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Abstract
This paper is concerned with qualitative properties of the evolutionary p-Laplacian
population model with delay. We first establish the existence of solutions of the
model by using the method of parabolic regularization and energy estimate and give
the uniqueness by a recursive process. Then, combining the upper and lower solution
method and the oscillation theory of functional differential equations, we obtain the
oscillation of all positive solutions about the positive equilibrium.
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1 Introduction
This paper is concerned with the following evolutionary p-Laplacian with delay:

∂u
∂t

– d(t) div
(|∇u|p–∇u

)

= u(x, t)
(
a + bum(x, t – τ ) – cun(x, t – τ )

)
, (x, t) ∈ � ×R+, (.)

subject to the initial and boundary value conditions

|∇u|p–∇u · �n = , (x, t) ∈ ∂� ×R+, (.)

u(x, t) = η(x, t), (x, t) ∈ � × [–τ , ], (.)

where � ⊂ R
N is a bounded domain with smooth boundary, p ≥ , a, b, c, τ >  are all

constants, m, n >  are integers satisfying m < n,  < d(t) ∈ C([, +∞)), and η ∈ L∞(� ×
[–τ , ]) ∩ Lp(–τ , ; W ,p(�)) is a nonnegative function satisfying some suitable compati-
bility conditions.

The equations of the form (.) have been suggested as a mathematical model of the
general Logistic model with delay in biology []. The functions u(x, t) represent the spatial
density of the population at space x and time t, the diffusion term div(|∇u|p–∇u) repre-
sents the effect of dispersion in the habitat, which models a tendency to avoid crowding,
and the speed of the diffusion is rather slow since p > , τ is the generation time, the
boundary conditions (.) describe the living environment at the boundary and that there
is no migration of individuals across the boundary ∂�, a denotes the birth rate, b is the
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inter-specific competition, which represents an advantage to the species in grouping to-
gether, in that it adds to the growth rate in regions of high population density, whereas c
is the intra-specific competition for resources that inhibits population growth.

In the last few decades, there are many works on the existence and uniqueness of so-
lutions for parabolic equations with delay(s) (see [–] and the references therein). For
example, Hino et al. [] studied the existence of almost periodic solutions of parabolic
equations with infinity delay in Banach spaces. In [], the authors established the exis-
tence of positive travelling fronts for N-dimensional delayed reaction diffusion systems.
Pao [, ] discussed the global existence and uniqueness of coupled system of nonlinear
parabolic equations with both continuous and discrete delays. However, most of the re-
sults in the literature are concerned with linear and semilinear parabolic equations with
delay(s). But for the quasilinear parabolic equation, especially for the degenerate or singu-
lar parabolic equations, with delay(s) in nonlinear source terms, as far as we know, there
are very few results.

The oscillation of solutions for delayed evolutionary equations has received widespread
attention; see, for example, [–] and the references therein. For the ODE model, Gopal-
samy and Ladas [] studied the oscillation and asymptotic behavior of

N ′(t) = N(t)
[
a + bN(t – τ ) – cN(t – τ )

]
.

The oscillation of all positive solutions about the positive equilibrium N∗ is established,
and the equilibrium N∗ attracts the solutions of the initial value problem globally. It is
known that the density of the population is not only dependent on time but also on the
position in space. So, taking the spatial structure into account, in [], the author investi-
gated the oscillation of the positive equilibrium for the general Logistic model with linear
diffusion. Then, in , the asymptotic stability of system (.)-(.) without delay was
investigated []. It is worth mentioning the works by Wang and Wang et al. [, ], who
studied the oscillation of the population model for the case p =  of (.). Using the up-
per and lower solution method and theory of functional differential equation, the authors
showed that all positive solutions of the model oscillate about the positive equilibrium.
However, comparing to the linear diffusion equation with the property of infinite speed
of propagation of perturbations, it should be more reasonable to introduce the nonlinear
diffusion version of equation (.), namely

∂u
∂t

– d(t) div
(|∇u|p–∇u

)
= u(x, t)

(
a + bum(x, t – τ ) – cun(x, t – τ )

)
.

The advantage of this modified version lies in that it involves non-Newtonian filtration
diffusion, which is more suitable to the real-world applications.

Motivated by [], in the present paper, we investigate the oscillation of (.)-(.). As
far as we know, few works concerned with the oscillation property were obtained for the
quasilinear parabolic equations such as a non-Newtonian filtration equation with delay.
The biggest difficulty lies in that the oscillation property is studied on a point-to-point
basis. In fact, for the linear partial differential systems with delay, we can discuss the os-
cillation theory of classical solutions (see, e.g., [, –], and the references therein).
However, because of the degeneracy and the singularity, equation (.) might not have
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classical solutions in general. Therefore, before studying the oscillation property, we re-
quire that solutions of problem (.)-(.) are appropriately smooth, which makes us have
to first discuss the existence and uniqueness of a Hölder continuous solution. Using the
method of parabolic regularization method and energy estimate, we investigate the exis-
tence of solutions for (.)-(.). Especially, we show the Hölder continuity of solutions.
Then, according to a recursive process, we also give the uniqueness of the solution. Based
on these results, we find that, for the non-Newtonian filtration equation, the oscillation
phenomenon may occur. By employing the upper and lower solution method and the os-
cillation theory of functional differential equation, we establish a sufficient condition for
all positive solutions of the equation to oscillate about the positive equilibrium.

This paper is organized as follows. In Section , we introduce some basic assumptions
and the definition of weak solutions. Section  is devoted to the study of the existence of
solutions. In Section , we establish the uniqueness of the solution. In Section , we inves-
tigate the oscillation of the solution and present some examples that show the applicability
of our results.

2 Preliminaries
As preliminaries, in this section, we present the basic assumptions and the definition of
weak solutions. First, we introduce some notations. For any T > , let

QT = � × (, T), Qτ = � × [–τ , ], u(t – τ ) = u(x, t – τ )

and denote

E =
{

w : w ∈ Lp(, T ; W ,p(�)
) ∩ L∞(QT ) ∩ C,/(QT ),

∂w
∂t

∈ L(QT )
}

.

