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An effective absorbing boundary 
condition for linear long‑wave and linear 
dispersive‑wave tsunami simulations
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Abstract 

We numerically simulated the propagation of tsunami waves with finite difference methods by using perfectly 
matched layer (PML) boundary conditions to effectively eliminate artificial reflections from model boundaries. The 
PML method damps the tsunami height and velocity of seawater only in directions perpendicular to the boundary. 
Although the additional terms required to implement the PML conditions make the use of the PML technique dif-
ficult for linear dispersive tsunami waves, we have proposed an empirical extension of the PML method for modeling 
dispersive tsunami waves. Even for heterogeneous, realistic bathymetries, numerical tests demonstrated that the PML 
boundary condition dramatically decreased artificial reflections from model boundaries compared to the use of tra-
ditional boundary conditions. The use of PML boundary conditions for numerical modeling of tsunamis is especially 
useful because it facilitates use of the later phases of tsunamis that would otherwise be compromised by artifacts 
caused by reflections from model boundaries.
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Background
Tsunami simulation for a near-field earthquake is usually 
performed with a bounded-area model having a spatial 
extent on the order of 100–1000 km (e.g., Tanioka 2006; 
Furumura et  al. 2011) rather than with a whole-earth 
model in the case of a far-field tsunami. At the offshore 
side of the model boundary, an open or an absorbing 
condition is necessary to avoid artificial reflections from 
the physical model boundaries. Simulations by finite 
difference methods applied to the long-wave tsunami 
equation usually utilize a one-way wave equation or the 
Sommerfeld radiation condition (e.g., Hwang et al. 1972; 
Blumberg and Kantha 1985); alternatively, a sponge con-
dition, which artificially attenuates the wave height in the 
vicinity of the model boundary, also has been widely used 
(e.g., Cerjan et al. 1985; Furumura and Saito 2009). These 

absorbers generally work to reduce artificial tsunami 
reflections from the outer of the model; however, some 
remaining reflection noises contaminate the later phase 
in the tsunami waveform. To make full use of the later or 
full tsunami waveform, therefore the area of the simula-
tion should be enlarged to postpone the arrival of artifi-
cial reflections.

Recent development of high-resolution observations 
at the ocean-bottom cabled instruments (e.g., González 
and Kulikov 1993) and numerical simulations (e.g., Saito 
et al. 2010) enabled us to utilize dispersive tsunami waves 
including later phase. The dispersive tsunami simulation 
is now being used for inversion studies (e.g., Hossen et al. 
2015a; Saito et al. 2011) as well as forward modeling (e.g., 
Baba et al. 2015; Grilli et al. 2013). In the dispersive tsu-
nami simulation, the existing Sommerfeld radiation con-
dition (e.g., Tanioka 1999) and its extension for weakly 
dispersive tsunami wave (Kim et al. 1988), or the sponge 
boundary condition (e.g., Saito et al. 2010) is used so that 
the same problem of the bounded tsunami simulation 
arises to utilize later phases or full tsunami waveforms.
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Since the computational load for the dispersive tsunami 
simulation is quite heavy particularly due to their implicit 
scheme calculation requirement and a considerable num-
ber of iteration to solve governing equation of the disper-
sive tsunami, the development of more effective absorbing 
boundary is desirable for dispersive tsunami simulation 
and also for non-dispersive tsunami simulations to make 
full use of whole tsunami waveform with keeping the sim-
ulation area small and to reduce computational load.

In this report, we propose the use of an alternative and 
more effective boundary condition based on the perfectly 
matched layer (PML) method for finite difference numer-
ical modeling of tsunami propagation. The PML method 
was originally proposed for numerical simulations of 
electromagnetic waves (Berenger 1994) and is known to 
be one of the most effective absorbing boundary condi-
tions for wave-related equations. The PML method uses 
an absorbing region surrounding the model area. Within 
the full wavefield, only variables with a component of 
movement perpendicular to the model boundary are 
attenuated to avoiding artificial reflection. Waves moving 
parallel to the model boundary are unchanged.

