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Abstract

Background: The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms
from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms –
risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity
signatures in the form of communities (modules).
For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple
cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data
in the form of multiple independent weighted networks. Modularization of each weighted network produced
modules, which in turn were further analyzed so as to define consensus modules across datasets that change
substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the
synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets.

Results: The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA
relations with substantial collective action during aging. Three modules were reproducible, based on homology, when
mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP
synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to
the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic
effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel,
was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f,
miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/
or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we
suggest that miR-22 has not substantial impact on heart longevity as proposed recently.

Conclusions: We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the
first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature
tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA
therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment
and outcome.
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Background
Aging is an inevitable part of life and unfortunately
poses the largest risk factor for cardiovascular diseases.
The limited success of medical community in dealing
with complex diseases and the increasing population of
aging patients with cardiovascular diseases led to rapidly
increasing costs of health care that most economies can-
not sustain. Advances in personalized medicine and the
biology of aging are two important steps towards over-
coming the escalating health care costs on the way to a
better understanding and treatment of such complex
diseases [1]. Cardiac aging is characterized by a con-
tinuum of cardiac structural and functional alterations
involving left ventricular hypertrophy, diastolic dysfunc-
tion, increased risk of atrial fibrillation, valvular degener-
ation and fibrosis, and decreased maximal exercise
capacity. Apparently, the decline in function provoked
by the longevity associated changes make the aged heart
more susceptible to stress, leading to a high prevalence
of cardiovascular diseases and heart failure [2]. As such,
in order to extend lifespan, current drug development
strategies design anti-aging drugs that delay the impli-
cated age-related diseases or vice versa [3].
In the road for exploring the underlying aging etiology

many studies were directed towards discovering age-
dependent genes/proteins [4,5]. More recently, other
works [6-8] characterized several microRNAs (miRNAs)
as center players in cardiac aging process and in the de-
velopment of multifarious heart diseases, such as heart
hypertrophy, arrhythmia, acute myocardial infarction,
and heart failure. Recent estimations count around 1100
miRNAs in the human genome that modulate various
biological processes ranging from proliferation, differen-
tiation to senescence and apoptosis [9]. Moreover, the
small amount of miRNAs is able to regulate a large num-
ber of genes through synergism, in which multiple miR-
NAs work synergistically to regulate individual mRNAs
[9-11]. Despite the advances, the underlying mechanisms
are still far from known and the next step towards fea-
turing aging is systems-level analyses that will reveal
pathways - instead of individual proteins or miRNAs -
responsible for transducing stress, mechanical and neu-
rohormonal stimuli into gene expression changes [12].
To this end, approaches from the network perspective

capture the complex regulatory mechanisms between
mRNAs and miRNAs in a more comprehensive manner.
As such, network-based methods to study aging have
evolved in parallel with the concept of “omics” and the ex-
plosion of high-throughput data. Managbanag et al. [13]
suggested that proteins linked through shortest paths in
the protein interaction network with established age-
related genes were more likely to be aging regulators.
Budovsky et al. [14] showed that hub proteins in the
protein-protein interaction network connecting human
homologs of lifespan modifiers were significantly linked to
age-related diseases. Also, the work of Xue et al. [15]
depicted the modularity (i.e. existence of dense subnet-
works with distinct functional role relative to other sub-
networks) of the aging network and contextualized the
transcriptional changes during lifespan through a small
number of network modules. Moreover, the study of Li
et al. [9] explored the regulatory effect between miRNAs
and mRNAs in the developmental and aging process of
the human brain by integrating miRNA and mRNA ex-
pression profiles in the form of a bipartite miRNA-mRNA
regulatory network and identified modules showing
miRNA synergism. We relegate the reader to the review
of Hou et al. [16] for an extensive view of the network-
based methodologies on the study of aging. Nevertheless,
the number of network-based studies that deal with the
unraveling of mammalian tissue-specific aging mecha-
nisms is small [17-19] and even smaller when the role of
microRNA synergism is the question [9].
This integromics network-based meta-analysis study of-

fers the first systemic view of cardiac aging molecular
mechanisms and sketches the path for identifying robustly
many more other involved molecular components than
those already reported in literature. Motivated by recent
findings that identified various heart-specific miRNAs as
aging modulators, we tested their reproducibility facili-
tated by the availability of transcriptome, micronome and
proteome data in the mouse model. Since a single study
often has small sample size and limited statistical power,
combining information across multiple studies is an intui-
tive way to increase sensitivity [17,20-22]. As such, we
show that integrating information extracted from multiple
independent microarray experiments along with mouse
interaction data can produce more accurate cardiac aging
signatures in the form of multi-omics subnetworks (mod-
ules). Through modularity we revise the role of recently
implicated miRNAs and proteins and suggest that their
impact on aging is realized via their neighborhoods. In
addition, we investigate the miRNA synergism on the
modular level and propose miRNAs whose lifespan distur-
bances generate collaboratively profound biological ef-
fects. For this, we developed a synergy score which can be
used to assess the nature and scale of miRNA synergy,
and considers both the incorporative contribution of
miRNA co-regulation on the same biological process
(Intra-modular) as well as on different biological processes
(Inter-modular). The proposed method offers a theoretical
framework and guideline for multi-target combinational
miRNA therapy of age-related cardiovascular diseases.

Results
Our integromics meta-analysis method can be summa-
rized into the following steps: (i) Collection of diverse
interaction data (e.g. protein-protein, protein-DNA,
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miRNA-mRNA) from many databases and prediction
tools (in case of miRNA-mRNA relations); (ii) Construc-
tion of a multi-layer network with two types of nodes
(mRNAs and miRNAs) and three types of relations
(mRNA-mRNA, miRNA-mRNA and miRNA-miRNA).
We denote that the terms ‘gene’, ‘mRNA’ and their encoded
‘protein’ are used interchangeably in this paper. Also,
the hypergeometric distribution was employed to define
miRNA-miRNA relations based on significantly func-
tionally associated mRNA targets (Figure 1); (iii) Aggrega-
tion of mRNA and miRNA independent cardiac-specific
expression datasets from various mouse strains; also, a hu-
man mRNA expression experiment was included; (iv)
Design of two adapted weighting schemes that integrate
the expression information onto the respective inter-
action network layer; notably, a separate weighted net-
work was constructed for each of the 28 possible
combinations of mRNA and miRNA experiments in the
mouse model (Figure 1); (v) Application of a module-
detecting algorithm on each weighted network that effi-
ciently identified modules substantially altered during
lifespan (Figure 1); (vi) Use of meta-analysis method
to identify consensus modules across multiple mouse
weighted networks and then across organisms; (vii) Evalu-
ation of micronome synergism based on an in-house de-
signed synergy score and employment of Borda voting
scheme as meta-analysis method to rank the miRNA pairs.

Topological analysis of the unweighted multi-layer network
We examined the degree distribution of the unweighted
multi-layer network both at each separate layer (mRNA-
mRNA, miRNA-mRNA, miRNA-miRNA) as well as
whole. We observed that the mRNA-mRNA and miRNA-
mRNA layers followed a power law and an exponential
distribution (mRNA-mRNA: slope = −1.6, R2 (coefficient
of determination) = 0.91, miRNA-mRNA: slope = −1.39,
R2 = 0.83, miRNA-miRNA: slope = −0.7, R2 = 0.37). More-
over, the networks displayed scale free characteristics indi-
cating so that there exist core sets of organizing principles
in its structure. Moving further, we tested the degree dis-
tribution of the nodes participating in the consensus mod-
ules relative to the complete set of nodes in the initial
network. As observed, the modular nodes exhibited sig-
nificant variance in degree values (Bartlett test, P-value =
1.4E-39) along with higher mean degree value (Figure 2A).
Based on the degree metric we ranked all nodes and, after
setting a cutoff at the top 15%, 1,097 mRNAs were defined
as hubs and 122 of them were included in the consensus
modules. Similarly, 64 miRNAs were characterized as
hubs and 18 of them were included in the consensus mod-
ules. We denote that mRNAs and miRNAs were treated
separately due to the fact that miRNAs exhibit much
higher degree values and in other case the degree sorting
would be biased in favor of the miRNAs. We observed
that the hub nodes (both mRNAs and miRNAs) were
over-represented in the consensus modules (one-sided
Fisher exact test, P-value = 2.2E-16 and P-value = 8.482E-
07 for mRNAs and miRNAs respectively) suggesting so
that the majority of independent expression experiments
corroborate to the involvement of hub nodes in the lon-
gevity mechanisms of cardiac tissue.
To test whether the age-dependent nodes (as estimated