Because of the degeneracy and singularity, equation (.) may not have classical solutions
in general, and hence we consider nonnegative solutions of equation (.) in the following
weak sense.

Definition . A function u ∈ E is said to be a weak solution of problem (.)-(.) if for
any T > , ϕ ∈ C̊∞(QT ), and h(x) ∈ C∞

 (�), we have the following integral equality:

∫∫

QT

(
∂u
∂t

ϕ + d(t)|∇u|p–∇u∇ϕ

)
dx dt

=
∫∫

QT

u
(
a + bum(t – τ ) – cun(t – τ )

)
ϕ dx dt, (.)

and

lim
t→+

∫

�

u(x, t)h(x) dx =
∫

�

η(x, )h(x) dx, (.)

u(x, θ ) = η(x, θ ), (x, θ ) ∈ Qτ . (.)

In what follows, we also give the definition of quasi-upper and quasi-lower solutions.



Yang and Deng Advances in Difference Equations  (2017) 2017:13 Page 4 of 21

Definition . A pair of functions ũ(x, t), û(x, t) ∈ E is said to be coupled quasi-upper
and quasi-lower solutions of equations (.)-(.) if ũ(x, t) ≥ û(x, t) in �× (–τ , T) and they
satisfy

∂ũ
∂t

– d(t) div
(|∇ũ|p–∇ũ

) ≥ ũ
(
a + bwm – cwn) for all w ∈ 〈û, ũ〉,

∂û
∂t

– d(t) div
(|∇û|p–∇û

) ≤ û
(
a + bwm – cwn) for all w ∈ 〈û, ũ〉,

∂ũ
∂�n ≥ ,

∂û
∂�n ≤ , (x, t) ∈ ∂� × (, T],

û(x, θ ) ≤ u(x, θ ) ≤ ũ(x, θ ), (x, θ ) ∈ � × [–τ , ),

in the weak sense, where 〈û, ũ〉 ≡ {u ∈ C(QT ) : û ≤ u ≤ ũ}.

3 The existence of solutions
In this section, we study the existence of solutions for problem (.)-(.).

To study the existence of solutions, let us first consider the regularized problem

∂uε

∂t
= d(t) div

((|∇uε| + ε
)(p–)/∇uε

)
+ uε

(
a + bum

ε (t – τ ) – cun
ε (t – τ )

)
,

(x, t) ∈ � ×R+, (.)

∂uε

∂�n = , (x, t) ∈ ∂� ×R+, (.)

uε(x, θ ) = ηε(x, θ ), (x, t) ∈ � × [–τ , ], (.)

where ηε(x, θ ) is a positive bounded function in C∞(Qτ ) satisfying the condition

 < ηε ≤ ‖η‖L∞(Qτ ).

The desired solution of problem (.)-(.) will be obtained by the limit of some subse-
quence of solutions uε of the regularized problem (.)-(.). We first need to establish
the existence of solutions uε , which can be done by using the method of upper and lower
solutions and associated monotone iterations.

Theorem . If ηε(x, θ ) >  for (x, θ ) ∈ � × [–τ , ), then (.)-(.) have a unique positive
global solution in � × (–τ , +∞).

Proof Since a > , c > , and m < n, without loss of generality, we may suppose that the
maximum of the function f (s) = a + bsm – csn is equal to M (M ≥ a > ) when s > . Let
ũ = M∗eM(t+τ ), û = , where M∗ ≥ max(x,t)∈�×[–τ ,) η(x, t). It is easy to verify that, for any
T > , two functions ũ, û in �× (–τ , T) are a couple of upper and lower solutions of (.)-
(.). By Theorem . of [], (.)-(.) have a unique solution uε(x, t) in � × (–τ , T)
and uε(x, t) ∈ 〈, ũ〉. Since T is arbitrary and ηε(x, θ ) is positive, (.)-(.) have a unique
continuous positive global solution uε(x, t) in � × (–τ , +∞). �

We need the following lemma for the a priori estimates on solutions uε .
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Lemma . There exists a positive constant CGN such that, for all u ∈ W ,p(�),

‖u‖s ≤ CGN
(‖∇u‖a

p‖u‖–a
θ + ‖u‖θ

)

with  < θ ≤ s < p∗ and a = ( N
θ

– N
s )( – N

p + N
θ

)–, where p∗ = Np
N–p when N > p and p∗ = ∞

when N ≤ p.

Lemma . Assume that uε is a solution of (.)-(.). Then there exists a positive con-
stant C, independent of ε, such that

‖uε‖L∞(QT ) ≤ C.

Proof Multiplying equation (.) by us
ε (s ≥ ) and integrating over �, we have


s + 

∂

∂t

∫

�

us+
ε dx + sd(t)

∫

�

(|∇uε| + ε
)(p–)/us–

ε |∇uε| dx

=
∫

�

us+
ε

(
a + bum

ε (t – τ ) – cun
ε (t – τ )

)
dx.

Here


s + 

∂

∂t

∫

�

us+
ε dx + sd(t)

∫

�

|∇uε|pus–
ε dx ≤ M

∫

�

us+
ε dx.

Therefore, we have

∂

∂t

∫

�

us+
ε dx +

s(s + )d(t)
( s–

p + )p

∫

�

∣∣∇u
s–
p +

ε

∣∣p dx ≤ M(s + )
∫

�

us+
ε dx.

Then,

∂

∂t

∫

�

us+
ε dx +

s(s + )dm

(s + p – )p

∫

�

∣
∣∇u

p+s–
p

ε

∣
∣p dx ≤ M(s + )

∫

�

us+
ε dx, (.)

where dm = min[,T] d(t). Let

sk = pk –


p – 
, αk =

p(sk + )
sk + p – 

, uk(t) = u(sk +p–)/p
ε (t) (k = , , . . .).

Then inequality (.) with s = sk becomes

d
dt

∥
∥uk(t)

∥
∥αk

αk
+

sk(sk + )dm

(sk + p – )p ‖∇uk‖p
p ≤ M(sk + )

∥
∥uk(t)

∥
∥αk

αk
. (.)

