

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Benzhydryl-6-*tert*-butyl-4-methylphenol

Sungwoo Yoon,^a Junseong Lee^b and Youngjo Kim^a*

^aDepartment of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea, and ^bDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: ykim@chungbuk.ac.kr

Received 28 November 2012; accepted 21 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.071; wR factor = 0.172; data-to-parameter ratio = 14.8.

The title compound, $C_{24}H_{26}O$, was prepared by the reaction between 2-*tert*-butyl-4-methylphenol and diphenylmethanol in the presence of sulfuric acid. Three benzene rings are attached directly to the central C-H group in a twisted propeller conformation with the local pseudo- C_3 rotational axis coinciding with the C-H bond. There are three short C-H···O contacts in the molecule.

Related literature

For similar structure types, see: Kim et al. (2012).

Experimental

Crystal data C₂₄H₂₆O

 $M_r = 330.45$

organic compounds

Monoclinic, $P2_1/n$ a = 8.014 (4) Å b = 15.472 (7) Å c = 16.006 (7) Å $\beta = 99.98$ (2)° V = 1954.6 (15) Å ³	Z = 4 Mo K α radiation μ = 0.07 mm ⁻¹ T = 296 K 0.20 × 0.17 × 0.15 mm
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.987, T_{max} = 0.990$	17522 measured reflections 3422 independent reflections 1532 reflections with $I > 2\sigma(I)$ $R_{int} = 0.138$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	231 parameters
$vR(F^2) = 0.172$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
3422 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8C···O	0.96	2.41	3.049 (4)	123
$C10-H10A\cdots O$	0.96	2.44	3.071 (5)	123
C12−H12···O	0.98	2.38	2.771 (4)	103

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

YK gratefully acknowledges financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010–0007092).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2218).

References

Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kim, S. H., Yoon, S., Mun, S.-D., Lee, H.-H., Lee, J. & Kim, Y. (2012). Polyhedron, 31, 665–670.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o287 [doi:10.1107/S1600536813002006]

2-Benzhydryl-6-tert-butyl-4-methylphenol

Sungwoo Yoon, Junseong Lee and Youngjo Kim

S1. Comment

The molecular structure of the title compound, $C_{24}H_{26}O$, is shown in Figure 1. The C—O and C—C bond lengths in the phenol ring and two phenyl rings are in the range of typical values determined on similar compounds (Kim *et al.* 2012). The three aromatic rings are twisted and form a propeller conformation with the local pseudo- C_3 rotational axis coinciding with C12—H12. The orientation of the rings can be characterized by the torsion angles H12-C12-C2-C1 (-35 °), H12-C12-C19-C24 (-59 °) and H12-C12-C13-C14 (-26 °). The molecules display three intramolecular C—H…O contacts (geometric details are given in Table 1), but no intermolecular hydrogen bonds are present.

S2. Experimental

The title compound could be isolated in 94% yield *via* the reaction of sulfuric acid, 2-*tert*-butyl-4-methylphenol, and diphenylmethanol in glacial acetic acid. The crystal was obtained by slow evaporation of solvent in refrigerator.

S3. Refinement

The H-atoms were included in calculated positions and treated as riding atoms with with C—H = 0.93–0.98 Å and O—H = 0.82 Å: $U_{iso}(H) = 1.2 U_{eq}(\text{parent C-atom}), U_{iso}(H) = 1.5 U_{eq}(\text{parent O-atom})$. The initial position of the hydroxyl H was derived from an electron density calculation.

Figure 1

Molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, with exception of H12 and H0, are omitted for clarity.

2-Benzhydryl-6-tert-butyl-4-methylphenol

Crystal data

 $C_{24}H_{26}O$ $M_r = 330.45$ Monoclinic, $P2_1/n$ a = 8.014 (4) Å b = 15.472 (7) Å c = 16.006 (7) Å $\beta = 99.98$ (2)° V = 1954.6 (15) Å³ Z = 4

Data collection

Bruker APEXII CCD	17522 measured reflections
diffractometer	3422 independent reflections
Radiation source: fine-focus sealed tube	1532 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.138$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2009)	$k = -17 \rightarrow 17$
$T_{\min} = 0.987, \ T_{\max} = 0.990$	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.172$	neighbouring sites
S = 1.00	H-atom parameters constrained
3422 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0803P)^2]$
231 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 712

