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Abstract

In this work, we study and analyze the performance of physical layer algorithms for adaptive multiple input-multiple
output orthogonal frequency-division multiplexing (MIMO-OFDM) wireless systems that employ a new class of
adaptive antenna systems known as reconfigurable antennas. These antennas are capable of adaptively modifying
their radiation characteristics and thus leverage pattern diversity to affect how the transmitter and receiver perceive
the wireless channel. We propose a low complexity spatial adaptive modulation and coding (AMC) algorithm that
uses the advantages of pattern reconfigurable antennas in concert with link adaptation to improve MIMO-OFDM link
throughput. The algorithm operates in two main stages; first, it searches for the antenna configuration that yields the
highest post processing signal-to-noise ratio (ppSNR) and, then, applies AMC to improve spectral efficiency. The
performance of the proposed scheme is experimentally evaluated for a 2 × 2 MIMO-OFDM wireless system in an
indoor environment.

Keywords: Link adaptation; MIMO-OFDM; Reconfigurable antennas; Adaptive modulation and coding;
Spatial multiplexing

Introduction
Adaptive multiple input-multiple output (MIMO) wire-
less systems have been demonstrated to increase spectral
efficiency and provide flexible data rates in multipath
fading channels [1, 2]. Recent research in this area has
either focused on adaptive antenna systems such as pat-
tern reconfigurable antennas [1–8] or adaptive physical
layer (PHY) techniques such as link adaptation [9–13] to
enhance data rates.
Several studies [2–4] have proposed pattern recon-

figurable antennas for MIMO-orthogonal frequency-
division multiplexing (OFDM) systems. These antennas
are capable of dynamically changing their radiation prop-
erties or patterns according to the wireless channel char-
acteristics. Pattern reconfigurability has been shown to be
effective in improving signal-to-noise ratios (SNR) at the
receiver [3] and the channel capacity [4] inMIMO-OFDM
systems.
Although several works [3, 4, 8] have demonstrated

the benefits of reconfigurable antennas, translating the
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benefits of these antennas into a practical realizable
MIMO communication system is very challenging. The
cost of integrating and implementing the functionality
of the reconfigurable antennas into the system and their
complexity of operation have inhibited the process of
integration. Moreover, the use of reconfigurable anten-
nas also introduce the need for efficient selection algo-
rithm to leverage the radiation pattern diversity resulting
from the different antenna states to improve diversity
gain. Specifically, the key challenge is in the selection
of the optimal radiation pattern or state from all the
available states for a transceiver pair in different wireless
conditions. This challenge is compounded by the large
antenna state search space that grows with the number
of reconfigurable antenna elements used at the transmit-
ter and receiver. Available closed-form solutions are either
computationally complex or are based on generic assump-
tions that may not apply to all wireless channel environ-
ments. In this work, we attempt to redress this issue by
employing a low-complexity spatially adaptive scheme for
joint antenna state selection and adaptive modulation and
coding (AMC) for throughput enhancement in MIMO-
OFDM links with bit error rate constraint. We develop
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and test the proposed scheme in a software defined radio
framework that leverages the capabilities of reconfig-
urable antennas and physical layer adaptation algorithms.
This framework can potentially be used to integrate
these antennas into practical MIMO communication
systems.
Current generation standards such as 3rd Generation

Partnership Project Long-Term Evolution (3GPP LTE)
have employed similar techniques such as joint MIMO
precoder and AMC to improve diversity gain through
directional gain and interference reduction [14, 15]. Both
precoding and reconfigurable-antenna-based signal pro-
cessing exploit the channel state information by oper-
ating on the transmit signal using a weighting vector
that essentially assigns more transmit power along beams
with strong channel and vice versa. However, the key
distinction between precoding techniques and antenna
configuration selection algorithms is that, whereas pre-
coding takes place at the baseband, the antenna configu-
ration takes place at the RF domain using baseband level
metrics.
The literature on AMC is vast, and for brevity, we

consider the representative approaches found in [9–11].
These approaches provide the framework upon which
other AMC techniques were modeled. The works in [9,
10] propose bit allocation schemes that attempt to max-
imize throughput over a set of modulation types given
that the mean bit error rate (BER) is below a prescribed
threshold. The model in [9] uses a peak BER threshold
which cannot be exceeded by each subcarrier; the peak
BER is adjusted iteratively until the throughput is maxi-
mized. Adaptive bit allocation is achieved by varying the
signal constellation size according to the measured SNR
values in each subcarrier; this allocation uses a different
modulation type per subcarrier but does not consider cod-
ing. The model in [10] employs adaptive power allocation
and bit loading on a per subcarrier basis, using an iterative
technique known as water-filling AMC (WF-AMC).
The AMC algorithm proposed in this paper employs

instead a fixed modulation type and coding rate across
all subcarriers; it uses lookup tables known to both the
transmitter and receiver to minimize the volume of feed-
back to the transmitter and reduce the computational
complexity resulting from the iterative process used in [9,
10]. Another technique named block AMC (BL-AMC),
presented in [11], builds on the model in [10] to reduce
the volume of feedback information by performing AMC
adaptation based only on a single OFDM symbol rather
than on all subcarriers. It employs an exhaustive search
algorithm for adapting a fixedmodulation type and coding
scheme across all subcarriers. The adaptation algorithm
used in our study attempts to reduce the computational
complexity by replacing the exhaustive search with fixed
lookup tables.