To estimate the terms on the right-hand side of inequality (.), we apply Lemma . with

θ = , s = αk , and a =
– 

αk
– 

p + 
N

to get

∥
∥uk(t)

∥
∥αk

αk
≤ (CGN )αk

(∥∥∇uk(t)
∥
∥aαk

p

∥
∥uk(t)

∥
∥(–a)αk

 +
∥
∥uk(t)

∥
∥αk



)
,
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and thus

d
dt

∥
∥uk(t)

∥
∥αk

αk
+

sk(sk + )dm

(sk + p – )p

∥
∥∇uk(t)

∥
∥p

p

≤ C(sk + )
(∥∥∇uk(t)

∥
∥aαk

p

∥
∥uk(t)

∥
∥(–a)αk

 +
∥
∥uk(t)

∥
∥αk



+
∥∥∇uk(t)

∥∥
aαk sk
sk +

p
∥∥uk(t)

∥∥
(–a)αk sk

sk +
 +

∥∥uk(t)
∥∥

αk sk
sk +


)
, (.)

where C is a constant independent of k.
Since aαk ∈ (, Np(p–)

N(p–)+p ), we can apply Young’s inequality to estimate

C(sk + )
(∥∥∇uk(t)

∥∥aαk
p

∥∥uk(t)
∥∥(–a)αk

 +
∥∥∇uk(t)

∥∥
aαk sk
sk +

p ‖uk‖
(–a)αk sk

sk +


)

≤ sk(sk + )dm

(sk + p – )p

∥
∥∇uk(t)

∥
∥p

p +
(

(sk + p – )p

sk(sk + )dm

) aαk
p–aαk {

C(sk + )‖uk‖(–a)αk


}
p

p–aαk
sk

sk +

+
(

(sk + p – )p

sk(sk + )dm

) aαk
p

sk +
sk

–aαk
{

C(sk + )
∥∥uk(t)

∥∥(–a)αk
sk

sk +


}
p

p–aαk
sk

sk +

and get

d
dt

∥∥uk(t)
∥∥αk

αk
+

sk(sk + )dm

(sk + p – )p

∥∥∇uk(t)
∥∥p

p

≤ C(sk + )
(‖uk‖αk

 +
∥∥uk(t)

∥∥
αk sk
sk +


)

+
(

(sk + p – )p

sk(sk + )dm

) aαk
p–aαk

× {(
C(sk + )

∥
∥uk(t)

∥
∥(–a)αk



) p
p–aαk +

(
C(sk + )

∥
∥uk(t)

∥
∥(–a)αk

sk
sk +


)

p
p–aαk

sk
sk +

}
.

Applying the Poincaré inequality

C
∥
∥uk(t)

∥
∥p

αk
≤ ∥

∥∇uk(t)
∥
∥p

p +
∥
∥uk(t)

∥
∥p

 ,

we have

d
dt

∥∥uk(t)
∥∥αk

αk
+

Csk(sk + )dm

(sk + p – )p

∥∥∇uk(t)
∥∥p

p

≤ C(sk + )
(‖uk‖αk

 +
∥
∥uk(t)

∥
∥

αk sk
sk +


)

+
sk(sk + )dm

(sk + p – )p

∥
∥uk(t)

∥
∥p



+
(

(sk + p – )p

sk(sk + )dm

) aαk
p–aαk {(

C(sk + )
∥
∥uk(t)

∥
∥(–a)αk



) p
p–aαk

+
(
C(sk + )

∥∥uk(t)
∥∥(–a)αk

sk
sk +


)

p
p–aαk

sk
sk +

}
.

Since ‖uk(t)‖ = ‖uk–(t)‖αk–
αk– , we have

d
dt

∥
∥uk(t)

∥
∥αk

αk
+

Csk(sk + )dm

(sk + p – )p

∥
∥uk(t)

∥
∥p

αk
≤ Cs

p+(p–)aαk
p–aαk

k χ
pαk–
k– ,
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where C is a constant independent of k, and χk– = max{, supt∈[,T] ‖uk–(t)‖αk–}. Taking
the continuity of ‖uk(t)‖αk into account, we get that there exists t at which ‖uk(t)‖αk

reaches its maximum value, and then we have

sup
t∈[,T]

∥
∥uk(t)

∥
∥

αk
≤ Cλ

kχ
p
k–,

where C is a constant independent of k, and λ = p
(p–)N

p > . Therefore,

lnχk ≤ ln C + k lnλ + p lnχk–

≤ ln C

k–∑

i=

pi + pk lnχ + lnλ

k–∑

j=

(k – j)pj

≤ (ln C + lnχ)pk + f (k) lnλ,

namely,

sup
t∈[,T]

∥∥uε(t)
∥∥

sk + ≤ {
Cpk

 χ
pk

 λf (k)} p
sk +p– ,

where f (k) = pk+ – pk– – k – . Letting k → ∞, we get

sup
t∈[,T]

∥
∥uε(t)

∥
∥∞ ≤ Cχ

p
 ≤ C max

{
, sup

t∈[,T]

∥
∥uε(t)

∥
∥p– 

p–
– 

p–

}
, (.)

where C is a constant independent of k and ε.
In what follows, we estimate supt∈[,T] ‖uε(t)‖.
Multiplying equation (.) by uε and integrating the resulting relation over �, we have




d
dt

∫

�

u
ε dx +

∫

�

d(t)
(∣∣∇uε

∣
∣ + ε

)(p–)/|∇uε| dx

≤
∫

�

u
ε

(
a + bum

ε (t – τ ) – cun
ε (t – τ )

)
dx, (.)

which, together with
∫
�

d(t)(|∇uε| + ε)(p–)/|∇uε| dx ≥ , implies that




d
dt

∫

�

u
ε dx ≤ M

∫

�

u
ε dx.

By Gronwall’s inequality we have

∫

�

u
ε(x, t) dx ≤ eMT

∫

�

u
ε(x, ) dx = eMT

∫

�

η
ε (x, ) dx.