The PML boundary condition has previously been 
applied successfully to elastic wave propagation (Chew 
and Liu 1996). This application was followed by many 
successful applications in earthquake seismology (e.g., 
Marcinkovich and Olsen 2003; Festa and Nielsen 2003; 
Maeda and Furumura 2013). The PML method has also 
been successfully applied to general shallow water equa-
tions (e.g., Navon et al. 2004; Lavelle and Thacker 2008) 
in climate simulation and ocean modeling. In the present 
study, we focused on application of this technique to the 
problem of modeling the propagation of tsunami waves, 
including dispersive tsunami waves.

In the following report, we first show that the PML 
boundary condition is easily implemented in the case of lin-
ear long-wave tsunami equations. Although it is difficult to 
directly apply the PML boundary condition to a more real-
istic linear, dispersive-wave tsunami model, we propose an 
empirical extension of the PML boundary condition to the 
linear, dispersive tsunami equation. We then demonstrate 
the effectiveness of the PML absorbing boundary condition 
under simple and realistic bathymetric conditions.

Perfectly matched layer and its application 
to tsunami equations
Linear long‑wave tsunami equation with PML
The propagation of a tsunami is governed by the follow-
ing continuity and momentum equations under the linear 
long-wave (LLW) assumption (e.g., Goto 1984):

where η is the tsunami height measured from the undis-
turbed sea surface, M and N are the horizontal compo-
nents of the tsunami velocity vertically integrated from 
the bottom of the ocean to the undisturbed sea surface 
(hereafter referred to as the tsunami velocity) in the x- 
and y-directions, respectively.

The PML regions used to damp outgoing tsunami 
waves were placed surrounding the numerical model 
with a finite thickness (usually 10–20 grids) separating 
them from the interior region. In this PML region, physi-
cal variables were decomposed into directions according 
to the directions of their x and y derivatives. For Eq. 1, the 
continuity equation, we split the tsunami height η into x- 
and y-directions as follows:

Coordinate stretching in the complex plane was then 
applied in the frequency domain to attain absorption 
along a specific direction. We adopted stretching on the 
complex plane as follows (e.g., Moczo et al. 2007):

where (β(x), β(y)) and (δ(x), δ(y)) are attenuation functions 
along the x- and y-directions, respectively. By applying 
Eq. 5 to Eq. 4 in the frequency domain, we obtained PML 
equations as follows:

When converted to the time domain, the above equa-
tions become
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If δ(x) and δ(y) are positive, the tsunami height is 
expected to decrease exponentially with time. The PML 
equations for tsunami momentum, Eq. 2, were derived in 
the same manner as follows:

where we note that no further decomposition is required.
In the PML approach, only a wave propagating perpen-

dicular to the model boundary is absorbed so as to avoid 
artificial reflection from the boundary. A wave propagat-
ing parallel to the boundary should be unchanged (Chew 
and Liu 1996). In a direction parallel to the boundary, 
we therefore set the attenuation functions β(x) =  1 and 
δ(x) =  0, or β(y) =  1 and δ(y) =  0 in Eqs. 7 and 8. Inside 
the PML region, we followed Zhang and Shen (2010) by 
adopting a second-order polynomial scaling function to 
gradually decrease the attenuation functions:

where L is the thickness of the PML region and x is the dis-
tance from the beginning of the PML region measured from 
the boundary between the PML and interior regions. The 
coefficients δ0 and β0 are the maximum values of δ(x) and 
β(x). They were chosen in accordance with the specifications 
in Zhang and Shen (2010). Note that we used spatially vary-
ing β(x) value (e.g., Moczo et al. 2007; Maeda and Furumura 
2013). In the interior region, except for the PML, the LLW 
tsunami equations, Eqs. 1 and 2, were solved directly.