by linear regression analysis), consensus modular nodes or
hub nodes are important to the multi-layer network stabil-
ity, we used an established test for network structure sta-
bility — recording the changes in characteristic path
length (CPL) in the largest connected component of the
network after selective node removal (see ‘Methods’ sec-
tion). If the nodes removed are important mediators for
network communication, the route from one node to an-
other within the network will be a longer path and the
CPL of the resulting network will increase. This is an im-
portant network statistic and represents closeness and
consequently how quickly information can be transferred
in a network [23]. Targeted removal of nodes according to
degree metric is also called ‘attack’ [24]. Attacking hubs
in the network, as expected, increases significantly the
CPL whereas random removal of nodes from the net-
work maintains the initial CPL values. It is evident from
Figure 2B that removal of the consensus modular nodes –
nodes involved in modules voted by the majority of
coupled mRNA/miRNA expression experiments – affected
the stability more than attacking age-dependent nodes
(two sample t-test, P-value < 0.01) and less than hub nodes.
This finding can be interpreted byway; on one hand, mod-
ules have higher discriminative potential than independent
differentially expressed age-related nodes to describe the
transitions from young to old state, and on second hand,
hub nodes participate in the network integrity but in fact
only a fraction (those included in the modular topology) is
truly responsible for the aging process. In more detail, the
consensus modules were significantly enriched in age-
dependent proteins (11 out of the 162 characterized as
age-dependent) and moreover, our method contextualized
them into specific neighborhoods (over-representation was
estimated with one-sided Fisher exact test, P-value = 0.01).
We note that the consensus modules were not significantly
enriched in age-dependent miRNAs.

Longevity attacks a small fraction of the cardiac
interactome
Towards evaluating the scale of longevity effect upon in-
teractome topology, we examined the edge weight distri-
bution of the multiple weighted networks — created
based on all possible combinations of mRNA/miRNA
expression datasets in the mouse model. After selecting
weight value cutoff lower than 0.4, only 8% of the
complete interactome (~5,300 edges) changed
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(See figure on previous page.)
Figure 1 Methodology workflow for detecting integromics modules. A. Construction of the miRNA-mRNA multi-layer regulatory network based
on interaction databases and hypergeometric distribution (in case of miRNA-miRNA relations). B. Two adapted weighting schemes were employed to
integrate the mRNA/miRNA expression information onto the corresponding network layer so as to create the integromics network. C. The integromics
network was the input to the DMSP module-detecting algorithm and statistically significant modules (P-value < 0.05) were identified based on a
permutation strategy on the expression data.
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substantially during lifespan (Figure 2C). This observa-
tion disagrees with the results of [25] that showed that
environmental stimuli like heat shock disintegrate sig-
nificant proportion of the yeast interactome and de-
crease the weight structure. Our suggestion is that
gradually developing cumulative processes like aging
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across independent datasets and at the same time in-
clude a significant amount of age-related edges. Inter-
estingly, our method captured, based on the same cutoff
value, 1,270 edges which represent the 24% of the total
age-related relations (Figure 2D) (over-representation
estimated by one-sided Fisher exact test, P-value = 2.2E-
16). This finding secures to a great extent that the
consensus modules can serve rightfully as signatures of
cardiac aging and potential multi-targets for the treat-
ment of age-related heart diseases.

miRNA synergy in mouse model
With the use of an in-house designed metric, we evaluated
all miRNA pairs in terms of synergism (MS score) first
based on the modular result of each weighted network
and second after applying a Borda voting meta-analysis
scheme to determine the final rank of each miRNA pair
based on all modularized weighted networks (see also
Additional file 1). We categorized miRNA pairs into two
types: (a) those pairs which ranked in the upper quartile of
the complete set of miRNA relations (2,553 relations in
total) and participated in the final set of 40 consensus
modules and (b) those pairs which ranked in the upper
quartile but are not included in the consensus modules.
The latter case leaves room for further exploration in ad-
vent of more time expression series experiments on car-
diac aging and more interaction data, where the specific
miRNAs would probably get re-contextualized. In
Tables 1 and 2, we report for each type the Borda rank
for each pair, the human disease-related information
for each miRNA (based on orthologs of miRBase (http://
www.mirbase.org)) as well as literature-extracted evidence
that relates each miRNA with cardiac pathophysiology or
aging [6-8,26-52]. Also, in Figure 3 an overview of the
miRNA synergistic network is provided containing all
miRNA relations in the upper quartile of the Borda ranking.
We note that 47 miRNAs associated to human cardiac

diseases, according to miR2Disease database, were found
in the upper quartile of the Borda rank and 11 of them
also involved in the 40 consensus modules. We initially
zoom onto miR-34a motivated by the study of Boon et al.
[8] which named it as cardiac aging biomarker (the dataset
of the study is used in our analysis). Our results support
the involvement of this miRNA in cardiac aging since it
was both characterized as age-dependent and included in
consensus modules; nevertheless its synergism effect was
not substantial (relations including miR-34a were over
399th rank). Further, miR-22 was suggested as cardiac
aging biomarker by the work of Jazbutyte et al. [26]. Our
analysis failed to identify this miRNA in the consensus
modules and its synergism impact is not substantial
(>551th rank). The explanation behind this observation lies
both in the experimental settings of the original study as
well as in the later fold-change-based method to detect
differentially expressed molecules. On one hand, when the
original miRNA expression dataset was combined with
other mRNA expression datasets miR-22 was radically
repositioned relative to its targets and their expression
profiles. Moreover, the fold-change method by definition
excludes molecules with moderate differential expression
yet important players in longevity mechanisms. Second,
standard statistical methods to define differentially
expressed molecules fail to incorporate dependencies
among molecules and more importantly how the depend-
encies – instead of single entities – change during aging.
Nevertheless, the same study identified miR-351 as

age-dependent but - as stated by the authors - it was not
chosen for validation experiments. On the contrary, our
results indicate that the synergistic effect of this miRNA
and its partner miR-125a-5p is much higher (5th rank).
Also, we comment on the miR-200c/-429 pair (10th

rank). The works of Sataranatarajan et al. [27] and
Schraml and Grillari [28] suggested their involvement in
kidney aging but to our knowledge no association to car-
diac tissue aging has been reported.
Interesting are the observations regarding the miRNA-

miRNA edges that failed to be incorporated in the consen-
sus modules yet their synergism was substantial based on
Borda meta-analysis results. We denote that synergy re-
sults are meant to be evaluated separately from the consen-
sus modular results based on the different scopes and on
the different meta-analytic schemes employed. On one
hand, the consensus set was defined after majority voting
among modularized networks while meta-analysis on syn-
ergy aimed at pinpointing edges with substantial macro-
scopic effect on the topology across datasets but without
considering their involvement into reproducible modules.
The reason is that there were many cases where specific
miRNA edges affected multiple pairs of modules which in
turn were not always sufficiently reproducible, as pairs,
across datasets, i.e. involved in the consensus set. However,
we account for the synergistic effect of these edges since
the majority of expression experiments agree on their sub-
stantial impact. We comment on the miR-106b/-17 pair
which acquired the first rank. Age-related evidence for
miR-106b is found in the work of Brett et al. [40] which as-
sociated it with neural stem cell proliferation and differen-
tiation during aging. With respect to miR-17 we relegate
the reader to the review of Mogilyansky and Rigoutsos [41]
which links this miRNA to a variety of diseases such as car-
diovascular and aging. The same study validates the pres-
ence of miR-19b in the miR-19a/-19b pair which ranked
second and both miRNAs were defined as age-dependent.
Moreover, the work of van Almen et al. [42] linked miR-
19a and miR-19b with age-related heart failure. Further, we
comment on miR-27b (miR-128/-27b pair appeared on the
8th rank) which was shown to be up-regulated to different
degrees in the old versus young adult heart and was

http://www.mirbase.org
http://www.mirbase.org


Table 1 miRNA synergism results relative to consensus modules

miRNA A miRNA B Borda rank Disease A Disease B Literature A Literature B

miR-125a-5p miR-351 5 Various cancer types [26]

miR-200c miR-429 10 Various cancer types Various cancer types [27,28] [28]

miR-125b-5p miR-351 112 Cardiac hypertrophy [29] [26]

