-chromosome and autosomal ances-
try proportions (see Additional file 1: Section S2 for the
behavior of the test under the null hypothesis).We see that
the analysis using both males and females can reject the
null hypothesis of identical mean ranks (no sex bias) at the
0.05 significance level, while the females-only analysis fails
to reject the null hypothesis. From previous work, there is
evidence for sex-biased admixture in African-Americans
[9, 12, 17]. Thus, including male samples in the analysis
of X-chromosome ancestry with the --haploid option
improves power to detect sex bias in admixture.

Discussion
We have described two extensions to the ADMIXTURE
program. The projection extension allows ADMIXTURE
to estimate ancestry for a new set of individuals using pre-
defined ancestral population frequencies (usually from
an earlier ADMIXTURE run). This functionality is sim-
ilar to that implemented in iAdmix [13], which uses

Table 1 Comparing ancestry proportions for African-Americans
on the autosomes and the X-chromosome: Differences in
individual autosomal and X-chromosome ancestry proportions
are represented by the mean of the difference over all individuals

Ancestry component Females only Males and Females
(n = 36) (n = 60)

European 0.016 (0.345) 0.039 (0.032)

African –0.009 (0.460) –0.024 (0.141)

Native American/Asian –0.006 (0.119) –0.015 (0.020)

In parentheses are the raw p-values calculated using a Wilcoxon signed rank test
comparing the autosomal and X-chromosome ancestry proportions. P-values <

0.05 are shown in bold
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a different optimization method, and that implemented
by Sikora et al. [18] for ancestry inference for ancient
individuals using an expectation-maximization algorithm.
This extension enables efficient inference of ancestry on
large genomic datasets using ancestral populations esti-
mated from reference panels like the 1000 Genomes
Project. The allele frequencies inferred by ADMIXTURE
have been used previously to simulate individual geno-
types [19, 20]. The resulting individual genomes have been
used in subsequent ADMIXTURE [19] or other [20] anal-
yses to enable a “supervised” analysis [21]. Our extension
provides an efficient and principled framework for this
approach.
The projection approach is useful when a new dataset

is strongly unbalanced in its distribution of populations,
since an unbalanced dataset can affect the accuracy of
ancestry inference [22]. Another advantage of the projec-
tion approach is that individual ancestry can be inferred
in parallel for each individual. Thus, if a user has access
to multiple computers (or a computing cluster), then
ancestry can be estimated for hundreds of thousands of
individuals in a few hours. Our results on a dataset of
10,920 individuals constructed using the 1000 Genomes
project show how projection improves the efficiency of
ADMIXTURE. The projection approach can also be used
to infer the ancestry of ancient DNA samples, as in Sikora
et al. [18] and other work. A limitation of the projection
approach is that if the projected data contains a novel
population which was not present in the initial (training)
set, the projection results may not be identical to those
obtained from running ADMIXTURE on the combined
dataset. The fit of the projected data to the population
structure in the training set can be evaluated using the
posterior predictive checks (PPCs) of Mimno et al. [23].
This framework uses the inferred model parameters from
ADMIXTURE to generate simulated datasets whose sim-
ilarity to the original dataset is assessed through a set of
population genetics summary statistics such as identity-
by-state, linkage disequilibrium, FST etc. If the projected
individuals belong to a population not present in the train-
ing set, the PPCs will indicate a high discrepancy between
the summary statistics for the projected individuals and
the generated datasets. An alternative way of examining
fit between the projected individuals and the training set
is to examine the cross-validation error of the projec-
tion step using the “-cv” option of ADMIXTURE. A high
cross-validation error would indicate that the projected
individuals belong to a population not present in the
training set.
Through experiments on HapMap CEU and YRI indi-

viduals, we showed that the projection approach is
also useful for accurate ancestry inference on related
individuals. This approach allows us to infer allele fre-
quencies for ancestral populations with reduced error.

A limitation of this approach is that if the number of
founders in a pedigree is small, then the error in allele fre-
quencies estimated from running ADMIXTURE only on
the unrelated individuals may be large due to a larger sam-
pling variance. In such cases, themethodmay not produce
more accurate estimates than those obtained by running
ADMIXTURE on the entire dataset.
The second extension we have developed correctly

models the log-likelihood for haploid chromosomes. This
can be used to estimate ancestry on sex chromosomes
and thus estimate sex bias in ancestry. Our analysis
of sex bias in the ASW African-American population
shows that accurate ancestry inference on the haploid X-
chromosome in males can improve power of tests for sex
bias that use ancestry proportions as a test statistic. While
the test we described based on a difference in ancestry has
a number of limitations (correlated tests, no correction for
multiple testing, etc.), it is only intended to demonstrate
the advantage of ancestry inference on haploid chromo-
somes formore power in tests for sex bias and is applicable
to other tests of sex bias.

Conclusions
ADMIXTURE is widely used for analysis of ancestry
in genomic datasets. The extensions we have described
increase the efficiency of ADMIXTURE and increase its
versatility. The projection operation allows more effi-
cient analysis of large datasets by using available reference
panels. It also allows analysis of ancestry in pedigrees.
Ancestry analysis of haploid sex-chromosomes improves
power to detect sex bias in populations using autoso-
mal and X-chromosome ancestry. We expect that with
the growing number of populations being sequenced and
large amounts of individual-level genotype data being
generated, these extensions will makeADMIXTUREmore
useful to researchers.

Endnote
1We only show results for one replicate since iAdmix

produces 130GB of output files for one replicate of such
a large dataset.
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