We evaluate the experimental performance of the pro-
posed scheme for a 2 × 2 MIMO-OFDM wireless system
in an indoor environment. We demonstrate that the com-
putational complexity of the proposed scheme is signif-
icantly lower than the relative values for the adaptation
algorithms in [10, 11]. Furthermore, we demonstrate the
advantage of using reconfigurable antennas in synergy
with link adaptation for performance enhancement in
MIMO systems. The proposed algorithm provides a sub-
optimal but practical alternative to established algorithms
that may prove difficult to implement in a realistic wireless
communications system.
The paper is organized as follows: “Introduction”

section outlines the related work. Section “System model”
describes the system model. Section “Spatially adaptive
modulation and coding” discusses the proposed algorithm
for spatial adaptation in detail. Section “Experimental
setup and implementation” presents the experimental
setup and the implementation framework including the
hardware. Section “Performance results and analysis”
presents the performance results and analysis, and
“Conclusions” section provides a brief summary.

Systemmodel
Figure 1 shows a high-level MIMO-OFDM model of the
spatially adaptive system.
The system is constructed by concatenating a convolu-

tional encoder with an interleaver and a symbol mapper.
After the mapping, the symbols in M-ary quadrature
amplitude modulation (M-QAM) are modulated by the
inverse fast Fourier transform (IFFT) and the appropriate
cyclic prefix is added to reduce inter-symbol interference.
The data are then split into two spatial streams that are fed
into the antenna controller before transmission; the con-
troller sets the correct antenna transmission configuration
or mode. The two streams are separately transmitted from
the two transmit antennas over the radio channel using
spatial multiplexing technique. At the receiver, the cyclic
prefix is removed and the signal is transformed back into
frequency domain with an FFT prior to de-interleaving
and subsequently decoded to reconstruct the received
symbols.
The receiver estimates the post-processing signal-to-

noise ratio (ppSNR) to be used for adaptation and
then, runs the spatially adaptive modulation and coding
(SAMC) control algorithm to determine the antenna con-
figuration and transmission rates. The controller uses the
lookup tables to select the indices of the configuration and
AMC mode that consists of a modulation type and cod-
ing rate. It sends this indices to the transmitter via the
feedback channel and transmitter uses its lookup tables to
match the selected parameters.
Each of the reconfigurable antennas used in this

MIMO system is able to adaptively modify its radiation
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Fig. 1 System model for MIMO-OFDM using reconfigurable antennas

characteristics and thus leverage pattern diversity to
impact the manner in which the transmitter and receiver
perceive the wireless channel. As established in [4],
“two co-located antennas with different patterns ‘see’ dif-
ferently weighted multi-path components so that they
interfere differently for the two antennas resulting in
better reception”. This observation motivated us to merge
the benefits of antenna diversity and antenna recon-
figurability to improve link capacity and SNR at the
receiver [3].
We consider a MIMO-OFDM system with Q transmit

and P receive antennas sending data across K subcarri-
ers using the jth (j = 1, . . . , J) antenna configuration. The
OFDM sequence transmitted from the qth (q = 1, . . . ,Q)

transmit antenna on the kth (k = 1, . . . ,K) OFDM sub-
carrier is represented by xq,k . The received sequence at the
pth (p = 1, . . . ,P) receive antenna is given by

yjp,k =
P∑

p=1

√
εs
P
Hj
p,q,kxq,k + np,k , (1)

where yjp,k is the P × 1 received vector at the pth receive
antenna, Hj

p,q,k is the P × Q channel response matrix
between the qth transmit and the pth receive antenna for
the kth subcarrier and the jth antenna configuration, and
np,k is the P × 1 additive white Gaussian noise (AWGN)
at the pth receive antenna for the kth subcarrier. J is
the total number of antenna configurations, and εs is the
transmit energy. Expression (1) can be written as yjp,k =∑P

p=1H
j
p,q,ksq,k + np,k where sq,k =

√
εs
P xq,k . After zero-

forcing with successive interference cancellation (ZFSIC)
equalization,

ŝq,k =
[
Hj
p,q,k

]−1
yjp,k = sq,k + [

Hj
p,q,k

]−1 np,k , (2)

where
[
Hj
p,q,k

]−1
is the pseudo-inverse of Hj

p,q,k . The
ppSNR for the pth stream at subcarrier k and antenna
configuration j is defined as:

ppSNRj
p,k = 1

var
(
ŝq,k − sq,k

) = 1
σ 2
k

(3)

where σ 2
k is the noise variance of the received symbols.
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The overall ppSNR for configuration j is determined as
the average across transmit antennas and subcarriers.