miR-15b miR-195 174 Cardiac hypertrophy Cardiac hypertrophy/heart failure [6]

miR-148a miR-152 194 Various diseases Various diseases [30,31]

miR-200b miR-200c 199 Various cancer types Various cancer types [28] [28]

miR-132 miR-190b 221 Various diseases [32]

miR-190b miR-465a-5p 261

miR-190b miR-692 309

miR-107 miR-15b 327 Cardiac hypertrophy Cardiac hypertrophy [6]

miR-152 miR-195 342 Various diseases Cardiac hypertrophy/heart failure [30,31]

miR-148b miR-152 353 Various diseases Various diseases [30,31]

miR-132 miR-429 371 Various diseases Various cancer types [28]

miR-130b miR-301a 372 Various cancer types [33]

miR-135a miR-135b 395 Various cancer types Various cancer types [34,35]

miR-101a miR-101b 396 Various cancer types

miR-147 miR-148a 397 Various cancer types Various diseases [35]

miR-125a-5p miR-125b-5p 400 Various cancer types Cardiac hypertrophy [29]

miR-133a miR-133b 401 Cardiac hypertrophy/cardiomyopathy/
myocardial infarction

Myocardial infarction [36,37] [36,37]

miR-103 miR-107 407 Cardiac hypertrophy Cardiac hypertrophy

miR-141 miR-200a 408 Various cancer types Various cancer types [38] [28]

miR-147 miR-148b 410 Various cancer types Various diseases

miR-200a miR-200b 412 Various cancer types Various cancer types [28] [28]

miR-141 miR-200b 413 Various cancer types Various cancer types [38] [28]

miR-148a miR-148b 415 Various diseases Various diseases

miR-200b miR-204 427 Various cancer types Various cancer types [28]

miR-141 miR-200c 464 Various cancer types Various cancer types [38] [28]

miR-26a miR-26b 465 Cardiac hypertrophy Cardiac hypertrophy [39]

miR-23a miR-23b 493 Cardiac hypertrophy Cardiac hypertrophy

miR-135a miR-200a 494 Various cancer types Various cancer types [34,35] [28]

miR-204 miR-211 537 Various cancer types Various cancer types

miRNA synergism results for the consensus modules according to Borda voting scheme. Each line reports the Borda rank of each miRNA pair identified in the final
consensus modules, disease-related information of the human orthologs as recorded in miR2Disease database (if found only cardiac pathophysiology related
terms are reported) and evidence related to aging or cardiac pathophysiology provided by recent literature. We denote that in many cases each member of the
reported miRNA pair can participate in a different module. Bold miRNAs are age-dependent based on linear regression analysis.
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induced during early hypertrophic growth in response to
pressure-overload [6]. Similar synergism hypotheses can be
derived for the rest of miRNA pairs reported in Tables 1
and 2, which are supported in terms of aging or cardiac
pathophysiology by recent literature evidence.

Consensus mouse modular signatures
In order to produce highly reproducible modular signatures,
we constructed and modularized multiple weighted net-
works based on all possible combinations of mRNA/miRNA
expression experiments so as to reduce the effect of different
mouse strains, platform arrays, laboratory effects and gender.
The consensus set included 40 modules (see Additional file
2) identified in at least 18 out of the 28 combinations
(Figure 4 [53]). The consensus modular topology contained
38 miRNAs and 391 mRNAs. We checked the genes for sta-
tistically significant Gene Ontology (GO) terms with DAVID
functional tool [54] and the enriched biological process terms
were: ‘generation of precursor metabolites and energy’
(EASE score, modified Fisher exact P-value = 3.0E-32),



Table 2 miRNA synergism results beyond consensus modules

miRNA A miRNA B Borda rank Disease A Disease B Literature A Literature B

miR-106b miR-17 1 Various diseases Various diseases [40] [41]

miR-19a miR-19b 2 Various cancer types Various cancer types [6,42,43] [6,41-43]

miR-363 miR-92b 3 Alzheimers disease Lupus nephritis

miR-181b miR-181d 4 Cardiac hypertrophy Various diseases

let-7d let-7f 6 Various cancer types Various cancer types [44]

miR-18a miR-18b 7 Various cancer types Cardiac hypertrophy [42]

miR-128 miR-27b 8 Various diseases Cardiac hypertrophy

miR-106a miR-291a-3p 9 Various diseases [45]

miR-30a miR-30e 100 Cardiac hypertrophy Cardiac hypertrophy [7,46] [7]

miR-30e miR-384-5p 132 Cardiac hypertrophy [7] [47]

miR-30c miR-30e 184 Cardiac hypertrophy Cardiac hypertrophy [46] [7]

miR-294 miR-30e 318 Cardiac hypertrophy [7]

miR-291a-3p miR-30e 364 Cardiac hypertrophy [7]

miR-18b miR-297c 385 Cardiac hypertrophy

miR-190 miR-194 391 Various cancer types Cardiac hypertrophy [28]

miR-30d miR-30e 398 Cardiac hypertrophy Cardiac hypertrophy [7]

miR-34a miR-34b-5p 399 Various diseases Various cancer types [8]

miR-30e miR-495 411 Cardiac hypertrophy Various diseases [7] [48]

miR-139-3p miR-150 438 Cardiac hypertrophy Cardiac hypertrophy [28]

miR-30e miR-466d-5p 453 Cardiac hypertrophy [7]

miR-1 miR-18a 457 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Various cancer types [36] [42]

miR-187 miR-18b 460 Non-alcoholic fatty liver disease (NAFLD) Cardiac hypertrophy

miR-185 miR-18b 462 Cardiac hypertrophy Cardiac hypertrophy

miR-100 miR-30e 489 Various diseases Cardiac hypertrophy [49] [7]

miR-1 miR-19a 492 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Various cancer types [36] [6,42,43]

miR-1 miR-206 512 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Various diseases [36]

miR-194 miR-210 530 Cardiac hypertrophy Various diseases [28] [50]

miR-192 miR-218 548 Various cancer types Cardiac hypertrophy [28]

miR-191 miR-218 549 Various cancer types Cardiac hypertrophy [48]

miR-18b miR-219 550 Cardiac hypertrophy Various cancer types

miR-18b miR-22 552 Cardiac hypertrophy Various diseases [26,51]

miR-34a miR-449b 563 Various diseases Various cancer types [8]

miR-150 miR-224 570 Cardiac hypertrophy Various cancer types [28]

miR-18b miR-297b-5p 599 Cardiac hypertrophy

miR-150 miR-296-5p 620 Cardiac hypertrophy Various diseases [28]

miR-1 miR-29a 634 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Cardiac hypertrophy [36] [52]
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Table 2 miRNA synergism results beyond consensus modules (Continued)

miR-1 miR-29b 636 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Cardiac hypertrophy [36] [6,52]

miR-1 miR-29c 639 Cardiac hypertrophy/cardiomyopathy/heart
failure/myocardial infarction/coronary
artery disease

Cardiac hypertrophy [36] [6,52]

Synergism results for miRNA pairs that ranked in the upper quartile according to Borda voting scheme but not incorporated in the consensus modules (indicative
examples). Each line reports the rank of each miRNA pair, disease-related information of the human orthologs as recorded in miR2Disease database (if found only
cardiac pathophysiology related terms are reported) and evidence related to aging or cardiac pathophysiology provided by recent literature. Bold miRNAs are
age-dependent based on linear regression analysis. We also added miRNA pairs with high rank yet not related to aging or cardiac pathophysiology (highlighted
in italics).
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‘electron transport chain’ (P-value =1.4E-26), ‘cell cycle phase’
(P-value = 2.1E-12) and ‘organelle fission’ (P-value = 4.0E-12).
The respective GO terms highlight processes commonly
reported in cardiac aging studies [55,56]; they also
provide feedback that the integromics meta-analysis
approach is efficient in zooming out and providing the
broader view around genes/proteins well-associated to
cardiac aging - as individual molecular components -
but not relative to their interactors.
When genes were grouped into modules only 8 modules

were significantly enriched (P-value ≤ 0.05) with GO bio-
logical process terms (Table 3). Also, 6 longevity-associated
genes according to GenAge database were identified in the
consensus modules: BUB1B (budding uninhibited by benz-
imidazoles 1 homolog, beta (S. cerevisiae)), ERCC2 (excision
repair cross-complementing rodent repair deficiency,
Figure 3 miRNA-miRNA synergistic network. This network incorporates th
Borda voting scheme. Blue colored nodes represent miRNAs involved in mou
included in consensus modules. Red colored nodes represent age-dependen
with blue border are both age-dependent and participate in consensus modu
human cardiac pathophysiology as reported in miR2Disease database. Purple
complementation group 2), SLC25A4 (solute carrier
family 25), UCP2 (uncoupling protein 2), MCM2 (mini-
chromosome maintenance deficient 2 mitotin (S. cere-
visiae)) and EPS8 (epidermal growth factor receptor
pathway substrate 8).