 $\theta = 2.7 - 16.4^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K

Block, colorless

 $0.20 \times 0.17 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.123 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 925 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0	-0.0324 (3)	0.35794 (17)	0.04276 (16)	0.0721 (8)	
H0	-0.0789	0.3841	0.0769	0.108*	
C3	0.3942 (4)	0.3867 (2)	0.1619 (2)	0.0473 (9)	
H3	0.4591	0.4304	0.1914	0.057*	
C2	0.2285 (4)	0.4048 (2)	0.1234 (2)	0.0436 (9)	

C13	0.0376 (4)	0.4945 (2)	0.1985 (2)	0.0477 (9)
C1	0.1322 (4)	0.3377 (2)	0.0801 (2)	0.0459 (9)
C5	0.3647 (5)	0.2417 (2)	0.1124 (2)	0.0523 (10)
Н5	0.4114	0.1871	0.1088	0.063*
C4	0.4652 (4)	0.3057 (2)	0.1578 (2)	0.0480 (9)
C6	0.1977 (4)	0.2555 (2)	0.0721 (2)	0.0473 (9)
C24	0.3685 (4)	0.5791 (2)	0.0708 (2)	0.0551 (10)
H24	0.3627	0.5374	0.0285	0.066*
C19	0.2722 (4)	0.5693 (2)	0.1352 (2)	0.0442 (9)
C12	0.1469 (4)	0.4931 (2)	0.1297 (2)	0.0449 (9)
H12	0.0684	0.5009	0.0761	0.054*
C21	0.3905 (5)	0.7026 (2)	0.1965 (3)	0.0645 (11)
H21	0.3976	0.7441	0.2389	0.077*
C23	0.4725 (5)	0.6503 (3)	0.0696 (3)	0.0688 (12)
H23	0.5354	0.6564	0.0263	0.083*
C20	0.2870 (4)	0.6314 (2)	0.1981 (2)	0.0535 (10)
H20	0.2263	0.6252	0.2422	0.064*
C14	-0.1169(5)	0.5383 (2)	0.1838 (3)	0.0633 (11)
H14	-0.1529	0.5650	0.1317	0.076*
C7	0.0933 (5)	0.1835 (2)	0.0202 (2)	0.0565 (10)
C18	0.0871 (5)	0.4564 (2)	0.2772 (2)	0.0593 (10)
H18	0.1895	0.4267	0.2882	0.071*
C17	-0.0125(6)	0.4612 (3)	0.3404 (3)	0.0739(12)
H17	0.0227	0.4351	0.3928	0.089*
C22	0.4836 (5)	0.7122 (3)	0.1319 (3)	0.0708 (12)
H22	0.5530	0.7602	0.1306	0.085*
C8	-0.0686(5)	0.1625 (2)	0.0564 (3)	0.0857 (14)
H8A	-0.0378	0.1443	0.1144	0.129*
H8B	-0.1298	0 1170	0.0238	0.129*
H8C	-0.1386	0.2131	0.0537	0.129*
C9	0.1948(5)	0.0992(2)	0.0221(3)	0.0924(15)
НОА	0.2963	0.1094	-0.0006	0.139*
H9R	0.1274	0.0562	-0.0115	0.139*
H9C	0.2240	0.0791	0.0795	0.139*
C15	-0.2170(5)	0.5426 (3)	0.2458 (3)	0.139 0.0772(13)
H15	-0.3209	0.5708	0.2347	0.093*
C16	-0.1636(6)	0.5053 (3)	0.2347 0.3238 (3)	0.099
H16	-0.2302	0.5099 (5)	0.3657	0.0007 (14)
C10	0.0469 (6)	0.2077	-0.0734(2)	0.097
H10A	-0.0214	0.2624	-0.0775	0.130*
HIOR	-0.0155	0.1655	-0.1056	0.130*
HIOC	0.1485	0.2225	-0.0956	0.130*
C11	0.6475 (5)	0.2223	0 1987 (2)	0.0733 (12)
H11A	0.7193	0.2077 (2)	0.1567	0.110*
H11R	0.6558	0.2308	0.2227	0.110*
HIIC	0.6828	0.2200	0.2227	0.110*
	0.0020	0.5475	0.2721	0.110