ppSNRj = 1
P

P∑
p=1

(
1
K

K∑
k=1

ppSNRj
p,k

)
. (4)

Spatially adaptivemodulation and coding
The proposed SAMC algorithm is described in Algorithm
1. It is carried out in two main stages: 1) antenna configu-
ration selection and 2) AMC selection.
1) Antenna configuration selection: During this stage,

the algorithm selects an optimal configuration J∗ that
yields the highest average ppSNR. This process requires
channel training and is carried out during one of the fol-
lowing training intervals: i) initial training interval and ii)
re-training interval. The initial training interval is nec-
essary when no prior channel training has been done.
Conversely, the re-training interval prior to some ini-
tial training is only used in order to abate the effects
of channel fading over time and for up-to-date channel
adaptation.
i) Initial training interval: In this interval, initial channel

training is carried out over all the J possible configura-
tions; ten training packets are transmitted using quadra-
ture phase shift keying (QPSK) modulation for each of the
J possible configurations. After each training packet trans-
mission, the ppSNR is calculated by taking the mean of
the subcarrier ppSNR values. The average ppSNR of a spe-
cific configuration is then obtained by taking the mean of
the ten transmissions. In total, 160 packets will be trans-
mitted in this phase, and 16 average ppSNR values will be
obtained. The algorithm then selects configuration j∗ that
with the highest average ppSNR. We sort these 16 aver-
age ppSNR values and store the top five along with their
corresponding configurations.
In this interval, there is need to transmit multiple train-

ing packets at a given configuration in order to obtain a
meaningful statistic of the channel quality indicator (CQI)
from post processing. However, a major challenge arises
in selecting the period of the training interval: the use of
a long training interval will lead to parameter adaptation
based on out-dated channel characteristics; meanwhile, a
short interval fails to yield a realistic statistic. Determin-
ing the optimal training period requires further analysis
that deviates from the main focus of this work. There-
fore, a fixed training period of ten packets was only used
to obtain a CQI statistic from post processing the channel
measurements. Similarly, in an attempt to minimize the
re-training interval time, we selected a subset of the total
configuration for the re-training phase.
ii) Re-training interval: during this interval, we re-train

over the top five configurations stored in interval i); and
transmit one training packet per configuration—thus, a

total of five training packets. We then select the configu-
ration that yields the highest average ppSNR out of these
top five configurations.
2) AMC selection: in this stage, the algorithm selects

the AMC scheme using the ppSNRj∗ associated with the
optimal configuration in stage 1.
The selected antenna configuration and AMC scheme

are then used to transmit a scheduled number of packets.
In order to minimize the loss of throughput during the
training interval in stage 1 of the algorithm, we append a
payload of 1 KB to each training packet. The size of the
training packet is reduced to 32 bytes. Additionally, if the
optimal configuration found during the training interval is
consecutively selected, the number of packets scheduled
for transmission at the optimal configuration and AMC
scheme is doubled. These measures helped reduce the
negative impact of training overhead on throughput gains,
and not only minimized training time but provided data
transmission opportunity.

Algorithm 1 SAMC for MIMO-OFDM
1: J = 16
2: for j ← 1, J do
3: Transmit 1 training packet
4: for k ← 1,K do
5: ppSNRj

p,k = 1
var(ŝq,k−sq,k)

6: end for
7: ppSNRj = 1

P
∑P

p=1
1
K
∑K

k=1ppSNRj
p,k

8: end for
9: Select the optimal configuration j∗ such that

argmaxj ppSNRj

10: Choose the corresponding AMCmode for data trans-
mission from the link table in Table 1 so that P̄b ≤ Pe

11: Schedule two packets for transmission
12: If the same optimal configuration j∗ is consecutively

selected, schedule two more packets for transmission
at j∗

13: Re-train over the best five configurations; set J = 5
and Repeat steps 2 through 8

14: Repeat steps 9 through 13 until data transmission is
done.