Human cardiac aging modular signatures
The mouse consensus modules were mapped with the use of
NCBI's Gene and HomoloGene resources against the human
modules [57] and the node overlap was estimated only with
respect to genes due to the lack of humanmiRNA expression
experiments. Nevertheless, the overlap threshold (NOR) was
lowered to 0.3 due to the absence of miRNAs and the insuffi-
ciency of homologs. The matching procedure revealed three
human modules that matched the Mod_5, Mod_13 and
Mod_19 (Figure 5). The first human module matched to
e miRNA relations that ranked in the upper quartile (639 edges) of the
se consensus modules. Edges with larger width highlight the relations
t miRNAs as estimated by linear regression analysis. Red colored miRNAs
les. Nodes with orange colored border represent miRNAs associated to
edges highlight the 10 top scoring miRNA relations.
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Figure 4 Mouse consensus modules. Layout of the 40 consensus modules. The topology includes 3,780 edges among 38 miRNAs and 391
proteins. The multi-layer modules are visualized in two levels, i.e. micronome and proteome. Nodes in many cases are multi-colored (with the use
of ExprEssence Cytoscape plug-in by Warsow et al. [53]) in a pie-chart-like form so as to visualize the participation of a node in multiple modules.
Blue dotted edges highlight miRNA relations not included into consensus modules yet exhibited significant synergy.
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Mod_5 was characterized by the ‘electron transport chain’GO
term (EASE score, modified Fisher exact P-value <0.05) simi-
lar to the mouse corresponding one. The second human
module was significantly enriched in the ‘signal transduction’,
‘actin cytoskeleton organization’ and ‘programmed cell death’
(P-value <0.05) terms relative to Mod_13 where no statisti-
cally significant terms were found. The third human module
was enriched in the ‘protein metabolic process’ term relative to
the mouse Mod_19 where no statistically significant terms
were found. Also, we checked the 189 human modular pro-
teins for heart disease terms and 13 proteins were found to be
associated (Table 4) (over-representation estimated by one-
sided Fisher exact test, P-value = 0.05).

Age-related mRNAs/miRNAs
Although the goal of this study is to detect age-related
modules, we employed conventional statistical tests for
identifying age-dependent mRNAs/miRNAs so as to ex-
plore later their place into modules. Using a linear regres-
sion model (see ‘Methods’ section), 24 miRNAs and 162
mRNAs were identified as age-dependent (F-test, P-value <
0.05), whose expression level was significantly altered with
age. Gene Ontology (GO) biological process enrichment
analysis with the use of DAVID functional tool revealed the
following terms (EASE score, modified Fisher exact
P-value < 0.05) for 89 out of the 162 genes: ‘positive regula-
tion of defense response’, ‘regulation of growth’, ‘regulation of
developmental process’, ‘regulation of binding’ and ‘regulation
of response to stress’. We comment on the ‘stress’ and ‘defense’
related terms which characterize the rate of aging and the
appearance of age-related pathology which are modulated by
stress response and repair pathways that gradually decline,
including the proteostasis and DNA damage repair networks
and mitochondrial respiratory metabolism [58].
In Table 5 we report the age-dependent mRNAs/miR-

NAs as well as highlight the 11 (out of 162) mRNAs and
4 (out of 24) miRNAs that were identified in the final
consensus modules. The age-dependent miRNAs, in-
cluded in the consensus modules, have been reported to
be related to aging or specifically to cardiac aging based
on recent studies: miR-34a [8], miR-466d-3p [6], miR-
152 [30] and miR-135a [34]. Similar literature evidence
support 10 age-dependent genes/proteins included in
consensus modules: G0S2 (G0/G1 switch gene 2) has
been related to cardiac hypertrophy [59]; HADH (hydro-
xyacyl-CoA dehydrogenase) involved in fatty acid oxida-
tion is associated to cardiac hypertrophy [60]; NDUFA10
(NADH dehydrogenase 1 alpha subcomplex 10) and



Table 3 Analysis of mouse consensus modules

Module
index

Count Gene ontology term Percentage Fisher exact
P-value

Age-dependent
miRNAs

Age-dependent genes GenAge genes

1 18 One-carbon metabolic process 11.8 5.0E-2 N/A N/A N/A

2 22 Cellular aromatic
compound metabolic process

10 5.0E-2 N/A GOS2

3 5 N/A N/A N/A N/A N/A

4 9 N/A N/A N/A miR-34a N/A N/A

5 68 Generation of precursor
metabolites and energy

73.5 1.6E-77 N/A HADH, NDUFA10, NDUFV1 SLC25A4, UCP2

6 23 N/A N/A N/A N/A CDH22 N/A

7 4 N/A N/A N/A N/A N/A N/A

8 5 Heart development 40 5.0E-2 N/A N/A N/A

9 8 N/A N/A N/A N/A NDUFA10 N/A

10 16 Tissue development 30.8 7.2E-3 N/A N/A EPS8

11 20 N/A N/A N/A N/A N/A BUB1B

12 27 N/A N/A N/A N/A N/A BUB1B, MCM2

13 24 N/A N/A N/A N/A RHOU N/A

14 5 N/A N/A N/A N/A N/A N/A

15 6 N/A N/A N/A miR-466d-3p IER3 N/A

16 8 N/A N/A N/A N/A N/A N/A

17 5 N/A N/A N/A N/A N/A N/A

18 13 N/A N/A N/A miR-152 N/A N/A

19 36 N/A N/A N/A N/A RPL10, RPL37 N/A

20 5 N/A N/A N/A N/A N/A N/A

21 13 N/A N/A N/A N/A N/A N/A

22 5 N/A N/A N/A N/A N/A N/A

23 13 Response to DNA damage stimulus 53.8 1.4E-8 N/A N/A ERCC2

24 8 N/A N/A N/A N/A N/A MCM2

25 6 N/A N/A N/A N/A RPA3 N/A

26 6 N/A N/A N/A N/A N/A N/A

27 7 N/A N/A N/A N/A N/A N/A

28 5 N/A N/A N/A N/A N/A N/A

29 7 N/A N/A N/A N/A EEF2 N/A

30 8 N/A N/A N/A N/A N/A N/A

31 6 N/A N/A N/A N/A N/A N/A

32 5 N/A N/A N/A N/A N/A N/A

33 6 N/A N/A N/A miR-135a N/A N/A

34 4 N/A N/A N/A N/A N/A N/A

35 28 Cellular nitrogen compound
metabolic process

78.6 6.2E-12 N/A N/A N/A

36 25 Cellular nitrogen compound
metabolic process

76 2.1E-9 N/A N/A N/A

37 8 N/A N/A N/A N/A N/A N/A

38 24 N/A N/A N/A N/A N/A N/A
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Table 3 Analysis of mouse consensus modules (Continued)

39 10 N/A N/A N/A N/A N/A MCM2

40 10 N/A N/A N/A N/A N/A N/A

Summary of the 40 consensus modules. Count: The number of module members; Gene Ontology (GO) term: Statistically significant GO terms based on DAVID tool
(P-value <= 0.05); Percentage: The percentage of modular genes characterized by the specific GO term; Fisher exact P-value: modified Fisher exact P-value (EASE score) as
provided by DAVID (the complete mouse genome was used as background); Age-dependent miRNAs: Age-dependent miRNAs based on linear regression analysis; Age-
dependent genes: Age-dependent genes based on linear regression analysis; GeneAge genes: longevity-associated genes according to GenAge database. N/A: not available.
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Figure 5 Homology-based human modules. Layout of the three human modules descending after the homology-based matching between human
and mouse consensus modules. Module A displayed significant node overlap relative to mouse Mod_5, module B to Mod_13 and module C to Mod_19.
Pink nodes highlight the homologs.
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Table 4 Disease annotation data for proteins included in human modules

Gene Gene name Disease name

NDUFS2 NADH dehydrogenase Fe-S protein 2 Cardiomyopathies

NDUFV2 NADH dehydrogenase flavoprotein 2 Cardiomyopathies

ARHGAP9 Rho GTPase activating protein 9 Coronary Vasospasm

HADHB hydroxyacyl-CoA dehydrogenase Heart Diseases

ATP5J ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6 Heart Diseases

ARHGDIB Rho GDP dissociation inhibitor (GDI) beta Acute Coronary Syndrome

RHOJ ras homolog family member J Cardiomyopathies

NDUFS1 NADH dehydrogenase Fe-S protein 1 Cardiomyopathy, Hypertrophic

UCP3 uncoupling protein 3 Heart Failure/Hypertrophy, Right Ventricular

ATP5I ATP synthase, H+ transporting, mitochondrial Fo complex, subunit E Heart Diseases

COX5B cytochrome c oxidase subunit Vb Myocardial Ischemia/Cardiomegaly

NDUFA2 NADH dehydrogenase 1 alpha subcomplex, 2 Coronary Disease

NDUFB3 NADH dehydrogenase 1 beta subcomplex, 3 Coronary Disease

Cardiovascular disease annotation data for 13 proteins participating in the human modules. Data was obtained from DisGeNET database.