Therefore,

sup
t∈[,T]

∫

�

u
ε(x, t) dx ≤ eMT

∫

�

η
ε (x, ) dx ≤ eMT‖η‖

L∞(Qτ )|�|,
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which, together with (.), gives ‖uε‖L∞(QT ) ≤ C for some C independent of ε. Thus, the
proof of this lemma is completed. �

Lemma . Assume that uε is a solution of problem (.)-(.). Then there exists a positive
constant C, independent of ε, such that

∫∫

QT

|∇uε|p dx dt ≤ C.

Proof Integrating (.) over �, we have




∫∫

QT

∂u
ε

∂t
dx dt +

∫∫

QT

d(t)
(|∇uε| + ε

)(p–)/|∇uε| dx dt ≤ M
∫∫

QT

u
ε dx dt.

Then,




∫∫

QT

∂u
ε

∂t
dx dt +

∫∫

QT

d(t)|∇uε|p dx dt ≤ M
∫∫

QT

u
ε dx dt,

that is,




∫

�

u
ε(x, T) dx –




∫

�

u
ε(x, ) dx + dm

∫∫

QT

|∇uε|p dx dt ≤ M
∫∫

QT

u
ε dx dt,

which implies

dm

∫∫

QT

|∇uε|p dx dt ≤ M
∫∫

QT

u
ε dx dt +




∫

�

η
ε (x, ) dx ≤ C.

Therefore, we get

∫∫

QT

|∇uε|p dx dt ≤ C.

Thus, the proof of this lemma is completed. �

Lemma . Assume that uε is a solution of problem (.)-(.). Then there exists a positive
constant C, independent of ε, such that

∫∫

QT

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt ≤ C.

Proof Multiplying equation (.) by ∂uε

∂t /d(t) and integrating over QT , we have

∫∫

QT


d(t)

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt

=
∫∫

QT

div
((|∇uε| + ε

)(p–)/∇uε

)∂uε

∂t
dx dt

+
∫∫

QT

uε

d(t)
∂uε

∂t
(
a + bum

ε (t – τ ) – cun
ε (t – τ )

)
dx dt.
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Then,

∫∫

QT


d(t)

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt +
∫∫

QT

(|∇uε| + ε
)(p–)/∇uε

∂∇uε

∂t
dx dt

=
∫∫

QT

uε

d(t)
∂uε

∂t
(
a + bum

ε (t – τ ) – cun
ε (t – τ )

)
dx dt,

that is,

∫∫

QT


d(t)

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt +

p

∫∫

QT

∂

∂t
(|∇uε| + ε

)p/ dx dt ≤ C
∫∫

QT


d(t)

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣dx dt,

which implies

∫∫

QT


d(t)

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx dt ≤ C
∫∫

QT


d(t)

∣∣
∣∣
∂uε

∂t

∣∣
∣∣dx dt +


p

∫

�

(∣∣∇uε(x, )
∣
∣ + ε

)p/ dx.

Then, we have

∫∫

QT


d(t)

∣
∣∣
∣
∂uε

∂t

∣
∣∣
∣



dx dt ≤ C


∫∫

QT


d(t)

dx dt +
C
p

∫

�

∣∣∇ηε(x, )
∣∣p dx + C.

So, we have


dM

∫∫

QT

∣∣
∣∣
∂uε

∂t

∣∣
∣∣



dx dt ≤ C
dm

|QT | +
C
p

∫

�

∣
∣∇ηε(x, )

∣
∣p dx + C.

Therefore, we get

∫∫

QT

∣∣∣
∣
∂uε

∂t

∣∣∣
∣



dx dt ≤ C.

Thus, the proof of this lemma is completed. �

We are now in a position to present the proof of the existence of generalized solutions
for problem (.)-(.).

Theorem . The initial and boundary value problem (.)-(.) admits at least one so-
lution.

Proof Let ε = /h (h = , , . . .), and let uh be a solution of problem (.)-(.). According
to Lemmas ., ., and ., we see that

‖uh‖L∞(QT ) ≤ C,

‖∇uh‖p
Lp(QT ) ≤ C,

∥
∥∥∥
∂uh

∂t

∥
∥∥∥



L(QT )
≤ C.
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Furthermore, we can obtain the Hölder norm estimate of solutions

∣
∣uh(x, t) – uh(x, t)

∣
∣ ≤ C

(|x – x| + |t – t|/). (.)

It suffices to prove that, for any t ∈ (, T), u satisfies (.) on � × (t, T).
Consider the mollifier

uhε = Jεuh(x, t) =
∫ T



∫

RN
jε(x – y, t – γ )uh(y,γ ) dy dγ ,  < ε < t < t < T – ε.

For any x, x ∈ �,

uhε(x, t) – uhε(x, t)

=
∫ T



∫

RN

∫ 



d
ds

jε
(
sx + ( – s)x – y, t – γ

)
uh(y,γ ) ds dy dγ

=
∫ T



∫

RN

∫ 


∇xjε

(
sx + ( – s)x – y, t – γ

)
uh(y,γ ) ds dy dγ · (x – x)

= –
∫ 



∫

RN

∫ T


∇yjε

(
sx + ( – s)x – y, t – γ

)
uh(y,γ ) dy dγ ds · (x – x)

=
∫ 



∫

RN

∫ T


jε
(
sx + ( – s)x – y, t – γ

) · ∇yuh(y,γ ) dy dγ ds · (x – x).

Hence, by Lemma .,

∣
∣uhε(x, t) – uhε(x, t)

∣
∣

≤
∫ 



∫

�

∫ T



∣
∣jε

(
sx + ( – s)x – y, t – γ

)∣∣ · ∣∣∇yuh(y,γ )
∣
∣dy dγ ds · |x – x|

≤
∫ 



(∫∫

QT

∣∣jε
(
sx + ( – s)x – y, t – γ

)∣∣q dy dγ

)/q

·
(∫∫

QT

∣∣∇uh(y,γ )
∣∣p dy dγ

)/p

ds|x – x|

≤ C|x – x|. (.)

