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1 Introduction
In this paper, we are concerned with the blow-up of solutions for the following quasilinear
hyperbolic equations system:

utt – div
(|∇u|m–∇u

)
+ a|ut|p–ut –�ut = f(u, v), (x, t) ∈ � × R+, (.)

vtt – div
(|∇v|m–∇v

)
+ a|vt|p–vt –�vt = f(u, v), (x, t) ∈ � × R+ (.)

with the initial boundary value conditions

u(x, ) = u(x) ∈W ,m
 (�), ut(x, ) = u(x) ∈ L(�), x ∈ �, (.)

v(x, ) = v(x) ∈ W ,m
 (�), vt(x, ) = v(x) ∈ L(�), x ∈ �, (.)

u(x, t) = , v(x, t) = , (x, t) ∈ ∂� × R+, (.)

where � is a bounded open domain in Rn with a smooth boundary ∂�. a >  andm,p≥ 
are real numbers, and fi(·, ·) : R → R (i = , ) are given functions to be determined later.
Whenm = , problem (.)-(.) defines themotion of chargedmeson in an electromag-

netic field and was proposed by Segal []. Equations (.) and (.) with initial boundary
conditions (.)-(.), but without dissipative terms, were early considered by several au-
thors. Medeiros and Miranda [, ] showed the existence and uniqueness of global weak
solutions. Da Silva Ferreira [] proved that the first-order energy decays exponentially in
the presence of frictional local damping. Cavalcanti et al. [] considered the asymptotic
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behavior for an analogous hyperbolic-parabolic system, with boundary damping, using
arguments from Komornik and Zuazua [].
For the initial boundary value problem of a single quasilinear hyperbolic equation

utt – div
(|∇u|m–∇u

)
+ a|ut|p–ut –�ut = b|u|r–u, (x, t) ∈ � × R+, (.)

u(x, ) = u(x) ∈W ,m
 (�), ut(x, ) = u(x) ∈ L(�), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × R+, (.)

Yang and Chen [–] studied problem (.)-(.) and obtained global existence results
under the growth assumptions on the nonlinear terms and the initial value. These global
existence results have been improved by Liu and Zhao [] by using a newmethod. In [],
the author considered a similar problem to (.)-(.) and proved a blow-up result under
the condition r > max{p,m} and that the initial energy is sufficiently negative. Messaoudi
and Said-Houari [] improved the results in [] and showed that the blow-up takes place
for negative initial data only regardless of the size of �. By means of the perturbed energy
and the potential well methods, Messaoudi [] gave precise decay rates for the solution
of problem (.)-(.). In particular, he showed that form = , the decay is exponential.
In absence of the strong damping –�ut , equation (.) becomes

utt – div
(|∇u|m–∇u

)
+ a|ut|p–ut = b|u|r–u, (x, t) ∈ � × R+. (.)

For b = , it is well known that the damping term assures global existence and decay of the
solution energy for arbitrary initial value (see [–]). For a = , the source term causes
finite time blow-up of solutions with negative initial energy if r >m (see []). When the
quasilinear operator –div(|∇u|m–∇u) is replaced by �u, Wu and Tsai [] showed that
the solution is global in time under some conditions without the relation between p and r.
They also proved that the local solution blows up in finite time if r > p and the initial energy
is nonnegative, and gave the decay estimates of the energy function and the lifespan of
solutions.
In this paper we show that the local solutions of problem (.)-(.) with small positive

initial energy blow up in finite time. Meanwhile, the lifespan of solutions is given. The
main tool of the proof is a technique introduced by paper [] and some estimates used
firstly by Vitillaro [] in order to study a class of single wave equations.
For simplicity of notations, hereafter we denote by ‖ · ‖s the space Ls(�) norm, ‖ · ‖ de-

notes L(�) norm, and we write an equivalent norm ‖∇ · ‖m instead of W ,m
 (�) norm

‖ · ‖W ,m
 (�). Moreover, C denotes various positive constants depending on the known con-

stants and may be different at each appearance.

2 Preliminaries
Concerning the functions f(u, v) and f(u, v), we assume that

f(u, v) = b|u + v|r(u + v) + b|u|r–u|v|r+,
f(u, v) = b|u + v|r(u + v) + b|v|r–v|u|r+,

(.)

where b,b >  and r >  are constants.
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It is easy to see that

uf(u, v) + vf(u, v) = (r + )F(u, v), ∀(u, v) ∈ R, (.)

where

F(u, v) =
b

(r + )
|u + v|(r+) + b

r + 
|uv|r+. (.)