Table 5 Age-dependent mRNAs/miRNAs

List of age-dependent miRNAs F-test
(P-value < 0.05)

List of age-dependent genes F-test (P-value < 0.05)

miR-106a 1810046J19RIK, 2310044G17RIK, 2900073G15RIK, ACOT1, AKR1C13,
miR-135a ALAS1, ALDOB, AMPD3, AMY1, ANKRD1, ANXA5, AOX1, APBB1, BAIAP2L1, BAX, BLCAP, C1QA, C3, CAT,

CCND1, CCNDBP1, CDC37, CDC37L1, CDH22, CLU, CNOT8, COL5A2, CORIN, CP, CRHR2, CSDA, CTGF, CTSD,
CXCL14, D0H4S114, D930014E17RIK, DAP, DAP3, DAZAP2, DCI, DECR1, DNAJA1, DNAJC5, DYNLL1, EDN3,
EEF2, EFHD2, EIF4EBP1, FAH, FBP2, FGL2, FIGF, FXYD6, G0S2, GABARAPL1, GLUL, GP49A, GPR56, GRINA,
GSTA4, GUCY1B3, H19, HADH, HDLBP, HIF1A, HIST1H1C, HIST1H2BC, HNRPDL, HOMER2, HSPA8, HSPH1,
HTATIP2, HTRA1, IER3, IRAK1, ITGB6, ITM2B, IVNS1ABP, KCNK1, KLF9, LAMP1, LGALS4, LGMN, LRRC3B, LYZ2,
MID1IP1, MLF1, MLYCD, MORF4L1, MRPL45, MRPL50, MXD4, MYADM, MYOM2, MYOT, NDUFA10, NDUFV1,
NEDD1, NFKBIA, NNT, NT5E, OSMR, PAH, PCDHB20, PEG3, PER1, PFDN1, PGAM1, PIM3, POPDC3, POSTN,
PPAP2B, PRKCQ, PRNP, PROX1, PSMB4, PTER, PTP4A3, PTTG1IP, RAB4A, RCAN1, RELA, REXO2, RFXANK,
RHOU, RPA3, RPL10, RPL23, RPL37, SCARB2, SCN1B, SDPR, SEC63, SEPP1, SERPINA3N, SERPINH1, SH3GL2,
SLC35A2, SLC3A2, SLC4A8, SMAD4, SNX3, SOCS3, SQSTM1, STAG2, STAP2, STAT5A, TCEA1, TCTA, TEF, TFRC,
TGM2, TMSB4X, TNFAIP8, TPP1, TRPM7, TSPAN17, TSPAN4, UBA3, UNG, XPR1, YWHAE

miR-142-3p

miR-146b

miR-152

miR-199a-5p

miR-19a

miR-19b

miR-21

miR-221

miR-222

miR-223

miR-27b

miR-290-5p

miR-29a

miR-342-3p

miR-34a

miR-466d-3p

miR-374

miR-466c-5p

miR-466f-3p

miR-468

miR-574-5p

miR-677

Using a linear regression model and two-tailed F-test, 24 age-dependent miRNAs and 162 age-dependent mRNAs were identified (P-value < 0.05). Bold indicates
miRNAs and mRNAs included in the consensus modules. Italics indicate miRNAs with insignificant synergistic effect.
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NDUFV1 (NADH dehydrogenase flavoprotein 1) are in-
volved in oxidative phosphorylation and associated to
cardiovascular diseases [61]; RHOU (ras homolog gene
family, member U) is responsible for changes in cyto-
skeleton and cell shape during aging [62]; IER3 (immedi-
ate early response 3) is involved in heart failure [63];
RPL10 (ribosomal protein L10) and RPL37 (ribosomal
protein L37) reflect the decline in ribosomal activity in
the aging heart [64]); RPA3 (replication protein A3) me-
diates critical DNA transactions throughout the genome
[65]; EEF2 (eukaryotic translation elongation factor 2) is
involved in the slowing down of protein synthesis during
cardiac aging [66].
Our suggestion is that age-dependent molecules, as

derived by classic statistical tests and/or supported by
one independent study, are of little value on their own.
Alternatively, age-dependent molecules gain value within
the boundaries of modules that as a whole change sig-
nificantly during lifespan even if their neighbors display
moderate differential expression and thus have a lower
discriminative potential. Under this notion, the modular
approach filtered the differentially expressed molecules,
as derived from classic statistical tests, to a smaller more
reliable set and more importantly contextualized them
into neighborhoods. From the synergism perspective, we
deescalated the value of several miRNAs descending
from classical differential expression analysis; we showed
that differential expression is not synonymous or indica-
tive of synergism.

Discussion
Accumulating evidence shows the broad impact of miR-
NAs in modulating complex physiological or disease phe-
notypes. A cohort of recent studies has stressed out the
pervasive role of miRNAs in the analysis of cardiovascular
diseases and shifted the interest to miRNAs as rational
drug targets and, as such, miRNA-based therapy repre-
sents an essential and promising trend in the future [67].
Moreover, aging is the predominant risk factor for cardio-
vascular diseases and contributes to a significantly worse
outcome in patients with acute myocardial infarction [68].
In this orientation, this work is motivated by recent find-
ings revealing novel cardiac aging biomarkers at the level
of individual proteins and miRNAs in the mouse model
[6,8,26]. However, there is still no meta-analysis study to
assess the validity and reproducibility of these observa-
tions and even less is known about the functional asso-
ciation and interactions among molecular components.
We address this challenge and integrate cardiac tissue
miRNA and mRNA expression profiles from multiple
independent studies with various interaction data and
constructed multiple integromics networks that served
as the basis for defining consensus communities (mod-
ules) as cardiac aging signatures. Unlike conventional
clustering or classification methods, network-based
methods can implicate proteins with low discriminative
potential (e.g., those that are not differentially expressed)
if such proteins participate in a community whose overall
activity is discriminative [69]. Such proteins can arise
within a significant community if they are essential for
maintaining its integrity, that is they are required to inter-
connect many hub proteins.
An important aspect of our network analysis is the con-

struction of the miRNA-miRNA interaction network and
the identification of extensive synergies that affect pro-
foundly the aging process and decline of cardiac tissue. Pre-
vious studies have inserted the term ‘synergy’, in the context
of miRNA regulation, to describe pairs of miRNAs that sig-
nificantly co-regulate at least one functional module [70].
Moving a step forward, we developed an integrated param-
eter synergy score which can be used to assess the complex
nature and scale of miRNA synergy in the genome. This
unique scoring system measures the contribution of a
miRNA pair both to a specific process (Intra-modular) and
to multiple processes (Inter-modular). Initially, we re-
address and complement to the findings of recent studies
that identified miRNAs involved in heart tissue aging
process. The work of Boon et al. [8] suggested that miR-34a
inhibition reduces cell death and fibrosis following acute
myocardial infarction and improves recovery of myocardial
function. We support the longevity-associated role of miR-
34a since it participated in the consensus modules, yet
showed no substantial involvement in synergism. The
associated modular genes were: CUEDC1 (CUE domain
containing 1), FCGR2B (Fc receptor), ACCN1 (amilor-
ide-sensitive cation channel 1), HCN3 (hyperpolariza-
tion-activated cyclic nucleotide-gated K + 3), PADI2
(peptidyl arginine deiminase type II), 4930453N24RIK
(predicted gene), PNOC (prepronociceptin) and P2RY2
(purinergic receptor G-protein coupled 2). HCN3 has
been suggested to be involved in cardiac aging and de-
cline since it is the pacemaker and modulates activity in
the contractile myocytes [71]. Also, the relation of miR-
34a with PNOC has been reported in brain aging as
proposed by Somel et al. [72].
Moving forward, miR-22 was shown to be involved in