Here and below, C denotes a constant independent of ε.
Let  < ε < t < t < t < T , B(�t) = B(�t)/ (x), ζ ∈ C

(B(�t)), x ∈ �, �t = t – t. Then

∫

B(�t)
ζ (x)

(
uhε(x, t) – uhε(x, t)

)
dx

=
∫

B(�t)
ζ (x)

∫ 



d
ds

uhε

(
x, st + ( – s)t

)
ds dx

= �t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN
jεt

(
x – y, st + ( – s)t – γ

) · uh(y,γ ) dy dγ ds dx

= –�t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN
jεγ

(
x – y, st + ( – s)t – γ

)

· uh(y,γ ) dy dγ ds dx. (.)
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Noting that, for any fixed (x, t) ∈ QT with  < ε < t < t < T – ε, Jε(x – y, t – γ ) ∈ C
(QT ),

from the regularized problem (.)-(.) we obtain

∫ T



∫

RN
jεγ

(
x – y, st + ( – s)t – γ

)
uh(y,γ ) dy dγ

= –
∫ T



∫

RN
jε
(
x – y, st + ( – s)t – γ

) ∂

∂γ
uh(y,γ ) dy dγ

= –
∫ T



∫

RN
jε
(
x – y, st + ( – s)t – γ

)

·
[

div

((
|∇yuh| +


h

)(p–)/

∇yuh

)
+ uh

(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
]

dy dγ

=
∫ T



∫

RN

(
|∇yuh| +


h

)(p–)/

∇yuh∇yjε
(
x – y, st + ( – s)t – γ

)
dy dγ

–
∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)
uh

(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ .

Substituting this into (.) gives

∫

B(�t)
ζ (x)

(
uhε(x, t) – uhε(x, t)

)
dx

= –�t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN

[(
|∇yuh| +


h

)p–/

× ∇yuh∇yjε
(
x – y, st + ( – s)t – γ

)
– jε

(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)]
dy dγ ds dx

= –�t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN

(
|∇yuh| +


h

)(p–)/

× ∇yuh∇yjε
(
x – y, st + ( – s)t – γ

)
dy dγ ds dx

+ �t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ ds dx

= –�t
∫ 



∫ T



∫

RN

(
|∇yuh| +


h

)(p–)/

× ∇yuh

(∫

B(�t)
∇xζ (x)jε

(
x – y, st + ( – s)t – γ

)
dx

)
dy dγ ds

+ �t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ ds dx

= –�t
∫ 



∫

B(�t)
∇xζ · Jε

((
|∇uh| +


h

)(p–)/

∇uh

)
(
x, st + ( – s)t

)
dx ds
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+ �t
∫

B(�t)
ζ (x)

∫ 



∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ ds dx. (.)

Now choose δ(s) ∈ C
(R) such that δ(s) ≥ , δ(s) =  for |s| ≥ , and

∫
R

δ(s) ds = . For
l > , define δl(s) = 

l δ( s
l ). By approximation we see that (.) holds for ζ ∈ W ,

 (B(�t)).
Thus, if we choose

ζ = ζl(x) =
∫ (�t)/–|x–x|–l

–l
δl(s) ds

in (.), then we have

∫

B(�t)
ζl(x)

(
uhε(x, t) – uhε(x, t)

)
dx

= –�t
∫ 



∫

B(�t)
δl

(
(�t)/ – |x – x| – l

) · xi – xi

|x – x|

· Jε
((

|∇uh| +

h

)(p–)/

uhxi

)
(
x, st + ( – s)t

)
dx ds

+ �t
∫

B(�t)
ζl(x)

∫ 



∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ ds dx. (.)

Note that, for x ∈ B(�t), liml→ ζl(x) = , and if |x – x| < (�t)/ – h, then δl((�t)/ – |x –
x| – l) = , δl ≤ C

l , and

mes
(
B(�t)\B(�t)/–l(x)

) ≤ Ch(�t)(N–)/.

From (.) by Lemma . we obtain

∣
∣∣∣

∫

B(�t)
ζl(x)

(
uhε(x, t) – uhε(x, t)

)
dx

∣
∣∣∣

=
∣∣
∣∣–�t

∫ 



∫

B(�t)
δl

(
(�t)/ – |x – x| – l

) · xi – xi

|x – x|

·
∫ T



∫

Rn

(
|∇yuh| +


h

)(p–)/

∇yi uh(y))jε
(
x – y, st + ( – s)t – γ

)
dy dγ dx ds

+ �t
∫

B(�t)
ζl(x)

∫ 



∫ T



∫

RN
jε
(
x – y, st + ( + s)t – γ

)

× uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)
dy dγ ds dx

∣∣
∣∣

≤ |�t|C
l

∫ 



∫

B(�t)\B(�t)/–l(x)

∫ T



∫

�

(
|∇uh| +


h

)(p–)/

|∇uh|

× ∣∣jε
(
x – y, st + ( – s)t – γ

)∣∣dy dγ dx ds
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+ |�t|
∫

B(�t)

∣∣ζl(x)
∣∣
∫ 



∫ T



∫

�

∣∣jε
(
x – y, st + ( + s)t – γ

)∣∣

× ∣∣uh
(
a + bum

h (γ – τ ) – cun
h(γ – τ )

)∣∣dy dγ ds dx

≤ |�t|C
h

Dh(�t)(N–)/
∫∫

QT

(
|∇uh| +


h

)(p–)/

|∇uh|dy dγ

+ |�t|C
∫

B(�t)

∣∣ζl(x)
∣∣dx

≤ C(�t)(N+)/ + |�t|C
∫

B(�t)

∣∣ζl(x)
∣∣dx.

Letting l →  yields

∣
∣∣
∣

∫

B(�t)

(
uh(x, t) – uh(x, t)

)
∣
∣∣
∣ ≤ C(�t)(N+)/ + C(�t)(�t)N/ ≤ C(�t)(N+)/,

from which by the mean value theorem it follows that there exists x∗ ∈ B(�t) such that

∣∣uh
(
x∗, t

)
– uh

(
x∗, t

)∣∣ ≤ C(�t)/.