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0540 (17)	0.071 (2)	0.086 (2)	0.0068 (14)	-0.0039 (15)	-0.0090 (16)
C3	0.049 (2)	0.048 (2)	0.044 (2)	0.0002 (18)	0.0064 (18)	-0.0042 (18)
C2	0.047 (2)	0.040 (2)	0.043 (2)	0.0048 (18)	0.0068 (17)	-0.0015 (18)
C13	0.044 (2)	0.037 (2)	0.064 (3)	-0.0031 (17)	0.014 (2)	0.0000 (19)
C1	0.047 (2)	0.043 (2)	0.047 (2)	0.0051 (19)	0.0068 (18)	0.0031 (19)
C5	0.071 (3)	0.037 (2)	0.052 (2)	0.009 (2)	0.021 (2)	0.0022 (19)
C4	0.051 (2)	0.048 (2)	0.046 (2)	0.013 (2)	0.0101 (18)	-0.0005 (19)
C6	0.060 (3)	0.041 (2)	0.044 (2)	0.0000 (19)	0.0153 (19)	-0.0031 (19)
C24	0.060 (2)	0.053 (3)	0.054 (2)	0.003 (2)	0.015 (2)	0.000 (2)
C19	0.043 (2)	0.040 (2)	0.047 (2)	0.0047 (17)	0.0011 (18)	0.0055 (19)
C12	0.049 (2)	0.038 (2)	0.047 (2)	0.0041 (17)	0.0030 (17)	0.0017 (17)
C21	0.068 (3)	0.048 (3)	0.077 (3)	-0.005 (2)	0.011 (2)	-0.005 (2)
C23	0.066 (3)	0.072 (3)	0.071 (3)	-0.013 (2)	0.021 (2)	0.019 (3)
C20	0.057 (2)	0.045 (2)	0.060(2)	-0.0050 (19)	0.0153 (19)	-0.004 (2)
C14	0.055 (2)	0.051 (3)	0.086 (3)	0.003 (2)	0.019 (2)	0.003 (2)
C7	0.068 (3)	0.047 (3)	0.054 (3)	-0.007(2)	0.013 (2)	-0.009(2)
C18	0.063 (2)	0.055 (3)	0.062 (3)	0.006 (2)	0.019 (2)	0.008 (2)
C17	0.088 (3)	0.062 (3)	0.079 (3)	-0.004(2)	0.036 (3)	0.005 (2)
C22	0.070 (3)	0.056 (3)	0.084 (3)	-0.012 (2)	0.009 (3)	0.009 (3)
C8	0.091 (3)	0.071 (3)	0.102 (3)	-0.032 (3)	0.037 (3)	-0.019 (3)
C9	0.108 (4)	0.047 (3)	0.121 (4)	-0.003 (3)	0.018 (3)	-0.027 (3)
C15	0.058 (3)	0.063 (3)	0.116 (4)	0.008 (2)	0.031 (3)	0.001 (3)
C16	0.083 (3)	0.059 (3)	0.112 (4)	0.001 (3)	0.050 (3)	-0.006 (3)
C10	0.104 (4)	0.089 (3)	0.063 (3)	-0.025 (3)	0.009 (3)	-0.018 (3)
C11	0.059 (3)	0.075 (3)	0.081 (3)	0.018 (2)	0.000 (2)	-0.002 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

0C1	1.386 (4)	C20—H20	0.9300
О—Н0	0.8200	C14—C15	1.382 (5)
C3—C4	1.382 (4)	C14—H14	0.9300
C3—C2	1.392 (4)	С7—С9	1.535 (5)
С3—Н3	0.9300	C7—C10	1.541 (5)
C2—C1	1.403 (4)	C7—C8	1.545 (5)
C2—C12	1.526 (4)	C18—C17	1.395 (5)
C13—C18	1.386 (4)	C18—H18	0.9300
C13—C14	1.395 (4)	C17—C16	1.375 (5)
C13—C12	1.521 (4)	C17—H17	0.9300
C1—C6	1.390 (4)	C22—H22	0.9300
С5—С6	1.398 (4)	C8—H8A	0.9600
C5—C4	1.398 (5)	C8—H8B	0.9600
С5—Н5	0.9300	C8—H8C	0.9600
C4—C11	1.519 (5)	С9—Н9А	0.9600
C6—C7	1.546 (5)	С9—Н9В	0.9600
C24—C23	1.384 (5)	С9—Н9С	0.9600