Extension to a linear dispersive‑wave tsunami model
To simulate a tsunami propagating in the deep ocean 
and/or a tsunami with a shorter wavelength, it is nec-
essary to use a linear dispersive-wave (LDW) tsunami 
model to take into consideration tsunami dispersion 
effects (e.g., Saito and Furumura 2009). To simulate a 
dispersive tsunami, we adopted a Boussinesq-type two-
dimensional LDW equation with vertically integrated 
tsunami velocities (e.g., Saito et al. 2010) as follows:

We obtained the tsunami height by using Eq. 1, the con-
tinuity equation. The tsunami dispersion effect is caused 
by the last term on the right-hand side of Eq.  10. It is 
expected that the dispersion strengthens with increasing 
ocean depth, h.
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In the LDW tsunami model, the stretching method 
cannot be applied straightforwardly to Eq.  10 because 
there are higher-order derivatives along the mixed direc-
tions in the second terms. To cope with this difficulty, 
we here propose an approximate two-step scheme for 
empirically incorporating dispersion effects into the PML 
equation. First, we evaluate the effect of dispersion in the 
LDW equation by estimating the dispersion term, Φ(x, y, 
t), which is defined as follows:

After estimating Φ, we evaluated the coordinate-
stretched PML equation with a weighting factor w as 
follows:

The weighting factor w was chosen so that it smoothly 
decreased from 1 to 0 in the PML region.

Rigorously speaking, Eq. 11 is equivalent to Eq. 10 only 
if the bathymetry is flat (∂h/∂x = 0, ∂h/∂y = 0). We thus 
assumed a flat bathymetry inside the PML region along 
the direction perpendicular to the boundary. On the one 
hand, although Eq. 12 does not exactly adhere to the con-
dition of a PML because the spatial derivatives inside the 
dispersion term are not stretched, Eq. 12 asymptotes to 
the PML Eq.  8 as the weighting factor w decreases. On 
the other hand, the interior domain and the PML region 
are smoothly connected if w  =  1 on the interface. In 
that case, the effect of tsunami dispersion is gradually 
decreased (i.e., Eq.  12 gradually approaches the LLW 
equation Eq.  8) as the tsunami wave penetrates toward 
the PML region. We equated the weighting factor w to 
the following cosine function:

where x and L are the distance from the PML-inte-
rior interface and the thickness of the PML region, 
respectively.

Numerical implementation
Linear long‑wave tsunami equation
The LLW tsunami equations were numerically solved 
by using a staggered-grid, finite difference method. The 
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spatial coordinates x and y were discretized by spatial 
grid widths Δx and Δy defined by x = i�x (i = 1, . . . ,Nx) , 
y = j�y (j = 1, . . . ,Ny), and time was discretized as 
t = n�t (n = 1, . . . ,Nt). We adopted a staggered-grid 
layout in accordance with Saito and Furumura (2009), as 
shown in Fig. 1.

Because the time-marching equations for the PML 
region, Eqs. 7 and 8, are implicit in time, we used a first-
order Crank–Nicolson scheme (e.g., Press et al. 1986) to 
solve them numerically. For example, the first equation in 
Eq. 7 was discretized by using a central finite difference, 
second-order scheme in both space and time as follows:

We note that time averaging was applied in the sec-
ond term on the left-hand side of Eq. 14. By applying this 
discretization to Eqs.  7 and 8 in the same manner, we 
obtained the discretized time-marching LLW equations 
with a PML as follows:
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/2 are the averages of the ocean depths along the 
x- and y-directions, respectively. In the PML region, the 
bathymetry is assumed to be flat along the direction 
perpendicular to the boundary to reduce reflection. For 
example, at the x-side boundary we set hi,j = hNP ,j (for 
i = 1, . . . ,NP − 1), where NP is the thickness of the PML 
region in terms of the number of grids. At the model 
corners, we used homogeneous corner, for example 
hi,j = hNP ,NP(for i = 1, . . . ,NP − 1, and j = 1, . . . ,NP − 1). 
The bathymetries at the other corners are set in the same 
manner.
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Fig. 1  Staggered-grid layout adopted in this study for tsunami simu-
lation by the finite difference method