Moreover, a quick computation will show that there exist two positive constants C and
C such that the following inequality holds (see []):

C

(r + )
(|u|(r+) + |v|(r+)) ≤ F(u, v)≤ C

(r + )
(|u|(r+) + |v|(r+)). (.)

Now,we define the following energy function associatedwith a solution [u, v] of problem
(.)-(.):

E(t) =


(∥∥ut(t)

∥
∥ +

∥
∥vt(t)

∥
∥) +


m

(∥∥∇u(t)
∥
∥m
m +

∥
∥∇v(t)

∥
∥m
m

)
–

∫

�

F(u, v)dx (.)

for [u, v] ∈W ,m
 (�)×W ,m

 (�), and

E() =


(‖u‖ + ‖v‖

)
+


m

(‖∇u‖mm + ‖∇v‖mm
)
–

∫

�

F(u, v)dx (.)

is the initial total energy.
Note that we have from (.) that

E(t)≥ 
m

(∥∥∇u(t)
∥
∥m
m +

∥
∥∇v(t)

∥
∥m
m

)
–

∫

�

F(u, v)dx (.)

for [u, v] ∈W ,m
 (�)×W ,m

 (�).

Lemma . Let s be a number with  ≤ s < +∞ if n ≤ m and  ≤ s ≤ nm
n–m if n >m. Then

there is a constant C depending on � and s such that

‖u‖s ≤ C‖∇u‖m, ∀u ∈W ,m
 (�).

Lemma . (Young’s inequality) Let a,b≥  and 
p +


q =  for  < p,q < +∞, then one has

the inequality

ab ≤ δap +C(δ)bq,

where δ >  is an arbitrary constant, and C(δ) is a positive constant depending on δ.

We get fromMinkowski’s inequality and Lemma . that

‖u + v‖(r+) ≤ 
(‖u‖(r+) + ‖v‖(r+)

) ≤ B(‖∇u‖m + ‖∇v‖m
)
. (.)
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Also, we have from Hölder’s inequality and Lemma . that

‖uv‖r+ ≤ ∥∥u(t)
∥∥
(r+) ·

∥∥v(t)
∥∥
(r+) ≤



(∥∥u(t)

∥∥
(r+) +

∥∥v(t)
∥∥
(r+)

)

≤ B


(‖∇u‖m + ‖∇v‖m

)
, (.)

where B is the optimal Sobolev constant fromW ,m
 (�) to L(r+)(�).

We get from (.), (.) and (.) that

∫

�

F(u, v)dx≤ CB(r+)

r + 
(‖∇u‖m + ‖∇v‖m

)r+, (.)

where C = rb + b
r+ .

Considering the basic inequality |x + y|ρ ≤ ρ–(|x|ρ + |y|ρ), ∀x, y ∈ R, ρ ≥ , it follows
from (.) and (.) that

E(t)≥ 
mm–



(‖∇u‖m + ‖∇v‖m
)m

 –
CB(r+)

r + 
(‖∇u‖m + ‖∇v‖m

)r+

=Q
(√

‖∇u‖m + ‖∇v‖m
)
, (.)

where

Q(λ) =


mm–


λm –
CB(r+)

r + 
λ(r+).

Therefore, we get that

Q′(λ) =


m–


λm– – CB(r+)λr+,

Q′′(λ) =
m – 
m–


λm– – (r + )CB(r+)λr .

Let Q′(λ) = , which implies that λ = (m
 CB(r+))


m–(r+) . As λ = λ and m < (r + ), an

elementary calculation shows that

Q′′(t) =
m – (r + )

m–


(


m
 CB(r+)) m–

m–(r+) < .

Thus, Q(λ) has the maximum at λ and the maximum value is

d =Q(λ) =


m–


(

m

–


(r + )

)
(


m
 CB(r+)) m

m–(r+) . (.)

In order to prove our main result, we need the following two lemmas.

Lemma . Let [u, v] be a solution to problem (.)-(.), then E(t) is a nonincreasing func-
tion for t >  and

d
dt

E(t) = –
(
a‖ut‖pp + a‖vt‖pp + ‖∇ut‖ + ‖∇vt‖

) ≤ . (.)
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Multiplying equation (.) by ut and (.) by vt , and integrating over � × [, t], then
adding them together and integrating by parts, we get

E(t) – E() = –
∫ t



(
a
∥∥ut(s)

∥∥p
p + a

∥∥vt(s)
∥∥p
p +

∥∥∇ut(s)
∥∥
 +

∥∥∇vt(s)
∥∥


)
ds (.)

for t ≥ .
Being the primitive of an integrable function, E(t) is absolutely continuous and equality

(.) is satisfied.
Applying the idea of Vitillaro [], we have the following lemma.