AMC selection algorithms
We propose two AMC selection algorithms: 1) highest
rate selection and 2) robust rate selection. The first is a
throughput maximization algorithm that selects the AMC
mode with the highest data rate satisfying a target BER
constraint. This AMC mode represents a fixed modula-
tion and coding scheme across all subcarriers. The second
algorithm optimizes throughput subject to constraints of
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target BER (Pe) and target data rate (�0). It sacrifices
some throughput gain for robustness and the satisfac-
tion of the target constraints. Robustness is achieved
through optimization of the AMC mode selection. In lieu
of the exhaustive search algorithms in [10, 11], we pro-
pose the use of predetermined link tables to obtain the
best AMC in solving (6). First, we assign each of themodes
to operate within a particular post processing signal-to-
noise ratio (ppSNR) region Rχ . Each region is defined by
two thresholds. The thresholds are obtained by using the
upper bound expression for the symbol error probability
in AWGN channels [16]:

P√
M ≈ 2

(
1 − 1√

M

)
Q
(√

3m
(M − 1)

Eb
N0

1
r

)

≤ 2e−
(

3m
(M−1)

Eb
N0

1
r

)
;

(5)

where M defines the constellation size, r the coding rate,
Eb
N0

is the SNR per bit, and m = log2(M). The BER can be

approximated by 1
m

(
1 − (1 − P√

M)2
)
.

As shown in Fig. 2, each region is delimited by the
thresholds ξχ and ξχ+1, such that ξχ ≤ ppSNR < ξχ+1.
The receiver (RX) feeds back the index χ representing the
AMC mode to the transmitter (TX) for adaptation. This
AMC mode represents the fixed modulation and cod-
ing rate employed across all the subcarriers. When the
ppSNR falls into the outage region, we keep the AMC
which corresponds to region R1, even though the target
BER will not be satisfied. We restrict the set of different
modulation type and coding rates to those specified in
[17] (see Table 1 which shows the AMC modes and their
regions of operation). Mode AMC1, for example, uses
binary phase shift keying (BPSK) and a coding rate of 1/2
and operates within the region 2.2 ≤ ppSNRj∗ < 6.8 dB,
where ppSNRj∗ is the post processing SNR for the selected
configuration j∗.
The AMC selection procedures are explained below.

Highest rate selection algorithm
Each AMC mode will be denoted by χ , where χ =
1, . . . ,χmax and χmax is the total number of modes. For
each χ , a convolutional encoder ςχ with coding rates
Rc(ςχ ) and constellation sizeMχ , where log2Mχ = mχ ∈{
1, . . . ,mχmax

}
, are defined. Spectral efficiency, � , is then

obtained by solving the optimization problem [10, 11]:

maximize
χ

�(χ) = Rc(ςχ )log2Mχ

subject to P̄b(χ) ≤ Pe,
(6)

where

P̄b(χ) = 1
P

P∑
p=1

1
K

K∑
k=1

1
mχ

Q

⎛
⎜⎝
√√√√ | Hj

p,q,k |2| ŝq,k − sq,k |2
4σ 2

k

⎞
⎟⎠ ,

and Pe are the estimated and target bit error rates, respec-
tively ([18, 19]).

Robust rate selection algorithm
In the design of this algorithm, we observed that the feed-
back information is often transmitted through a fading
channel and is therefore itself prone to errors. There is a
non-zero probability of feedback packet loss which may
result in a mismatch of switching decisions (the trans-
mitter may not be able to determine the correct AMC
mode that the receiver sent). To decrease the occurrence
of a mismatch, a change in an AMC level should only
be initiated when the BER constraint cannot be achieved.
Switching is minimized when the AMC mode used in
the previous packet transmission is still a candidate for
a subsequent transmission. The optimization problem
becomes a slightly modified version of (6) with an addi-
tional constraint: log2(1+ ppSNR) ≥ �0 . This constraint
ensures that the achieved data rate, log2(1+ ppSNR), is at
least equal to the target data rate, �0. The introduction of
the new constraint may lead to more switching between
AMC modes. However, the frequency of switching due to
the additional constraint is preferable to the requirement
of sending feedback after every packet transmission due
to the resulting throughput savings.
The pseudocode describing the AMC selection algo-

rithms is shown in Algorithm 2. It depicts the steps used
for implementing the proposed AMC algorithms. First,
the algorithm takes in the initial value of the target bit
error rate (Pe) constraint. It then computes the AMC per-
formance thresholds as illustrated in step 3 of Algorithm
2. These thresholds are used to determine the perfor-
mance regions of the lookup tables. If the objective is to
maximize throughput, the “highest rate” selection algo-
rithm is employed to choose the AMCmode. The “highest
rate” selection algorithm uses Table 1, to lookup the AMC
index that corresponds to the region where the measured
ppSNRj∗ falls; thus, selecting the maximum AMC mode
that satisfies the target BER constraint.