Linear dispersive‑wave tsunami equation
For the LDW equations, the momentum equation 
becomes numerically implicit in time due to the exist-
ence of the dispersion term. To solve this linear sys-
tem, we adopted an iterative procedure based on 
Saito et  al. (2010) but with a slight modification. For 
computational efficiency, we first solved the deriva-
tives with respect to time of the tsunami velocity 
components, Ṁ(x, y, t) and Ṅ (x, y, t), rather than cal-
culating the tsunami velocity by implicitly solving 
Eq. 10, where the dots denote derivatives with respect 
to time. Integration with respect to time was then 
explicitly performed by using the estimated deriva-
tives with respect to time of the tsunami velocities 
Ṁ(x, y, t) and Ṅ (x, y, t). The detailed discretized equa-
tions are given in Appendix.

In the PML region, the spatial derivatives of the disper-
sion term were easily calculated by using the definition of 
the dispersion term, Eq. 11, as follows:
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The tsunami velocities, M and N, at the (n +  1/2)-th 
time step were calculated as follows:

Substituting Eq. 17 in Eq. 18, we obtained the discretized 
momentum equations for tsunami velocity in the PML 
region as follows:

In the final form, Eq.  19, the dispersion term does not 
explicitly appear. We note that Eq.  19 asymptotes to a 
simple numerical integration (Eq.  23) when β(*)  →  1, 
δ(*) → 0, and w → 1.

Numerical examples
Smooth bathymetry model
To examine the effectiveness of the proposed PML 
absorbing boundary conditions for numerical simulation 
of a tsunami, we performed a finite difference simulation 
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for a smoothly sloping bathymetric structure as depicted 
in Fig. 2. In this smooth bathymetry model, the assumed 
ocean depths are typical of the bathymetry from a con-
tinental shelf to a trench associated with a subduction 
zone at a plate boundary. The simulation model was dis-
cretized with a grid width of Δx = Δy = 500 m and a time 
step of Δt = 1.0 s.

To assess the effect of artificial reflections from the 
model boundary, we compared simulation results in 
the smaller bounded region (region 1 in Fig. 2) with the 
results for a reflection-free model, which was derived 
from a larger model (region 2 in Fig. 2) as a reference. We 
compared the simulated tsunami for the following three 
types of absorbing boundary conditions: (1) a one-way 
boundary condition, (2) a sponge boundary condition, 
and (3) the PML boundary condition proposed in this 
report. All of these boundary conditions were applied on 
the outer boundary of region 1 (Fig. 2).

The one-way boundary condition uses the one-way 
wave equation, with the wave propagating perpendicu-
lar to the boundary at the outermost grid (e.g., Tanioka 
and Seno 2001). The sponge boundary uses the scheme 
of Cerjan et  al. (1985) with an absorber thickness of 20 
grids. We used the same thickness for the PML region.

We set the initial sea-surface height at time t = 0 as the 
tsunami source. We used the following two-dimensional 
cosine function (Hossen et al. 2015b) for the initial sea-
surface height:

where Ax and Ay are characteristic source sizes. We set 
Ax = Ay = 16 km. The maximum initial height at x = x0 
and y = y0 was assumed to be η0 = 1 m. The source loca-
tions x0 and y0 were equated to the center of the model.

Figure  3 and Additional file  1 show snapshots of the 
tsunami wavefield based on the LLW model simulation 
for the three types of absorbing boundary conditions as 
well as the reflection-free reference model. The snapshots 
show the tsunami waves spreading isotropically from the 
initial height given by Eq. 20. At the second time step of 
the snapshot (t = 800 s), the tsunami wavefront reaches 
the boundaries of region 1 at y = 0 km (bottom) and at 
x =  0 and 200  km. It is apparent that the one-way and 
sponge boundary conditions cause artificial reflections 
from the boundaries. The reflections are much stronger 
for the one-way boundary than for the sponge bound-
ary. As time passes, these artificially reflected waves 
propagate back to the model interior. At t = 1300 s, the 
entire simulation area (region 1) is contaminated by the 
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artificial reflections from the boundaries. In contrast, the 
PML absorbing condition generates very weak, almost 
negligible, reflections from the boundaries compared to 
the one-way and sponge boundary conditions.