Lemma . Assume that  < E() < d.
(i) If (‖∇u‖m + ‖∇v‖m)

m
 < λm

 , then (‖∇u‖m + ‖∇v‖m)
m
 < λm

 for t ≥ .
(ii) If (‖∇u‖m + ‖∇v‖m)

m
 > λm

 , then there exists λ > λ such that
(‖∇u‖m + ‖∇v‖m)

m
 ≥ λm

 for t ≥ .

For the detailed proof of Lemma ., one can refer to [].
We conclude this section by stating the local existence and uniqueness of solutions for

problem (.)-(.), which can be obtained by a similar way as done in [–, ]. The result
reads as follows.

Theorem . (Local solution) Suppose that [u, v] ∈ W ,m
 (�) × W ,m

 (�), [u, v] ∈
L(�)× L(�) and

 <m < (r + ) ≤ nm
n –m

, n≥ m;  <m < (r + ) < +∞, n <m, (.)

then there exists T >  such that problem (.)-(.) has a unique local solution [u(t), v(t)]
satisfying

[u, v] ∈ L∞(
[,T);W ,m

 (�)×W ,m
 (�)

)
,

ut , vt ∈ L∞(
[,T);L(�)

) ∩ Lp
(
� × [,T)

) ∩ L
(
[,T);H

(�)
)
.

Moreover, at least one of the following statements holds true:
() ‖ut‖ + ‖vt‖ + ‖∇u‖mm + ‖∇v‖mm → +∞ as t → T–;
() T = +∞.

3 Main result and proof
In this section, we prove that the solutions with positive initial energy blow up in finite
time under some conditions and that the estimates of the lifespan of solutions are given.
Our main result reads as follows.

Theorem . Assume that (.) holds, r > 
 max{p,m} –  and [u, v] ∈ W ,m

 (�) ×
W ,m

 (�), [u, v] ∈ L(�) × L(�). If  < E() < d and (‖∇u‖m + ‖∇v‖m)
m
 > λm

 , then
the local solution of problem (.)-(.) blows up in finite time.

Proof Let

H(t) = h – E(t), t ≥ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/251
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where h = E()+d
 . We see from (.) in Lemma . that H ′(t) ≥ . Thus we obtain

H(t) ≥ H() = h – E() > , t ≥ . (.)

Let

G(t) =
∫

�

(uut + vvt)dx +


(∥∥∇u(t)

∥
∥ +

∥
∥∇v(t)

∥
∥). (.)

By differentiating both sides of (.) on t, we get from (.) and (.) that

G′(t) =
(‖ut‖ + ‖vt‖

)
–

(‖∇u‖mm + ‖∇v‖mm
)

+ (r + )
∫

�

F(u, v)dx – a
∫

�

(|ut|p–utu + |vt|p–vtv
)
dx. (.)

We have from (.), (.) and (.) that

G′(t) = (r + )
(‖ut‖ + ‖vt‖

)
+
(r + ) –m

m
(‖∇u‖mm + ‖∇v‖mm

)

– a
∫

�

(|ut|p–utu + |vt|p–vtv
)
dx + (r + )H(t) – (r + )h. (.)

We obtain from Lemma . that

(r + ) –m
m

(‖∇u‖mm + ‖∇v‖mm
)
– (r + )h

≥ (r + ) –m
m

· (λ
m
 – λm

 )
λm


· (‖∇u‖m + ‖∇v‖m
)m



+
(r + ) –m

m
λm
 · (‖∇u‖m + ‖∇v‖m)m

λm


– (r + )h

≥ (r + ) –m
m

· (λ
m
 – λm

 )
λm


· (‖∇u‖m + ‖∇v‖m
)m



+
(r + ) –m

m
λm
 – (r + )h. (.)

We have from Lemma . that (r+)–m
m · (λm –λm )

λm
> , and by (.) and (.), we see that

(r + ) –m
m

λ
 – (r + )h =

(r + ) –m
m

(


m
 CB(r+)) 

m–(r+) – (r + )h

= (r + )(d – h) = (r + )
(
h – E()

)
> . (.)