Fig. 2 Switching thresholds
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However, if robustness is preferred to throughput max-
imization, we utilize the “robust rate” selection algorithm
to select the AMCmode. This algorithm introduces a sec-
ond constraint: a target data rate that must be satisfied in
addition to the target BER requirement. It first, establishes
the minimum required ppSNR threshold, ξχ , and then
determines a ppSNR range over which to optimize the
AMC mode selection. If the measured ppSNR is greater
than this threshold value, the range consists of ppSNR
values starting with the threshold value and incremented
by an arbitrary value of 0.5 dB until ppSNRj∗ . Other-
wise, the range is equal to ppSNRj∗ . Since the threshold
value is the minimum requirement to satisfy both tar-
get BER and target data rate constraints, an AMC mode
based on any of the ppSNR values within this range is
a candidate for selection. Next, we populate 2D lookup
tables for each ppSNR in the range with the AMC candi-
dates; Table 2 shows a table for two possible target BERs
and various target data rates at a ppSNR of 10 dB. Note
that an empty box in the Table 2 means that the corre-
sponding constraints cannot be satisfied at the measured
ppSNR.
As an example, suppose the target BER is 10−3, target

data rate equals 1.5 bps/Hz and the measured ppSNR is
10 dB. From Table 1, we determine that AMC3 (QPSK
and coding rate 3/4) is the minimal AMC mode that
would satisfy the specified target data rate. We then cal-
culate the minimum threshold for the target BER as in
step 3 of Algorithm 2 and find that ξχ is 8.6 dB; the
ppSNR range is therefore [8.6–10] dB. We populate four
2D lookup tables (one for each ppSNR value in this range)
as in Table 2 for the specified target BER and target
data rate constraints. And finally, select the AMC mode
with the highest number of occurrence across the four
lookup tables. This is the mode that minimizes the need
to carry out the selection process on subsequent packet
transmission.
The proposed methods significantly reduce feedback

overhead since only one index representing the AMC
to be used is fed back. The feedback information in
our model is independent of the total number of sub-
carriers (K) and requires only 	log2(χmax)
 compared
to K	log2(mχmax)
+ Nq + 	log2(χmax)
 in [10], where
Nq is the number of bits to represent the quantized
power level. The price of the reduced complexity is
lower accuracy — from using average channel statistics
rather than the channel conditions of each subcarrier.
The water-filling AMC (WF-AMC) and the block AMC
(BL-AMC) are two of the alternative AMC selection algo-
rithms with improved degree of accuracy. However, as
will be demonstrated through experimental results, WF-
AMC and BL-AMC, are computationally more expensive
and may prove difficult to implement in real wireless
systems.

Algorithm 2 AMC Selection algorithms
1: Initialize Pe
2: for χ ← 1,χmax do
3: Compute AMC performance thresholds

and regions thresholds(χ) = −rχ (Mχ−1)
3mχ

ln(
1−√

(1−mχ∗Pe)
2 )

4: end for

5: Select algorithm to execute

6: if (highest rate selection algorithm) then
7: for χ ← 1,χmax do
8: if ppSNRj∗ > thresholds(χ) then
9: Select AMC mode χ

10: else
11: Select AMC mode 1
12: end if
13: end for

14: else if (robust rate selection algorithm) then
15: Possible target data rates (bp/Hz): �0 =

[ 0.5 1 1.5 2 3 4 4.5]
16: for χ ← 1,χmax do
17: if �(χ) == �0(χ) then
18: ξχ = bounds(χ)

19: end if

20: end for

21: Find the ppSNR range to optimize over
22: if ppSNRj∗ > ξχ then
23: ppSNR_Range = [ [ ξχ : 0.5 :

ppSNRj∗ ] ppSNRj∗ ]
24: else
25: ppSNR_Range = ppSNRj∗

26: end if

27: Pre-populate the 2D lookup table
28: for χ ← 1,χmax do
29: for each value in the SNR_range do
30: Populate the columns of the 2D lookup

tables with AMC candidates that
satisfy both constraints as in Table 2

31: end for
32: end for

33: Select the AMC mode χ with the maximum
occurrence across the lookup tables. This is the
mode that minimizes switching

34: end if

35: Save the index of the selected AMC mode. This will
be fed back to the transmitter for adaptation.
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Table 1 AMC modes and their operating regions

AMC mode Modulation type Overall coding rate Data rate (bps/Hz) Regions for target BER 10−3 (dB)

AMC1 BPSK 1/2 0.5 2.2 ≤ ppSNRj
∗

< 6.8

AMC2 4-QAM 1/2 1 6.8 ≤ ppSNRj
∗

< 8.6

AMC3 4-QAM 3/4 1.5 8.6 ≤ ppSNRj
∗

< 13.6

AMC4 16-QAM 1/2 2 13.6 ≤ ppSNRj
∗

< 15.3

AMC5 16-QAM 3/4 3 15.3 ≤ ppSNRj
∗

< 21

AMC6 64-QAM 2/3 4 21 ≤ ppSNRj
∗

< 23

AMC7 64-QAM 3/4 4.5 ppSNRj
∗ ≥ 23

Computational complexity of SAMC
We measure computational complexity of our algorithm
by the number of elementary operations (ops) required
for the algorithm to run and express it as a function of
the problem size K (the total number of subcarriers).
For the water-filling AMC (WF-AMC) model in [10], the
complexity, denoted by T(K) ops, is given by