The results in Fig. 4 and Additional file 2 demonstrate 
the similar effectiveness of the PML boundary conditions 
for the LDW model. Because the characteristic size of the 
assumed source area is not as large (Ax = Ay =  16 km) 
as the ocean depth (3.9 km at the deepest point), a dis-
persive tsunami wave train was very clearly apparent, 
especially in the y-direction. As a result, dispersion con-
siderably elongated the tsunami wave packet by 800 and 
1300  s. The results of the tsunami simulation using the 
one-way and sponge boundary conditions show that the 
dispersed later phases (800 and 1300 s) were completely 
overlapped by the artificial reflections from the boundary 
at y = 0 km. In particular, the reflection for the one-way 
boundary condition was much stronger than in the case 
of the LLW model, probably because of the mismatch 
between the dispersed tsunami velocity and the assumed 
tsunami velocity used in the one-way wave equation 
(Fig. 3a). In contrast, the PML boundary condition very 
efficiently suppressed such artificial reflections. At a 
very late elapsed time of t = 1300 s, the amplitude of the 
reflected wave was only on the order of 1  cm, which is 

much smaller than the amplitude of reflected waves for 
the one-way and sponge boundary conditions.

The one-way boundary condition assumed that the tsu-
nami wave propagated perpendicular to the boundary 
with the speed of a linear long-wave. However, dispersion 
effects cause the long-wave condition to be inconsistent 
with the LDW tsunami model. The difference between 
the tsunami propagation speeds derived from the long-
wave assumption is probably the cause of the significant 
artificial reflection. The sponge condition generally atten-
uates a tsunami at all speeds; however, snapshots (Figs. 3, 
4) made it apparent that the sponge boundary condi-
tion caused significant reflections when the approach-
ing wave was nearly parallel to the boundary. That the 
PML boundary condition effectively attenuated only the 
components propagating outward from the boundary 
resulted in the best reduction of reflections. The effec-
tiveness of the PML boundary condition can also be con-
firmed by comparing simulated tsunami traces (Fig.  5). 
For the tsunami waveforms obtained in simulations 
based on the one-way and sponge boundary conditions, 
the artificial reflections from the boundary observed at 
times near t = 600–1400 s for both the LLW and LDW 
models were much larger than those obtained with the 
reference model. On the contrary, the reflected waves 
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were almost indistinguishable for the simulation using 
the PML boundary condition. The artificial reflections 
can be easily identified in the case of the LLW model, 
because they are temporally separated from the arrival 
of the main tsunami signal. However, in the case of the 
more realistic tsunami simulation with the LDW model, 
the dispersed later tsunami arrivals were significantly 
contaminated by artificial reflections from boundary. It is 
thus rather difficult to distinguish the contamination of 
artificial reflections in the tsunami waveforms. The PML 
boundary condition was more effective in reducing the 
risk of artificial reflections in the LDW tsunami simula-
tion model.

Tsunami simulation in Nankai Trough in southwest Japan
We next applied the PML boundary condition to sim-
ulation of a tsunami wave propagating in the Nan-
kai Trough, southwest of Japan (Fig.  6). The model 
had a spatial extent of 1050  km (east–west) ×  550  km 

(north–south), which was almost adequate to cover the 
Nankai Trough southwest of Japan, where the Philippine 
Sea plate subducts beneath the Japanese archipelago. The 
model was discretized in space and time with grid widths 
of Δx = Δy = 1000 m and Δt = 1.0 s.