age-related cardiac fibrosis, whose overexpression con-
tributed to cellular senescence and migration of cardiac
fibroblasts [26]. Our findings do not add value to its in-
volvement in aging process (not present in consensus
modules) and its synergy impact was not substantial
(miR-18b/-22 pair appeared on the 552th rank). Never-
theless, miR-351 proposed as aging biomarker by the
same study - but not further experimentally validated –
was shown to have significant synergy effect on aging
process (miR-125b-5p/-351 pair appeared on the 112th

rank) and was incorporated in consensus modules. The
module around miR-351 included, among others,
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proteins such as CBS (cystathionine β-synthase),
MMP11 (matrix metalloproteinase 11) and NEU1 (lyso-
somal sialidase 1). Damage on CBS has been shown to
lead to decreased H2S production and concentration
during aging [73]. The work of [74] has suggested that
the differential regulation of MMPs is associated with
aging and hypertension in the rat heart. NEU1 has been
proposed to participate in the elastin degradation during
vascular aging and provoke atherosclerosis [75].
Another previous study showed that the members of

miR-17-92 cluster, including miR-18a, −19a, and -19b,
were differentially expressed in failure-prone heart of aged
mice as well as in cardiac biopsies of idiopathic cardiomy-
opathy patients at old age with severely impaired cardiac
function [42]. We corroborate to this observation since
the miR-19a/-19b and miR-18a/-18b pairs scored high in
terms of synergy (2nd and 7th rank respectively) despite
not participating in the consensus modules. In summary,
the miRNA synergy analysis provided a list of new candi-
date miRNA pairs both included and not included in the
consensus modules. After reviewing the literature we
found evidence that link most of the top-scoring miRNA
pairs (until 10th rank) to aging and cardiovascular diseases
and consider them reliable for further validation.
Most importantly, our analysis revealed a modularized

view of the aging process in cardiac tissue and established
the ground for a more holistic perspective of the complex
regulatory processes taking place in cardiac tissue during
lifespan. Initially, we comment on the scale of longevity ef-
fect upon the interactome. Our results showed that only a
small fraction of the network edges is affected during life-
span in contrast to other studies that evaluated the effect
of heat shock on yeast interactome and observed global
disintegration [25]. However, we argue that such global
changes are probably prominent in cases when the bio-
logical system is severely under attack like in heat shock;
aging is a gradual cumulative process and should probably
be evaluated on a smaller scale and through perturbations
on specific areas of the interactome.
Moving forward, the set of 40 consensus modules des-

cended from various independent mRNA and miRNA ex-
pression studies along with the applied weighting schemes
increased the homogeneity of the module compositions
and ensured a high probability of identifying members
with both correlating and anti-correlating profiles during
age transition from young to old; thus, the derived obser-
vations can be regarded as more confident and realistic.
The topological analysis suggests that modules affect more
profoundly the stability of the network compared to indi-
vidual age-dependent nodes and less when compared to
hub nodes. This observation stresses out an important ad-
vantage of module-based analysis into describing aging
process; it allows the resulting communities to display
mixed features like (non)hubness, include proteins placed
in the periphery - which in other cases would be neglected
- and contain both differentially expressed nodes and in-
significantly differentially expressed nodes which however
affect longevity. The GO enrichment analysis of modules
elucidated well-established cardiac age-related terms like:
‘generation of precursor metabolites and energy’, ‘electron
transport chain’, ‘cell cycle phase’ and ‘organelle fission’. We
relegate the reader to the work of Houtkooper et al. [76]
which exemplifies that metabolic dysfunction is a common
hallmark of aging.
Moving further, considering that modules regulating

aging in model systems may not be related to human
aging, mouse consensus modules were matched against
human based on homologs. The comparison revealed
three mouse consensus modules displaying significant
overlap with the respective human. Gene Ontology ana-
lysis on the corresponding human modules elucidated
terms like ‘electron transport chain’, ‘signal transduction’,
‘actin cytoskeleton organization’, ‘programmed cell death’
and ‘protein metabolic process’. We comment on the
term ‘actin cytoskeleton organization’ which has been
suggested to be linked to downstream signaling events
that further modulate cellular activity, and which can de-
termine cell fate, the regulation of programmed cell
death, the maintenance of homeostasis and the process
of cellular aging [77,78]. In yeast, for example, it has
been shown that the level of damage sustained by the
actin cytoskeleton under oxidative stress is directly re-
lated to apoptosis. Further evidence descends from ob-
servations that actin-based propulsion mechanisms are
required for the inheritance of mitochondria and anti-
ageing factors into newly formed cells. In addition, actin
is known to directly influence the formation of protein
aggregations [77]. Moving forward, the proteins partici-
pating in these modules are mainly NADH dehydroge-
nases involved in the respiratory chain, mitochondrial
ATP synthases involved in oxidative phosphorylation,
cytochrome oxidases, Ras superfamily GTPases and ribo-
somal proteins. NADH dehydrogenases have been sug-
gested to associate with heart aging [79], ATP synthases
are linked with the changes in ATP supply in advanced
age [80], decrease of cytochrome oxidases mRNA tran-
scripts during aging has been reported in the rat heart
[81], the association of Ras superfamily with longevity has
been implicated in the work of Borras et al. [82] while de-
clining ribosomal activity may be a feature of aging in the
heart [64]. Further, we explored the hypothesis that genes/
proteins related to cardiac pathophysiology do not ne-
cessarily influence the aging process in cardiac tissue.
Our results suggest that this is partially true since 13
out of the 189 proteins included in the human modules
are related to various cardiac diseases. At this point we
relegate the reader to the review of North and Sinclair
[83] which summarizes how the genetic pathways that
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regulate aging in model organisms influence the cardio-
vascular health state.
There are some limitations in our study. First, the plat-

form differences at probe-level among experiments and
the genome-scale coverage reduced significantly the
intersecting genes among experiments and thus the size
of the protein interaction graph under study. In this
sense, many other consensus modules could appear if
the protein network expanded in size. Also, the small
number of publicly available mouse and human expres-
sion experiments recording the age phases of cardiac tis-
sue affects the impact of our results. More value will be
added to our methodological framework in advent of
more comprehensive data. Despite these limitations, our
study still provides a new insight into the synergism of
miRNAs in cardiac aging and offers a more reliable pool
of multi-layer aging signatures for further experimental
validation.

Conclusions
This works offers the first systemic view of cardiac aging
mechanisms well known to be highly interconnected
with many cardiovascular diseases. For this, we propose
a meta-analysis network-based methodology that inte-
grates proteome and micronome interaction data along
with transcriptome expression data from multiple inde-
pendent studies to produce robust modular signatures of
longevity mechanisms, in contrast to the individual mo-
lecular components proposed by each transcriptome
study separately. Moving a step forward, we explore the
micronome synergism from the modularized network
perspective and propose miRNA pairs with profound
collective action during cardiac aging. The meta-analysis
findings revise the role of several recently implicated
molecules and re-contextualize them into communities
with high reproducibility across datasets and organisms.
The proposed methodological framework can be applied
in a wide range of complex cellular processes and diseases,
and can subvene combinational multi-target miRNA ther-
apy of age-related cardiovascular diseases.