Using this inequality and (.), we derive

∣∣uh(x, t) – uh(x, t)
∣∣

≤ ∣∣uh(x, t) – uh
(
x∗, t

)∣∣ +
∣∣uh

(
x∗, t

)
– uh

(
x∗, t

)∣∣ +
∣∣uh

(
x∗, t

)
– uh(x, t)

∣∣

≤ C
∣∣x – x∗∣∣ + C(�t)/ + C

∣∣x∗ – x
∣∣

≤ C(�t)/. (.)

Combining (.) with (.), we have

∣∣uh(x, t) – uh(x, t)
∣∣

≤ ∣∣uh(x, t) – uh(x, t)
∣∣ +

∣∣uh(x, t) – uh(x, t)
∣∣ ≤ C|x – x| + C|t – t|/

≤ C
(|x – x| + C|t – t|/),

where C is independent of h. The Hölder norm estimate of solutions is completed.
So by the Arzelà-Ascoli theorem there exist a subsequence of {uh}∞h=, supposed to be

{uh}∞h= itself, and a function

u ∈
{

u : u ∈ L
(
, T ; W ,p(�)

) ∩ L∞(QT ) ∩ C,/(QT ),
∂u
∂t

∈ L(QT )
}

such that

uh(x, t) −→ u(x, t) uniformly in QT ,

∇uh ⇀ ∇u in Lp(QT ),

∂uh

∂t
⇀

∂u
∂t

in L(QT ).
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Furthermore, for any ϕ ∈ C(QT ), we have

∫∫

QT

(
|∇uh| +


h

)(p–)/

∇uh∇ϕ dx dt −→
∫∫

QT

|∇u|p–∇u∇ϕ dx dt

(see Chapter  in []). Letting h → ∞ in

∫∫

QT

(
∂uh

∂t
ϕ – d(t)

(
|∇uh| +


h

)(p–)/

∇uh∇ϕ

+ uh
(
a + bum

h (t – τ ) – cun
h(t – τ )

)
ϕ

)
dx dt = ,

we see that u satisfies the integral identity in the definition of generalized solutions. So,
problem (.)-(.) admits a solution u that satisfies

‖u‖L∞(QT ) ≤ C,

‖∇u‖p
Lp(QT ) ≤ C,

∥
∥∥
∥
∂u
∂t

∥
∥∥
∥



L(QT )
≤ C.

Moreover, from the arbitrariness of T >  we easily to see that the solution exists glob-
ally. �

4 The uniqueness of a solution
In this section, we study the uniqueness of a solution for problem (.)-(.). Our main
result is the following.

Theorem . The solution of the initial and boundary value problem (.)-(.) is unique.

Proof Assume that there exist nonnegative bounded functions u(x, t) and u(x, t) satisfy-
ing (.)-(.). We can see that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t – d(t) div(|∇u|p–∇u)

= u(x, t)(a + bum
 (x, t – τ ) – cun

 (x, t – τ )), (x, t) ∈ � ×R+,
∂u
∂�n = , (x, t) ∈ ∂� ×R+,

u(x, t) = η(x, t), (x, t) ∈ � × [–τ , ],

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t – d(t) div

(|∇u|p–∇u
)

= u(x, t)
(
a + bum

 (x, t – τ ) – cun
(x, t – τ )

)
, (x, t) ∈ � ×R+,

∂u
∂�n = , (x, t) ∈ ∂� ×R+,

u(x, t) = η(x, t), (x, t) ∈ � × [–τ , ].
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In fact, when t ∈ [, τ ], that is, t – τ ∈ [–τ , ], we have u(x, t – τ ) = η(x, t – τ ). Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂(u–u)
∂t = d(t)

[
div

(|∇u|p–∇u
)

– div
(|∇u|p–∇u

)]

+ (u – u)
(
a + bηm(x, t – τ ) – cηn(x, t – τ )

)
, (x, t) ∈ � × [, τ ],

∂(u–u)
∂�n = , (x, t) ∈ ∂� × [, τ ],

(u – u)(x, t) = η(x, t) – η(x, t) = , (x, t) ∈ � × [–τ , ].

(.)

Let Hε(s) =
∫ s

 hε dρ , hε(s) = 
ε

( – |s|
ε

)+. Clearly, we can see that hε ∈ C(R) and, for all s ∈R,

hε(s) ≥ ,
∣∣shε(s)

∣∣ ≤ ,
∣∣Hε(s)

∣∣ ≤ ,

lim
ε→

Hε(s) = sgn(s), lim
ε→

shε(s) = .

Multiplying the equation in (.) by Hε(u – u) and integrating by parts over � × [, t],
we have

∫

�

∫ t



∂(u – u)
∂s

Ḣε(u – u) dx ds

+
∫

�

∫ t


d(s)

(|∇u|p–∇u – |∇u|p–∇u
)∇Hε(u – u) dx ds

=
∫

�

∫ t


(u – u)Hε(u – u)

(
a + bηm(x, s – τ ) – cηn(x, s – τ )

)
dx ds. (.)

Letting ε →  in (.) (see Chapter  in []), we obtain

∫

�

∫ t



∂

∂s
(u – u)+ dx ds ≤

∫

�

∫ t


(u – u)+

(
a + bηm(x, s – τ ) – cηn(x, s – τ )

)
dx ds.

Since the maximum of the function f (s) = a + bsm – csn is equal to M (M ≥ a > ) when
s > , we have

∫

�

∫ t



∂

∂s
(u – u)+ dx ds ≤ M

∫

�

∫ t


(u – u)+ dx ds.

Therefore,

∫

�

(u – u)+ dx ≤ M
∫

�

∫ t


(u – u)+ dx ds.

It follows from Gronwall’s inequality that

∫

�

∫ t


(u – u)+ dx ds ≤ ,

which implies that

(
u(x, t) – u(x, t)

)
+ = , (x, t) ∈ � × [, τ ].

So we have

u(x, t) ≤ u(x, t), (x, t) ∈ � × [, τ ].
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As in the previous proof, we arrive at

u(x, t) ≥ u(x, t), (x, t) ∈ � × [, τ ].