It follows from (.), (.) and (.) that

G′(t) ≥ (r + )
(‖ut‖ + ‖vt‖

)
+
(r + ) –m

m
· (λ

m
 – λm

 )
λm


· (‖∇u‖m + ‖∇v‖m
)m



– a
∫

�

(|ut|p–utu + |vt|p–vtv
)
dx + (r + )H(t). (.)
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We have from Hölder’s inequality that

a
∣
∣∣
∣

∫

�

(|ut|p–utu + |vt|p–vtv
)
dx

∣
∣∣
∣

≤ C
(‖u‖–

(r+)
p

(r+) ‖u‖
(r+)

p
(r+)‖ut‖p–p + ‖v‖–

(r+)
p

(r+) ‖v‖
(r+)

p
(r+)‖vt‖p–p

)
. (.)

We get from (.), (.) and Lemma . that

H(t) ≤ h –


mm–


(‖∇u‖m + ‖∇v‖m
)m

 +
∫

�

F(u, v)dx

≤ d –


mm–


λm
 +

∫

�

F(u, v)dx. (.)

Since

d –


mm–


λm
 = –


m

 (r + )
(


m
 CB(r+)) m

m–(r+) < , (.)

so we have from (.), (.), (.), (.) and Lemma . that

 < H()≤ H(t) ≤
∫

�

F(u, v)dx

≤ C

(r + )
(‖u‖(r+)(r+) + ‖v‖(r+)(r+)

)

≤ CB(r+)

(r + )
(‖∇u‖(r+)m + ‖∇v‖(r+)m

)
, t ≥ . (.)

We obtain from (.) and (.) that

a
∣∣∣
∣

∫

�

(|ut|p–utu + |vt|p–vtv
)
dx

∣∣∣
∣

≤ CH(t)


(r+) –

p
(‖u‖

(r+)
p

(r+)‖ut‖p–p + ‖v‖
(r+)

p
(r+)‖vt‖p–p

)
. (.)

We get from (.), Lemma ., Lemma . and (.) that

a
∣∣∣
∣

∫

�

(|ut|p–utu + |vt|p–vtv
)
dx

∣∣∣
∣

≤ C
[
εp

(‖u‖(r+)(r+) + ‖v‖(r+)(r+)
)
+ ε

– p
p–H ′(t)

]
H(t)–α , (.)

where α = 
p –


(r+) , ε > . Let  < ρ < α, then we have from (.) and (.) that

a
∣
∣∣
∣

∫

�

(|ut|p–utu + |vt|p–vtv
)
dx

∣
∣∣
∣

≤ C
[
εrH()–α

(‖u‖(r+)(r+) + ‖v‖(r+)(r+)
)
+ ε

– p
p–H()ρ–αH(t)–ρH ′(t)

]
. (.)

Now, we define L(t) as follows:

L(t) =H(t)–ρ + δG(t), t ≥ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/251


Ye Boundary Value Problems 2014, 2014:251 Page 8 of 10
http://www.boundaryvalueproblems.com/content/2014/1/251

where δ is a positive constant to be determined later. By differentiating (.), we see from
(.) and (.) that

L′(t) = ( – ρ)H(t)–ρH ′(t) + δG′(t)

≥ [
 – ρ – δCε

– p
p–H()ρ–α

]
H(t)–ρH ′(t)

+ δ
[
(r + )

(‖ut‖ + ‖vt‖
)
+ (r + )H(t)

]

+
(r + ) –m

m
· (λ

m
 – λm

 )
λm


δ
(‖∇u‖mm + ‖∇v‖mm

)

–Cδε
rH()–α

(‖u‖(r+)(r+) + ‖v‖(r+)(r+)
)
. (.)

Letting k = min{r + , (r+)–mm · (λm –λm )
λm

} and decomposing δ(r + )H(t) in (.) by

δ(r + )H(t) = kδH(t) + δ(r +  – k)H(t), (.)

we find from (.) that
∫

�

F(u, v)dx≥ C

(r + )
(‖u‖(r+)(r+) + ‖v‖(r+)(r+)

)
. (.)