The initial sea-surface height was a single circu-
lar elevation of the sea surface based on Eq.  20 with 
Ax = Ay =  22.5 km and was centered near the Kii pen-
insula. This simulation mimicked the problem of cal-
culating the Green’s function for purposes of tsunami 
forecasting and/or inversion of the initial sea-surface 
height of large earthquakes (e.g., Tsushima et  al. 2009; 
Baba and Cummins 2005; Takagawa and Tomita 2014).

To demonstrate the effectiveness of the PML absorbing 
boundary conditions, we compared the simulated tsu-
nami wavefield with the wavefield in the reflection-free 
reference model. We extended the simulation area of the 
reference model 500  km southward to avoid boundary-
reflected waves. We note that waves reflected from the 
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boundaries on the other side of the model area did not 
occur until the end of the simulation because the tsunami 
wave propagation speed toward these boundaries was 
slowed by the shallow bathymetry.

Snapshots of the propagation of this tsunami by the 
LLW model are shown in Fig. 7 and Additional file 3. We 
also show the residual tsunami wavefield obtained by 
subtracting the wavefield of the reference model (Fig. 7) 
to emphasize the presence of the artificial reflection from 
the southern boundary. Because of the faster tsunami 
propagation speed, the reflected wave from the southern 
boundary quickly approached the Japanese archipelago. 
The amplitude increased as the tsunami speed decreased 
in the cases of the one-way and sponge boundaries. The 
reflection was especially strong at Shikoku and Kyushu 
islands in the west because the boundary was closer. At 

an elapsed time of 2500 s, the wavefront of the reflected 
wave was approaching the direct wavefront near Kyushu.

In contrast, there was no significant reflection in the 
case of the model with a PML boundary. Some of the 
signal in the snapshot of the residual amplitude at an 
elapsed time of 2500 s in the PML boundary model was 
backscattering of the tsunami in the reference model area 
(red rectangle in Fig. 6) that originated from outside the 
model area (blue rectangle in Fig. 6) rather than an arti-
ficial reflection from the model boundary. We note, how-
ever, that such backscattering does not affect tsunami 
waves near the coast of Japan, because the origin of the 
scattering is far from the southern boundary.

In the case of tsunami simulation with the LDW model, 
the reflection from the southern boundary was much 
worse (Fig.  8  and Additional file  4), especially for the 
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one-way boundary condition, as was the case for the sim-
ple bathymetry model. The reflected wave spread widely 
because of dispersion effects. The sponge boundary condi-
tion gave better results than the one-way boundary condi-
tion; however, there were still large artifacts, particularly at 
wide angles of reflection. In contrast, the PML boundary 
conditions gave excellent results, even in the LDW model, 
with respect to elimination of artificial reflections. We 
note again that a major part of the residual tsunami wave-
field was the scattered waves from outside the simulation 
model, and they did not penetrate near the trough axis.

Figure  9 shows the comparison of tsunami waveforms 
recorded at an ocean-bottom station (see Fig. 6 for loca-
tion) near Kyushu Island. On the one hand, the tsunami 
waveforms of the LLW models with one-way and sponge 

boundary conditions showed a large tsunami packet with 
reversed polarity, i.e., a reflected wave. On the other hand, 
no visible reflection appeared in the simulation with PML 
boundary conditions. The contamination of the compli-
cated reflected waves were generated in the LDW model 
(Fig. 9b) because of the dispersion of both the direct and 
boundary-reflected waves. The use of the PML boundary 
conditions allowed us to use the later phases of the tsu-
nami and will thus facilitate more detailed estimations of 
tsunami sources and/or forecasts of tsunamis.