Methods
Datasets
Interaction datasets
All human and mouse biomolecular interactions were
downloaded with the use of MiMI Cytoscape plug-in
[84] where we selected all molecule types and all data
sources. Also, protein interactions were collected with
the use of iRefR package in Bioconductor [85]; for each
organism (mouse or human) we isolated the interactions
where both nodes belonged to the same reference organ-
ism. A universe of miRNA-mRNA interactions for all re-
ported mouse miRNAs was constructed as a composite
of all validated interactions downloaded from TarBase
(http://diana.cslab.ece.ntua.gr/tarbase) and predicted tar-
gets reported by miRecords (http://miRecords.biolead.
org). The predicted component integrates the predictions
produced by 11 established miRNA target prediction pro-
grams (DIANA-microT, MicroInspector, miRanda, Mir-
Target2, miTarget, NBmiRTar, PicTar, PITA, RNA22,
RNAhybrid, and TargetScan⁄TargertScanS). Predictions
were filtered to only consider those targets predicted by
at least 4 of 11 prediction algorithms (as proposed in
the works of [86,87]). The TarBase validated interac-
tions were then added to the filtered list and duplicated
interactions were eliminated. Information about the hu-
man miRNA-disease network was obtained from miR2-
Disease database (http://www.mir2disease.org/), human
protein disease data was obtained from DisGeNET
database (http://www.disgenet.org/) and list of mouse
age-related proteins was downloaded from GenAge
database (http://genomics.senescence.info/genes/).

Expression datasets
mRNA and miRNA expression datasets were obtained
from the Gene Expression Omnibus database (http://
www.ncbi.nlm.nih.gov/geo/) and from published studies.
The analyzed data represent a comprehensive collection
of most experiments (9 in total) that have evaluated the
effect of aging in the laboratory mouse or human sam-
ples, including the cardiac-specific samples generated as
part of the AGEMAP project [88] (see Additional file 3).
To our knowledge, there is no human public miRNA ex-
pression dataset that records the age effect in cardiac tis-
sue and for this the miRNA synergism was not explored
in this case. Only age-related data from healthy, non-
treated specimens was analyzed and data from specific
diseases, treatments and mutants were excluded. We de-
note that heart age-specific experiments exist also in
other organisms like rat model; however, the lack of suf-
ficient biomolecular interactions hampers the compari-
son among organisms and therefore the rat model was
excluded from analysis.
Most data were generated using Affymetrix oligonucleo-

tide microarray platforms, but Agilent, miRCURY and
non-commercial arrays were also used in some experi-
ments. All experiments were normalized with global scal-
ing, MAS 5.0, Z-transformation, lowess or quantile
method except the dataset of Park et al. [89] which was
quantile normalized. If more than 30% of measurements
for a given probe contained nulls or missing values, the
probe was excluded. Otherwise, null values were replaced
by the probe’s average (row average method) and probes
targeting the same gene were averaged. In case an experi-
ment contained male and female samples, the dataset was
split and each subset was treated independently through-
out analysis, in order to ensure that the module detecting
procedure is not affected by gender factor. All datasets,

http://diana.cslab.ece.ntua.gr/tarbase
http://mirecords.biolead.org/
http://mirecords.biolead.org/
http://www.mir2disease.org/
http://www.disgenet.org/
http://genomics.senescence.info/genes/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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except those already processed, were log2 and Z-
transformed. Also, we checked in each dataset for failed
samples; for this, we created an all-by-all matrix of how
well each sample’s expression profile correlates with the
profiles of the remaining samples in the same age group
and excluded samples whose average Pearson’s correlation
was lower than 0.7. While these differences in pre-
processing were not ideal, the deleterious effect of such
differences and batch effects was minimized by analyzing
all experiments independently, without combining expres-
sion scores from different studies.

Multi-layer unweighted network
Construction of multi-layer network
With the term ‘multi-layer network’ we define a graph in-
cluding two types of nodes (mRNAs and miRNAs) and
three types of relations (mRNA-mRNA, miRNA-mRNA
and miRNA-miRNA). We denote that the terms ‘gene’,
‘mRNA’ and their encoded ‘proteins’ are used interchange-
ably in this paper. The miRNA-miRNA layer was con-
structed based on the hypothesis that their co-regulating
targets are highly enriched in the same Gene Ontology
(GO) biological process terms [90]. The GO file on Bio-
logical Processes was downloaded from the GO consor-
tium (http://geneontology.org/) and biological process
categories were restricted to below the fourth level of the
hierarchy to avoid analyzing very general non-descriptive
terms. In detail, for a given miRNA pair A and B, we iden-
tified the target subset they co-regulate Atarget ∩ Btarget.
The over-represented biological processes of the target
subset are defined according to hypergeometric cumula-
tive distribution. The probability PGi for Atarget ∩ Btarget in
the GO term i is calculated as:

PGi ¼ 1−FðxjN ;Ki;MÞ ¼ 1−
Xx
t¼0

Ki

t

� �
N−Ki

M−t

� �

N
M

� � ; i ¼ 1; 2;…; I

ð1Þ
where N is the number of all targets (default back-

ground distribution), Ki is the total number of genes that
are annotated in the GO term i and targeted by miR-
NAs, M is the size of Atarget ∩ Btarget, x is the number of
targets in Atarget ∩ Btarget that are also annotated to term
i and I is the total number of GO terms. The PG score
was computed for each miRNA pair and for each avail-
able GO term characterizing the intersecting target
mRNAs. The significant miRNA synergistic pairs were
defined after setting PG ≤ 0.05 for at least 9 GO terms.
The mRNA-mRNA layer was formed after examining

the expression datasets for intersections in terms of
Entrez Ids. After checking all combinations we selected
the intersection of the GSE11291, GSE43556 and Park
et al. [89] datasets which contained 10,084 common IDs.
For this gene subset, the mRNA-mRNA level included
14,560 interactions among 3,396 nodes after removing
self-loops. The miRNA-mRNA layer included 45,802 re-
lations among 421 miRNAs and 6,195 mRNAs while the
miRNA-miRNA layer contained 2,553 interactions
among 396 miRNAs. After removing smaller compo-
nents, the final graph included 62,915 interactions
among 7,321 nodes (see Additional file 4). We note that
for the remaining expression datasets (i.e. outside the
intersection) a separate multi-layer network was con-
structed which was in all cases smaller in terms of nodes
and edges; however, we state that the 2,553 miRNA-
miRNA interactions were present in all network cases.
For the analysis of the human transcriptome dataset

the network was constructed only with regard to pro-
teins and the final topology contained 176,700 interac-
tions among 16,336 nodes (see Additional file 4).

Topological analysis of the multi-layer unweighted network
The topological characteristics of the unweighted network
were analyzed with the NetworkAnalyzer Cytoscape plug-
in [91]. The degree of a mRNA (or miRNA) is the number
of its total connections in the layer under investigation.
Node degree distribution P(k) is defined as the number of
nodes with a degree k for k = 0, 1, 2,… NetworkAnalyzer
considers data points with positive coordinate values
for fitting the line where the power law curve of the
form y = βxa. The R2 value is a statistical measure of the
linearity of the curve fit and used to quantify the fit to the
power line. When the fit is good, the R2 is close to 1.
Also, we tested the stability of the unweighted network

after attacking nodes of interest and recorded the
changes on characteristic path length (CPL). CPL is de-
fined as the average of the shortest path lengths between
any two nodes:

CPL ¼ 2
N

X
i∈N

X
j∈N j≠i

dij

N−1
ð2Þ

where N is the number of all nodes, dij the shortest
path length between i and j, defined as the minimum
number of links traversed to get from node i to node j.

Multi-layer integromics weighted network
The proposed integromics network approach combines
the transcriptome, proteome and micronome informa-
tion in the form of a composite graph, upon which a
module-detecting algorithm will define multi-layer mod-
ules with two types of nodes (mRNAs and miRNAs) and
three types of relations (mRNA-mRNA, miRNA-mRNA,
miRNA-miRNA). For each type of relation we applied an
adapted weighting scheme based on the notion that the
aim is to identify the putatively age-related communities
that change substantially in the transition from young to

http://geneontology.org/
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old state. We denote that for the mouse model, there
were 28 possible combinations of mRNA/miRNA ex-
pression data to be laid as information onto the interac-
tome network and consequently 28 weighted networks
were produced.
mRNA-mRNA/miRNA-miRNA: An adapted metric

was employed that promotes the interacting nodes that
co-express (co-activate or co-repress) and simultan-
eously discriminate significantly in terms of expression
between the two states (young/old). In detail, we
assigned a non-negative weight to each interaction,
which descends after processing the expression profiles
of the corresponding molecules. For each mRNA or
miRNA, the expression profiles in both classes (young/
old) were reshaped in a vector followed by another vec-
tor representing the corresponding class (c) labels. Next,
the activity score (α) of each interacting pair of mRNAs
or miRNAs i and j was computed as:

aij ¼
gi þ gjffiffiffi

2
p ð3Þ

where gi and gj are the Z-transformed expression
values. The activity score is discretized (a’ij) into ⌊log 2(#
of samples) + 1⌋ equally spaced bins as described in
[69,90]. The adapted discriminative score (DSij) com-
putes the normalized mutual information (NMI) be-
tween a’ and c:

DSij ¼ NMI a
0
ij; c

� �
ð4Þ

A reason for using an information-theoretic metric is
to deal with the limited number of samples available in
aging expression dataset [92] and the reason for using
specifically NMI is to capture the potential heterogeneity
of expression in age samples, that is, differences not only
in the mean but in the variance of expression (available
Matlab codes at http://biosignal.med.upatras.gr). The DS
ranges in [0,1] with larger values indicating strong cor-
relation and at the same time substantial change from
young to old.
miRNA-mRNA: Based on accumulated evidence that a

miRNA may positively correlate with its target mRNA,
we used a metric that considers both the correlation and
anti-correlation patterns between mRNA and miRNA
nodes and the simultaneous differentiation from young
to old state. For three variables X, Y, Z, the three-way
interaction information I is defined as [93]:

I X;Y ;Zð Þ ¼ CMI X;Y ZÞ−MI X;Yð Þjð ð5Þ
where X, Y is the expression value of each member of

the miRNA-mRNA pair and Z is the class (1 for young,
2 for old state). MI stands for Mutual Information and
CMI for Conditional Mutual Information.
Modularization on the multi-layer integromics weighted
network
Each weighted network was partitioned into overlapping
modules with the use of Detect Module from Seed Pro-
tein (DMSP) algorithm [94] after adjusting all weights to
‘1-weight’ (DMSP considers weights closer to zero dur-
ing module construction). The basic operation of this al-
gorithm is to identify a module on the weighted graph
by expanding a kernel node set, which originates from a
given ‘seed’ node used as starting-point. In our case, all
mRNA and miRNA nodes served as seeds. The parame-
ters of DMSP were set after repetitive trials as p1 = 0.5
and p2 = 0.6 to avoid over-sized modules (>80 members).
For permutation testing, we randomly shuffled expression
values for all mRNAs/miRNAs 1000 times and calculated
the average weight of modules in random conditions. For
each module, the significant P-value was the percentage of
cases where the average weight was lower than the value
in the real condition (P-value < 0.05).

miRNA synergy score
Accumulated evidence suggests that despite their limited
number, miRNAs are responsible for evolutionarily ro-
bust regulatory effects through coordinated collective ac-
tions. As such, attacking a miRNA that is part of a
broader functional group will not be as detrimental as
assigning each miRNA a unique task. In this orientation,
we explored the miRNA synergism from the modular
perspective. We supposed that miRNA synergy can be
dissected into two types: (a) the intra-modular regulatory
effect of a miRNA pair upon the same biological process,
i.e. participating in the same module and (b) the inter-
modular regulatory effect of a miRNA pair upon mul-
tiple biological processes, i.e. each member of the pair is
involved in a different module. The following formula is
used to calculate MS score for any given miRNA pair
miRNA i and miRNA j:

MSij ¼ n1⋅Intraij þ n2⋅Interij ð6Þ

where Intra is calculated after dividing the number of
modules containing a given miRNA pair with the total
number of identified modules in the graph. As Inter, we
define:

Interij ¼ 1
k

Xk
p¼1

Nshared interactions between pi and pj
Nproteins of pi∪pj

ð7Þ
where k denotes all possible combinations of module

pairs in which miRNAi and miRNAj participate. pi and pj
represent the modules of one possible pair regulated by
miRNAi and miRNAj respectively. In order to more clearly
illustrate the calculation process of Inter, a graphical

http://biosignal.med.upatras.gr/
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example presentation is provided (Figure 6). In case In-
ter did not range in [0,1], we scaled the results in that
range. n1 and n2 are used as parameters for the contri-
bution of Inter and Intra to the MS score. In this study
we selected after repetitive trials n1 = 0.6 and n2 = 0.4 to
promote the regulatory impact of intra-modular miRNA
synergism.

Meta-analysis of modularized weighted networks
The comparison of modules across datasets and organ-
isms was realized based on the node overlap ratio, defined
as [95]:

NOR Mi;Mj
� � ¼ 2⋅

Mi∩Mj

Mi þMj
ð8Þ

where Mi and Mj represent the compared modules
derived from two modularized networks respectively.
We note that analysis on overlapping edges was not
conducted due to the fact that the module-detecting
algorithm by definition preserves, during the imple-
mentations across datasets, the same interactions
among a specific subset of nodes (see [94] for more
details).
After filtering procedure, only 40 modules displayed

NOR ≥ 0.7 in at least 18 out of the 28 modularized
weighted networks. We checked the frequency distribu-
tion of consensus modules to ensure that no biases were
introduced by specific combinations of experiments and
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Figure 6 Estimation of Inter miRNA synergy. Example illustration for calcu
module. Suppose miRNA A targets modules A, B, C, D and miRNA B targets m
DF to be examined for shared edges between modules and the number of u
more specifically by the Park et al. dataset which generated
the majority of the combinations. At this point we denote
that the majority of consensus nodes were present both in
the initial large network (GSE11291, GSE43556 and Park
et al. [89]) as well as in the smaller scale networks
(GSE8146, GSE75 and GSE9902). The consensus module
was defined as the smallest module (in terms of nodes)
among the overlapping modules derived by the combi-
nations. With respect to human dataset, the final hu-
man modules were defined after looking for modules
with high overlap between both male and female data-
set. Also, NCBI’s Gene (http://www.ncbi.nlm.nih.gov/
gene/) and HomoloGene (http://www.ncbi.nlm.nih.gov/
homologene) resources were employed to check the degree
of overlap among mouse consensus and human modules
only with respect to proteins [57]. We denote that the over-
lap threshold was lowered to 0.3 due to the absence of miR-
NAs and the insufficiency of common nodes (homologs).
Regarding synergy scores, the MS values were calcu-

lated separately for each modularized weighted network
and then the Borda count voting scheme [96] was ap-
plied to rank the miRNA-miRNA relations. The Borda
count is one of the most famous and intuitive rank ag-
gregation schemes used frequently in bioinformatics
meta-analysis methods [97,98]. In detail, each element in
each ordered list is given a score depending on its rank
and then these weights are summed up across all such
lists. Elements in the aggregated list are given in de-
scending order according to the overall scores.
miRNA B
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F

ter (BE) + Inter (BF)
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lating Inter miRNA synergy for miRNA pairs not included in the same
odules E and F. There are 8 possible pairs AE, AF, BE, BF, CE, CF, DE and

nion proteins. In this example the Inter score was estimated to 0.29.
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Age-dependent mRNAs/miRNAs
Beyond the scope of this study, that is to find age-related
modules, we employed classical statistical tests for identi-
fying age-dependent mRNAs/miRNAs so as to explore
later their place into modules. For each dataset, we first
tested the hypothesis that the expression of a given
mRNA/miRNA is associated with age. We denote that
with respect to Park et al. [89] experiment the analysis
was conducted separately for each strain and age-
dependent genes were set if supported by at least three
strains. Independent analysis was also conducted in case
male and female specimens are available and putative
genes were considered only if were characterized as statis-
tically significant in both genders.
Similar to the study of [57] we performed a linear re-

gression for each mRNA/miRNA using the equation:

Y ij ¼ β0j þ β1jAgei þ εij ð9Þ

where Yij is the signal intensity of mRNA (or miRNA) j in
sample i, Agei is the age of the sample i, and ɛij is the error
term. The coefficients β0 and β1 were estimated by least
squares. The derived differential expression was evaluated
in terms of statistical significance with a two-tailed F-test to
determine whether the slope of the curve is different than
zero, which would indicate a link between the expression
signal and age. Genes supported by at least three experi-
ments and miRNAs supported by all experiments along
with a P-value below 0.05 were characterized as putatively
age-dependent.

Additional files

Additional file 1: Borda count ranking results of the 2,553 miRNA
pairs based on the synergy scores as evaluated from 28 weighted
networks in the mouse model. In bold the miRNA pairs identified in
the consensus modules are highlighted.

Additional file 2: Consensus modular interactions. Every interaction
is accompanied by the respective module index. Duplicate interactions
may exist in case an interaction is present in multiple modules.

Additional file 3: Summary of the microarray datasets used in the
study.

Additional file 4: Mouse and human interactome data.
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