T(K) = O (J ∗ ςmax (2K + 2NEF ∗ K + NET ∗ K)) ,
(7)

where J is the total number of antenna configurations;
ςmax, the number of coding rates; and K is the total num-
ber of subcarriers. NEF and NET denote the number of
iterative searches needed in order to obtain the solutions
for the “Efficientizing” and “E-tightening” subroutines in
the Levin-Campello algorithm, respectively. These two
parameters can grow up to K in the worst case, depending
on the initial bit allocation [20].
For the BL-AMC model in [11],

T(K) = O (J ∗ χmax ∗ K) . (8)

The dependence of (8) on the number of subcar-
riers is due to the computation of the instantaneous
Bhattacharyya factor in the bit error probability estima-
tion. In the proposed model, the computational complex-
ity is given by

T(K) = O (J ∗ K + χmax) . (9)

Table 2 A 2D lookup table for “robust rate” selection algorithm
for ppSNR = 10 dB

Possible target rates �0 (bps/Hz)

0.5 1 1.5 2 3 4 4.5

BER Candidate modes

10−3 AMC1 AMC2 AMC3

AMC2 AMC3

AMC3

10−4 AMC1 AMC2

AMC2

The two terms in (9) represent the serial selection of
the optimal configuration followed by the AMC. The first
term represents the complexity of selecting the optimal
configuration. The second represents the AMC selection
complexity, which turns out to be a constant due to the
use of pre-determined lookup link tables [21].
Figure 3 illustrates the worst case scenarios of expres-

sions (7)–(9) alongside simulations of the AMC selection
algorithms. We compare, the WF-AMC [10], BL-AMC
[11], the proposed SAMC algorithm, and AMC with no
antenna state selection. The MATLAB function “FLOPS”
[22] was used for determining the number of operations
required by the selection algorithms. The results show
that the computational complexity of the proposed algo-
rithms is at least 2 orders of magnitude lower than the
values for WF-AMC [10] and BL-AMC [11].

Experimental setup and implementation
Software defined radio (SDR) testbed
We use the wireless open-access radio platform (WARP)
designed at Rice University for protocol implementation
at the PHY layer. Three main components of the WARP
testbed are of interest: (a) Xilinx Virtex-II Pro Field-
Programmable Gate Array (FPGA), (b) MIMO-capable
radios, and (c) 10/100 Ethernet port. The FPGA allows
for MAC protocols to be written in C code. The plat-
form supports up to four radio boards which can be
configured for applications similar to the 802.11g/n stan-
dards. Source/sink traffic and feedback of the protocols is
handled over the Ethernet port [23].

Reconfigurable printed dipole array (RPDA) antennas
Weuse the reconfigurable printed dipole array (RPDA) [7]
shown in Fig. 4 for both signal transmission and recep-
tion. These antennas have beam configurations that can
be electronically controlled by adjusting the length of each
dipole in the two-element array. A change in length is
accomplished by biasing PIN diodes embedded in the
structure of the antenna. Multiple radiation patterns are
generated as a result of varying the levels of mutual cou-
pling between array elements when the array geometry is
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Fig. 3 Computational complexity comparison

changed [4]. We note in passing that although changing
the electric length of the antenna changes the resonant
frequency of the antenna, the configuration states of the
array elements have been shown to resonate at a common
frequency and reflection coefficient. Figure 6 in [4] illus-
trates a reflection coefficient of −12.5 dB at a common
resonant frequency of 2.484 GHz.
The RPDA antennas use PIN diode switches to achieve

four different operating states. The “short” (S) configura-
tion is used when the switches on the antenna are inactive.
The active switches cause the antenna to operate in a
“long” (L) configuration. One array at each end of the link
therefore uses a combination of the individual antenna
states to form different configurations. Table 3 shows the
16 possible combinations for the 2 × 2 antenna structure;
Fig. 5 shows four different radiation pattern combinations

for a two-antenna array system. The blue radiation pattern
corresponds to antenna 1, and the red corresponds to
antenna 2 of the array. The radiation patterns on the
left of Fig. 5 are generated from the short-short config-
urations, for antenna 1 and antenna 2, respectively. The
rest are from short-long, long-short, and then long-long
configurations, respectively.
To determine the pattern diversity of these antenna

configurations, we evaluated the correlation coefficients
based on the approach proposed by Vaughan et al. in
[24, 25]. This approach uses the radiation patterns of the
antenna system and numerical integration to obtain the
envelop correlation for a two-antenna system. However, it
has been shown that the complex envelop correlation (ρc)
derived in [26] yields a more accurate result when corre-
lation is included in the channel modeling estimation of