Thus,

u(x, t) = u(x, t), (x, t) ∈ � × [, τ ],

that is, the solution of problem (.)-(.) is unique in � × [, τ ].
When t ∈ [τ , τ ], that is, t – τ ∈ [, τ ], we have u(x, t – τ ) = u(x, t – τ ), (x, t) ∈ �× [, τ ].

Similarly to the previous proof, we easily obtain

u(x, t) = u(x, t), (x, t) ∈ � × [τ , τ ].

By a recursive process we obtain

u(x, t) = u(x, t), (x, t) ∈ � × [–τ , +∞).

Thus, the uniqueness of the solution for (.)-(.) is obtained. The proof of Theorem .
is completed. �

5 The oscillation of solutions
In this section, we show the oscillation of all positive solutions for problem (.)-(.) about
the positive equilibrium. Due to the degeneracy of the equation, the oscillation is required
to be analyzed in the frame of weak solutions rather than classical solutions. However, for
simplicity of our arguments, we may assume that the solutions are appropriately smooth
since we may consider approximate solutions of the approximate problem (.)-(.) and
finally get the desired oscillation properties of problem (.)-(.) after a limit process.

Now, we give the definition of oscillation properties of solutions, as did in [].

Definition . We say that the solution u(x, t) in � × R+ of (.)-(.) oscillates about
the positive equilibrium u∗ if for any T > , there exists (x, t) ∈ � × [T , +∞) such that
u(x, t) = u∗; otherwise, we say that u(x, t) does not oscillate about u∗.

In order to obtain the oscillation of solutions, we first consider the existence and unique-
ness conditions of the positive equilibrium of equation (.) and give conditions for nonex-
istence of ultimately positive solution or negative solution of the evolutionary p-Laplacian
with delay.

Lemma . Equation (.) has a unique positive equilibrium u∗ that satisfies

a + bu∗m – cu∗n = . (.)

Moreover, a + bum – cun <  if u > u∗ and a + bum – cun >  if  < u < u∗.
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Proof By the zero point theorem, since a >  and c > , it is clear that equation (.) has a
unique positive equilibrium. Then, we also have

a + bum – cun < , u ∈ (
u∗, +∞)

,

and

a + bum – cun > , u ∈ (
, u∗).

The proof of Lemma . is completed. �

The following lemma is from p. of [].

Lemma . Assume that

() f ∈ C[–R, R], yf (y) >  (y �= );

() lim
t→+∞

∫ t

t–τ

p(s) ds >
M
e

, where M = lim
y→

y
f (y)

.

Then
() the nonlinear differential inequality with delay y′(t) + p(t)f (y(t – τ )) ≤  has no

ultimately positive solution;
() the nonlinear differential inequality with delay y′(t) + p(t)f (y(t – τ )) ≥  has no

ultimately negative solution.

In the following, we investigate a sufficient condition for all positive solutions of (.)-
(.) to oscillate about the positive equilibrium.

Theorem . Suppose that

(
cu∗(n–m) – bm

)
u∗mτ >


e

. (.)

Then all positive solutions of problem (.)-(.) oscillate about the positive equilibrium.

Proof Let u(x, t) be a nonoscillatory solution of system (.)-(.). By Definition . there
exists T >  such that u(x, t) > u∗ or u(x, t) < u∗ when (x, t) ∈ � × [T , +∞). Therefore, we
need to consider these two cases.

Case : u(x, t) > u∗ for (x, t) ∈ � × [T , +∞). In general, we may suppose that u(x, t – τ ) >
u∗.

Let M(x, t) = u(x, t) – u∗ > , (x, t) ∈ � × [T , +∞). We can see that

M(x, t – τ ) > , (x, t) ∈ � × [T , +∞),

and

∂M(x, t)
∂t

=
∂u(x, t)

∂t
, div

(|∇M|p–∇M
)

= div
(|∇u|p–∇u

)
.
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Substituting M(x, t) = u(x, t) – u∗ into (.), since a + bum – cun <  for u > u∗ and cu∗(n–m) –
b > , by (.) we get

∂M
∂t

= d(t) div
(|∇M|p–∇M

)
+ M(x, t)

{
a + b

[
M(x, t – τ ) + u∗]m

– c
[
M(x, t – τ ) + u∗]n} + u∗{a + b

[
M(x, t – τ ) + u∗]m – c

[
M(x, t – τ ) + u∗]n}

< d(t) div
(|∇M|p–∇M

)
+ u∗[bMm(x, t – τ ) + bC

mMm–(x, t – τ )u∗ + · · ·
+ bCm–

m M(x, t – τ )u∗(m–) + bCm–
m M(x, t – τ )u∗(m–) + bu∗m

– cMn(x, t – τ ) – cC
nMn–(x, t – τ )u∗ – · · · – cCn–m

n Mm(x, t – τ )u∗(n–m) – · · ·
– cCn–

n M(x, t – τ )u∗(n–) – cCn–
n M(x, t – τ )u∗(n–) – cu∗n].

Since

bMm(x, t – τ ) + bC
mMm–(x, t – τ )u∗ + · · · + bCm–

m M(x, t – τ )u∗(m–)

– cCn–m
n Mm(x, t – τ )u∗(n–m) – cCn–m+

n Mm–(x, t – τ )u∗(n–m+) – · · ·
– cCn–

n M(x, t – τ )u∗(n–)

=
m–∑

k=

[
bCk

mMm–k(x, t – τ )u∗k – cCn–m+k
n Mm–k(x, t – τ )u∗(n–m+k)]

=
m–∑

k=

Mm–k(x, t – τ )u∗k[bCk
m – cCn–m+k

n u∗(n–m)]

<
m–∑

k=

Mm–k(x, t – τ )u∗kCn–m+k
n

[
b – cu∗(n–m)] < ,

it is clear that Ck
m < Cn–m+k

n . At the same time, we observe from condition (.) that b –
cu∗(n–m) < , which implies that

∂M
∂t

< d(t) div
(|∇M|p–∇M

)