Discussion and conclusions
We developed and demonstrated the use of an effective 
absorbing boundary condition for finite difference simu-
lation of tsunamis. The new PML boundary condition for 

Fig. 7  Snapshots of the simulation of tsunami propagation for the LLW model at two time steps of I t = 1500 s and II t = 2500 s using a one-way, 
b sponge, and c PML boundary conditions. In each time step, top panels a–c show tsunami height for each simulation. The bottom panels d–f 
show the residual tsunami heights obtained by subtracting from the tsunami heights the heights of the reference numerical simulation over a 
wider region (see Fig. 6). Color scales are shown on the right hand side. An additional file contains a movie of the tsunami wave height over time 
(Additional file 3)
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LLW tsunamis was empirically extended to LDW tsuna-
mis and was shown to be very effective in reducing artifi-
cial reflections of tsunamis at the model boundaries. The 
effectiveness of the PML boundary condition may be sen-
sitive to the PML damping parameters, but we confirmed 
that it is rather robust and a set of same PML parameters 
previously used in the modeling of seismic waves (Zhang 
and Shen 2010) work efficiently for tsunami waves as 
well.

Although the model was developed using Cartesian 
coordinates, it is straightforward to extend the model 
to polar coordinates. However, it may be necessary to 
neglect the effect of the Coriolis force, at least in the PML 
region. Because the effect of the Coriolis force is expected 
to be quite small for regional tsunami modeling (Inazu 
and Saito 2015), ignoring the Coriolis force will not be an 
obstacle to achieving efficient absorbing conditions.

The wave speed of a tsunami depends on the depth of 
the ocean, and large variations of depth may enhance 
the effect of artificial reflections. A tsunami usually 
propagates very rapidly offshore (~300 m/s at a depth of 
10,000  m) and slowly around a coastline (~50  m/s at a 
depth 300 m). As a result, artificial reflections at the open 
boundary in a deep ocean return to the model interior at 
a very high speed, as shown in Figs. 3 and 4. Because the 
amplitude of a tsunami generally increases with decreas-
ing depth of the water column, such artificial reflections 
are significantly enhanced around coastlines. This effect 
may have a strong influence on the use of tsunami wave-
forms at later phases of the tsunami, e.g., in the case of a 
dispersive tsunami wave.

In practice, such artificial reflections can be avoided 
by simply extending the model area, and such an exten-
sion is not very difficult for the LLW model. However, 

Fig. 8  Same as Fig. 7, but for the LDW tsunami simulation. An additional file contains a movie of the tsunami wave height over time (Additional 
file 4)
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simulation of a tsunami with the LDW model is usually 
very expensive in terms of computational costs, which 
are roughly 30–100 times the costs of LLW tsunami 
simulations because of the iterative processes required 
to solve the finite difference equations. We note that 
because the PML condition is applied only once, during 
the last of the iterations (see Eq. 19), the additional cost 
of introducing the PML is negligibly small. Therefore, 
use of the PML absorbing boundary condition alterna-
tive to extending the model area greatly reduces com-
putational costs. The rapid, high-resolution simulation 
of tsunamis with robust absorbing boundary conditions 
for a model of moderate size should be useful for the 
repetitive simulation of tsunamis that is required, for 
example, for inversion studies of source fault ruptures 
and/or computation of the large number of Green’s 
functions (e.g., Baba and Cummins 2005; Tsushima 
et  al. 2009) required for tsunami forecasting or source 
inversion.
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Appendix: Discretization of dispersive tsunami 
equation
Equation 10 was discretized in space with the following 
second-order finite-difference scheme:

We used the Gauss–Seidel method to solve Eq. 21. The 
derivative with respect to time of the tsunami velocity 
was updated as follows based on Eq. 21 and an implicit 
scheme:

Equation  22 was repeatedly applied until Ṁn
i−1/2,j and 

Ṅ n
i,j−1/2 converged. Tsunami velocities in the interior 

region were then updated by numerical integration with 
respect to time as follows:
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Ṁn
i−1/2,j = −ghi−1/2,j

(

ηni,j − ηni−1,j

�x

)

+
h2i−1/2,j

3

Ṁn
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Ṁn
i+1/2,j + Ṁn
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In the PML region, the estimated derivatives with respect 
to time of the tsunami velocities (Eq.  22) were used in 
Eq. 19.
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