Fig. 4 Reconfigurable printed dipole array (RPDA) [7]
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Table 3 Possible configurations for 2 × 2 MIMO-OFDM system

Configurations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TX
Ant 1 S S L S S S L L L L L L L S S S

Ant 2 S S L S L L L L L S S S S S L L

RX
Ant 1 S L S S S L L L S S L L S L S L

Ant 2 S L S L L L S L L S S L L S S S

capacity or BER. This expression is summarized in (10)
below:

ρc =
∫ ∫

4π

[�F1 (θ ,φ) . �F2 (θ ,φ)
]
d�√∫ ∫

4π

∣∣∣[�F1 (θ ,φ)
]∣∣∣2 d�

∫ ∫
4π

∣∣∣[�F2 (θ ,φ)
]∣∣∣2 d�

(10)

where �Fi (θ ,φ) is the far-field radiation pattern of the
antenna system when port i is excited, and . is the
Hermitian product (Fig. 6).

Scattering environment
The wireless environment for the experimental testing is
a typical indoor office environment. The layout in Fig. 7
below shows the setting of the laboratory environment
where the experiments were conducted. The office space
is sectioned into cubicles by plastic materials covered in
fabric and the cubicles are about 2.5 m tall; the walls are
made of glass. The office floor is made of concrete, and
the ceiling is composed of a matrix of cardboard tiles.
Therefore, the scatterers and reflectors of the surrounding
environment are mainly characterized by the aforemen-
tioned materials. The positions of the nodes are labeled by
the numbers and the nodes are placed on desks that are 1
m high. Both the transmitter and receiving nodes are sta-
tionary but the channel conditions maybe influenced by
sporadic human motion in between the nodes.

Measurement setup
The experimental setup used two stations. Each station is
equipped with a laptop, a wireless open-access radio plat-
form (WARP) board [23], and two reconfigurable printed
dipole array (RPDA) antennas [7]. One of the stations is
designated as the transmitter node and the other as the
receiver node. Figure 8 shows the setup of a transmitter
station. AWARP board has two radio cards, each with one
antenna slot. The laptop runs the software that drives the
WARP radios and the reference code for signal processing.
Prior to the experimental evaluation of our work, we

conducted a test campaign to approximate the coherence
time of the channel by obtaining the SNR rate profile
for the fixed nodes in the measurement environment. By
applying the methodology in [27], we varied the SNR
across the full range of allowable received power for the
WARP radio board ( −80 to −40 dBm) and measured
the coherence time at a speed of 0 mps. Our preliminary
tests showed that the average coherence time was approx-
imately 192 ms. Therefore, based on this result, we infer
that the channel was relatively static or slow fading and
is sufficiently constant to decode the received symbols
with a particular modulation rate during the coherence
interval.
Our implementation uses spatial multiplexing for sig-

nal transmission between the 2 × 2 MIMO link estab-
lished by the two stations. Specifically, we implement
V-BLAST MIMO signal processing technique in concert

Fig. 5 Radiation patterns combinations for a two-antenna array system for all the possible antenna configurations
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Fig. 6 The measured correlation coefficient as a function of resonant frequency for the long and short configurations in a two-element array with
inter-element separation of λ/4

with OFDM because of its ability to cope with severe
channel conditions such as frequency-selective fading due
to multipath. The transmission packets are based on the
802.11n OFDM format. The total bandwidth of 20 MHz
is divided into 64 subcarriers: 48 for data and 16 for pilot
symbols and preamble. Each OFDM symbol has 80 sam-
ples (64 samples for each subcarrier plus 16 samples for
cyclic prefix). Based on the manufacturer’s specification,
the transmission rate for theWARP radio is 107 samples/s.
To reduce noise and phase distortions, we use an over
sampling factor of 4 which yields a sampling frequency of
4×107 samples/s. Based on procedure in [16], the OFDM
symbol transmit time is given by (11) and the data rate
by (12). And, the throughput is estimated by multiplying

the result from (12) by the (1 - PER), where PER is the
estimated packet error rate.

Transmit time = samples per OFDM symbol
sampling frequency (11)

Data Rate = bits per symbol
transmit time

(12)

Data are encoded using punctured convolutional codes
and modulated at a carrier frequency of 2.484 GHz using
one of the four signal constellations: BPSK, QPSK, 16-
QAM, and 64-QAM. The convolutional encoder uses a
constraint length of and code generator polynomials of
133 and 171 (in octal numbers). The puncturing matrices

Fig. 7 The layout of the scattering environment
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Fig. 8 An experimental communication node or station

for the relevant coding rates (1/2, 2/3, 3/4) are specified
in [28]. All transmissions consisted of a 24-byte header
which includes a cyclic redundancy check (CRC) mod-
ulated with BPSK and bits were coded at rate 1/2. The
header carries a fixed channel training sequence [17] and
a payload of 1 KB is followed by a 4-byte CRC check.