Combining (.)-(.) and (.)-(.), we obtain that

L′(t) ≥ [
 – ρ – δCε

– p
p–H()ρ–α

]
H(t)–ρH ′(t)

+ δ
[
(r + ) – k

](‖ut‖ + ‖vt‖
)
+ δ(r +  – k)H(t)

+
[
(r + ) –m

m
· (λ

m
 – λm

 )
λm


– k
]
δ
(‖∇u‖mm + ‖∇v‖mm

)

+
[
kC

r + 
–Cε

pH()–α

]
δ
(‖u‖(r+)(r+) + ‖v‖(r+)(r+)

)
. (.)

Choosing ε >  small enough such that εp < kC
(r+)C

H()α and  < δ < –ρ

C
ε

p
p–H()α–ρ , we

have from (.) that

L′(t) ≥ Cδ
[‖ut‖ + ‖vt‖ + ‖∇u‖mm + ‖∇v‖mm + ‖u‖(r+)(r+) + ‖v‖(r+)(r+) +H(t)

]
, (.)

whereC = {r+–k, (r+–k), kC
(r+) ,

(r+)–m
m · (λm –λm )

λm
–k}. Therefore, L(t) is a nondecreas-

ing function for t ≥ . Letting δ in (.) be small enough, we get L() > . Consequently,
we obtain that L(t)≥ L() >  for t ≥ .
Since  < ρ < α < , it is evident that  < 

–ρ
< 

–α
. We deduce from (.) and (.) that

L(t)


–ρ ≤ C

[
H(t) +

(
δ

∫

�

(uut + vvt)dx
) 

–ρ

+
(
δ
[∥∥∇u(t)

∥∥ +
∥∥∇v(t)

∥∥]) 
–ρ

]
. (.)

On the other hand, for r > , we have from Hölder’s inequality and Lemma . that

(
δ

∫

�

(uut + vvt)dx
) 

–ρ ≤ C
(‖ut‖ 

–ρ ‖u‖


–ρ

(r+) + ‖vt‖ 
–ρ ‖v‖


–ρ

(r+)
)

≤ C
(‖u‖

μ
–ρ

(r+) + ‖v‖
μ
–ρ

(r+) + ‖ut‖ ν
–ρ + ‖vt‖ ν

–ρ
)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/251
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where 
μ
+ 

ν
= . Let  < ρ < min{α,  – 

(r+) ,  –

m }, ν = ( –ρ), then μ

–ρ
= 

–ρ < (r + ).
It follows from (.) that

(
C

(r + )H()

) 
(r+) ‖u‖(r+) ≥ ,

(
C

(r + )H()

) 
(r+) ‖v‖(r+) ≥ , (.)

(
CB(r+)

(r + )H()

) 
(r+) ‖∇u‖m ≥ ,

(
CB(r+)

(r + )H()

) 
(r+) ‖∇v‖m ≥ . (.)

Thus, we get from (.) that

‖u‖
μ
–ρ

(r+) = ‖u‖


–ρ
(r+) ≤

(
C

(r + )H()

)– 
(–ρ)(r+) ‖u‖(r+)(r+),

‖v‖
μ
–ρ

(r+) = ‖v‖


–ρ
(r+) ≤

(
C

(r + )H()

)– 
(–ρ)(r+) ‖v‖(r+)(r+).

(.)

We obtain from (.) and (.) that

(
δ

∫

�

(uut + vvt)dx
) 

–ρ ≤ C
(‖ut‖ + ‖vt‖ + ‖u‖(r+)(r+) + ‖v‖(r+)(r+)

)
. (.)

Similarly, we have from Hölder’s inequality and (.) that

(
δ
[‖∇u‖ + ‖∇v‖]) 

–ρ ≤ C
(‖∇u‖


–ρ
m + ‖∇v‖


–ρ
m

) ≤ C
(‖∇u‖mm + ‖∇v‖mm

)
. (.)

Combining (.), (.) and (.), we find that

L(t)


–ρ ≤ C
[‖ut‖ + ‖vt‖ + ‖∇u‖mm + ‖∇v‖mm + ‖u‖(r+)(r+) + ‖v‖(r+)(r+) +H(t)

]
. (.)

We obtain from (.) and (.) that

L′(t) ≥ CL(t)


–ρ , t ≥ , (.)

where C = Cδ

C
. Integrating both sides of (.) over [, t] yields

L(t)≥ (
L()

ρ
–ρ –Cρt

)– ρ
–ρ . (.)

Note that L() > , then there exists T∗ = Tmax = (–ρ)L()
ρ

–ρ

Cρ
such that L(t) → +∞ as t →

+∞. Namely, the solutions of problem (.)-(.) blow up in finite time. �
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