+ u∗[bCm–
m M(x, t – τ )u∗(m–) + bu∗m – cCn–

n M(x, t – τ )u∗(n–) – cu∗n]

= d(t) div
(|∇M|p–∇M

)

+ u∗[bmM(x, t – τ )u∗(m–) – cnM(x, t – τ )u∗(n–) + bu∗m – cu∗n]

= d(t) div
(|∇M|p–∇M

)

+ u∗(bmu∗(m–) – cnu∗(n–))M(x, t – τ ) + u∗u∗m(
b – cu∗(n–m)),

which gives

∂M
∂t

< d(t) div
(|∇M|p–∇M

)
+ u∗(bmu∗(m–) – cnu∗(n–))M(x, t – τ ). (.)
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Integrating this inequality over �, we have

∂

∂t

∫

�

M(x, t) dx

< d(t)
∫

�

div
(|∇M|p–∇M

)
dx + u∗[bmu∗(m–) – cnu∗(n–)]

∫

�

M(x, t – τ ) dx. (.)

By the “Green formula” and boundary condition (.) we get

∫

�

div
(|∇M|p–∇M

)
dx =

∫

�

|∇M|p– ∂M
∂�n ds = . (.)

Therefore, if v(t) = 
|�|

∫
�

M(x, t) dx (t ≥ T ), then v(t) > . It follows from (.) and (.)
that

v′(t) + u∗(cnu∗(n–) – bmu∗(m–))v(t – τ ) < , (.)

which implies that v(t) is an ultimately positive solution of inequality (.).
On the other hand, condition (.) gives (cnu∗(n–) – mb)u∗mτ > 

e . This, combined with
Lemma ., yields that the differential inequality with delay (.) has no ultimately positive
solution. This is a contradiction. Therefore, case  does not hold.

Case :  < u(x, t) < u∗ for (x, t) ∈ � × [T , +∞). Without loss of generality, we may also
suppose that  < u(x, t – τ ) < u∗.

Let u(x, t) = u∗ew(x,t). Then we have w(x, t) <  and w(x, t – τ ) < . Taking u(x, t) = u∗ew(x,t)

in (.), with the help of (.) and the condition cu∗(n–m) – b >  (m ≥ ), we easily see that

∂w
∂t

=
d(t)

u
div

(|∇u|p–∇u
)

+
(
a + bu∗memw(x,t–τ ) – cu∗nenw(x,t–τ ))

=
d(t)

u
div

(|∇u|p–∇u
)

+
[(

a + bu∗m – cu∗n) + bu∗m(
emw(x,t–τ ) – 

)
– cu∗n(enw(x,t–τ ) – 

)]

=
d(t)

u
div

(|∇u|p–∇u
)

+
(
ew(x,t–τ ) – 

){(
bu∗m – cu∗n)[e(m–)w(x,t–τ ) + e(m–)w(x,t–τ ) + · · · + ew(x,t–τ )]

+ bu∗m – cu∗n[e(n–)w(x,t–τ ) + e(n–)w(x,t–τ ) + · · · + emw(x,t–τ ) + 
]}

.

Since bu∗m – cu∗n <  (due to cu∗(n–m) – b > ) and w(x, t – τ ) < , we obtain

∂w
∂t

>
d(t)

u
div

(|∇u|p–∇u
)

+
(
ew(x,t–τ ) – 

)[
bu∗m – cu∗n(e(n–)w(x,t–τ ) + 

)]
.

Notice that a + bu∗m – cu∗n = . Then

∂w
∂t

>
d(t)

u
div

(|∇u|p–∇u
)

–
(
a + cu∗ne(n–)w(x,t–τ ))(ew(x,t–τ ) – 

)
. (.)
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Integrating (.) over �, we have

d
dt

∫

�

w(x, t) dx +
∫

�

(
a + cu∗ne(n–)w(x,t–τ ))(ew(x,t–τ ) – 

)
dx

>
∫

�

d(t)
u

div
(|∇u|p–∇u

)
dx = d(t)

∫

�


u |∇u|p– dx > .

Denote v(t) = 
|�|

∫
�

w(x, t) dx <  (t ≥ T ). Then v(t) is the ultimately negative solution of
the following differential inequality with delay:

v′(t) + f
(
v(t – τ )

)
> . (.)

Here f (v(t)) = 
|�|

∫
�

(a + cu∗ne(n–)w(x,t))(ew(x,t) – ) dx.
On the other hand,

lim
y→

y
f (y)

=


a + cu∗n

and

a + cu∗n =
(
cu∗(n–m) – b

)
u∗m.

According to condition (.) and Lemma ., we see that the differential inequality with
delay (.) has no ultimately negative solution. This is a contradiction. Therefore, case 
does not hold, too. That is to say, all positive solutions of problem (.)-(.) oscillate about
the positive equilibrium. The proof of Theorem . is completed. �

Next, we give an example to show this phenomenon.

Example Consider the following p-Laplacian population model with delay:

∂u
∂t

= div
(|∇u|p–∇u

)
+ u(x, t)

[
 + u

(
x, t –


e

)
– u

(
x, t –


e

)]
,

(x, t) ∈ � ×R+, (.)

subject to the initial and boundary value conditions

|∇u|p–∇u · �n = , (x, t) ∈ ∂� ×R+, (.)

u(x, θ ) = η(x, θ ), η(x, θ ) ≥  and η(x, θ ) �≡ , (x, θ ) ∈ � × [–τ , ). (.)

It is obvious that u∗ =  is the unique positive equilibrium of equation (.). For any initial
η(x, θ ) ≥  with η(x, θ ) �≡ , we deduce from Theorem . that problem (.)-(.) has
a unique continuous positive global solution u(x, t). It is not hard to check that problem
(.)-(.) satisfies the conditions of Theorem ..

In fact, we can take a = , b = , c = , d(t) = , τ = 
e , m = , n = . Then,

(
cu∗(n–m) – bm

)
u∗mτ =  × 

e
>


e

.
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It follows from Theorem . that all positive solutions of this equation oscillate about the
positive equilibrium u∗ = .
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