Performance results and analysis
We evaluate the experimental performance of the pro-
posed SAMC algorithm using the measurement setup

presented above. The SAMC algorithm uses the highest
rate transmission AMC. We also analyze the perfor-
mance of the highest rate AMC without antenna selection
procedure. This is considered as the non-reconfigurable
scenario where the 2 × 2 MIMO system is equipped
with RPDA antennas that uses a fixed configuration (all
antenna states are set to short configuration).We compare
the performances of these two approaches with that of two
other algorithms: WF-AMC [10] and BL-AMC [11].
Figure 9 illustrates the empirical ppSNR cumula-

tive distribution functions (CDFs) of two measurement

Fig. 9 Empirical ppSNR CDFs for reconfigurable AMC and non-reconfigurable AMC [29]
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Fig. 10 Throughput comparison for 2 × 2 MIMO-OFDM system at 20 MHz [29]

campaigns. In the first campaign, we used RPDA anten-
nas for signal transmissions and measured the channel
SNR. In the second, we repeated the same measurements
by using non-reconfigurable (reconfigurable antenna with
fixed state) antennas for signal transmissions. The curves
indicate a relative gain in ppSNR of 4 dB when the RPDA
antennas were used compared to the results from the
second campaign with non-reconfigurable antennas. The
performance curves indicate a gain in the reconfigurable
antenna scenario due to diversity gain from antenna state
switching or selection since the same set of antenna arrays
were used in both scenarios.

The throughput performance curves of the WF-AMC,
BL-AMC, and the proposed algorithms are shown in
Fig. 10. The WF-AMC [10] model outperforms all
the other schemes. This slightly better performance
is due to the water-filling adaptation which is known
to be optimal relative to other power allocation tech-
niques. The proposed model, SAMC, performed better
than both the spatial BL-AMC algorithm [11] and the
non-reconfigurable AMC models. We note in passing
that the effect of training overhead on these through-
put measurements was not investigated as part of
this work.

Fig. 11 BER performance comparison [29]
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Fig. 12 The distribution of modulation use in SAMC [29]

Similarly, BER is calculated from the coarse approxi-
mation used in the optimization process based on the
header information in each packet. Figure 11 plots the
BER performances of the proposed models and the other
models from [10, 11]. The non-reconfigurable AMC
always satisfies the target BER requirement. The other
models follow similar curves but only meet the BER
constraint of 10−3 at ppSNRs greater than 7 dB. This
behavior is partly due to the necessary training required
for the configuration selection. Training introduces a

delay which causes adaptation on outdated channel infor-
mation. The random jumps above the target BER line
can be explained by the use of BPSK even when the
ppSNR fell in the outage region (see Fig. 2). Despite the
relatively close throughput and BER performances, our
approach is superior in its computational complexity per-
formance. The computational complexity of our model
is at least 2 orders of magnitude lower than the mea-
sured values for the other models in [10] and [11] (see
Fig. 3).

Fig. 13 Configurations usage in the proposed algorithm [29]
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Fig. 14 Channel variation over time as measured using the active antenna configurations

In Fig. 12, we show the adaptive modulation types in
terms of their fraction of usage—the percentage of time
a modulation type is used during the experiment. As
expected, at low ppSNR, BPSK is used most often; at
moderate (10 dB) to middle-range ppSNR (17 dB), QPSK,
and 16-QAM are frequently used. At high ppSNR, 64-
QAM dominates in usage although lower modulation
types make up a combined usage of at least 30 %. Figure 13
illustrates the fraction of usage for the top five configu-
rations. The horizontal axis represents the configurations
used at both the transmitter and receiver. For example,
SS-SS indicates that all the antennas operated in a “short”
configuration. The SS-SS configuration was favored over
the rest of the configurations and is chosen for more than
45 % of the transmissions. The other configurations are
preferred for the rest of the time due to their relatively
higher ppSNR with respect to the SS-SS configuration.
The benefit from switching is lower BER performance,
which results in improved throughput; however, the over-
all throughput performance maybe suboptimal due to
the use of average ppSNR for all the subcarriers. Finally,
Fig. 14 illustrates the channel variation over time as mea-
sured using the active antenna configurations. It shows
the flat fading nature of the wireless channel environment
without deep fades.

Conclusions
A spatially adaptive modulation and coding algorithm
was proposed and implemented in a software-defined
radio testbed. Multiple techniques of link adaptation
were employed to develop a low computational com-
plexity, throughput enhancing model. The capabilities of
reconfigurable printed dipole array (RPDA) antennas in
MIMO-OFDM systems were harnessed to improve spec-
tral efficiency. It was shown via field implementation that

our model can increase post processing signal-to-noise
ratio and therefore system reliability over a multiple-
antenna slow fading channel. Future work will investigate
the effects of feedback delay on the proposed algorithm.
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