supporting information

C24_C19	1 400 (4)	C15_C16	1 374 (5)
$C_{24} = C_{12}$	0.9300	C15—H15	0.9300
C_{10} C_{20}	1 382 (4)	C16 H16	0.9300
$C_{19} = C_{20}$	1.362(4)		0.9500
C12 - C12	1.340 (4)		0.9000
C12—H12	0.9800		0.9000
$C_{21} = C_{20}$	1.381 (5)		0.9000
	1.384 (5)	CII—HIIA	0.9600
C21—H21	0.9300	CII—HIIB	0.9600
C23—C22	1.373 (5)	CII—HIIC	0.9600
С23—Н23	0.9300		
$C_1 \cap H_0$	100 5	C9 C7 C10	107.0(3)
$C_{1} = 0 = 10$	109.5 122.0(2)	$C_{2} = C_{1} = C_{10}$	107.0(3) 106.0(2)
C4 - C3 - C2	122.0 (5)	$C_{9} - C_{7} - C_{8}$	100.9(3)
$C_4 = C_3 = H_3$	119.0	C10 - C7 - C8	110.5(5)
$C_2 = C_3 = H_3$	119.0	$C_{9} - C_{7} - C_{6}$	111.3(3)
	118.1 (3)	C10 - C7 - C6	109.9 (3)
C3—C2—C12	122.5 (3)		111.2 (3)
C1—C2—C12	119.3 (3)	C13—C18—C17	121.8 (4)
C18—C13—C14	117.8 (3)	C13—C18—H18	119.1
C18—C13—C12	122.8 (3)	C17—C18—H18	119.1
C14—C13—C12	119.4 (3)	C16—C17—C18	118.8 (4)
OC1C6	120.9 (3)	С16—С17—Н17	120.6
OC1C2	116.5 (3)	C18—C17—H17	120.6
C6—C1—C2	122.6 (3)	C23—C22—C21	119.4 (4)
C6—C5—C4	123.4 (3)	C23—C22—H22	120.3
С6—С5—Н5	118.3	C21—C22—H22	120.3
С4—С5—Н5	118.3	С7—С8—Н8А	109.5
C3—C4—C5	117.5 (3)	С7—С8—Н8В	109.5
C3—C4—C11	121.1 (3)	H8A—C8—H8B	109.5
C5—C4—C11	121.3 (3)	С7—С8—Н8С	109.5
C1—C6—C5	116.4 (3)	H8A—C8—H8C	109.5
C1—C6—C7	122.1 (3)	H8B—C8—H8C	109.5
C5—C6—C7	121.6 (3)	С7—С9—Н9А	109.5
C23—C24—C19	120.4 (4)	С7—С9—Н9В	109.5
C23—C24—H24	119.8	Н9А—С9—Н9В	109.5
C19—C24—H24	119.8	С7—С9—Н9С	109.5
C20—C19—C24	118.2 (3)	H9A—C9—H9C	109.5
C20—C19—C12	123.2 (3)	H9B—C9—H9C	109.5
C_{24} C_{19} C_{12}	118.5 (3)	C16—C15—C14	120.3 (4)
C_{13} C_{12} C_{2}	111.6 (3)	C16—C15—H15	119.8
C_{13} C_{12} C_{2} C_{13} C_{12} C_{19}	113.5(3)	C_{14} C_{15} H_{15}	119.8
C_{2} C_{12} C_{19} C_{19}	113.5(3) 114.0(3)	C_{15} C_{16} C_{17}	120.6 (4)
C_1^{12} C_1^{12} H_1^{12}	105.6	C_{15} C_{16} H_{16}	110 7
C_{12} C_{12} H_{12}	105.6	C17 - C16 - H16	119.7
C19 - C12 - H12	105.6	C7 - C10 - H10A	109.5
$C_{12} - C_{12} - C_{12}$	100.0 120.2(4)	$C_7 = C_{10} = H_{10}R$	109.5
$C_{20} = C_{21} = C_{22}$	110.0		109.5
$C_{20} = C_{21} = \Pi_{21}$	117.7	$\frac{110}{C7} C10 H10C$	107.3
U22-U21-U21	117.7	C/CIU	109.3

C22—C23—C24	120.6 (4)	H10A—C10—H10C	109.5
C22—C23—H23	119.7	H10B—C10—H10C	109.5
C24—C23—H23	119.7	C4—C11—H11A	109.5
C21—C20—C19	121.2 (4)	C4—C11—H11B	109.5
C21—C20—H20	119.4	H11A—C11—H11B	109.5
C19—C20—H20	119.4	C4—C11—H11C	109.5
C15—C14—C13	120.7 (4)	H11A—C11—H11C	109.5
C15—C14—H14	119.6	H11B—C11—H11C	109.5
C13—C14—H14 C13—C14—H14	119.6	HIIB—CII—HIIC	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
С8—Н8С…О	0.96	2.41	3.049 (4)	123	
С10—Н10А…О	0.96	2.44	3.071 (5)	123	
С12—Н12…О	0.98	2.38	2.771 (4)	103	