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Abstract

Background: Since the first discussions of new challenges posed by aspect-oriented programming (AOP) to
software testing, the real difficulties of testing aspect-oriented (AO) programs have not been properly analysed. Firstly,
despite the customisation of traditional testing techniques to the AOP context, the literature lacks discussions on how
hard it is to apply them to (even ordinary) AO programs based on practical experience. Secondly, and equally
important, due to the cautious AOP adoption focused on concern refactoring, test reuse is another relevant issue that
has been overlooked so far. This paper deals with these two issues. It discusses the difficulties of testing AO programs
from three perspectives: (i) structural-based testing, (ii) fault-based testing and (iii) test set reuse across paradigms.

Methods: Perspectives (i) and (ii) are addressed by means of a retrospective of research done by the authors’ group.
We analyse the impact of using AOP mechanisms on the testability of programs in terms of the underlying test
models, the derived test requirements and the coverage of such requirements. The discussion is based on our
experience on developing and applying testing approaches and tools to AspectJ programs at both unit and
integration levels. Perspective (iii), on the other hand, consists of recent exploratory studies that analyse the effort to
adapt test sets for refactored systems and the quality of such test sets in terms of structural coverage.

Results: Building test models for AO programs imposes higher complexity when compared to the OO paradigm.
Besides this, adapting test suites for OO programs to AO equivalent programs tends to require less effort than doing
the other way around, and resulting suites achieve similar quality levels for small-sized aplications.

Conclusions: The conclusion is that building test models for AO programs, as well as deriving and covering
paradigm-specific test requirements, is not straightforward as it has been for procedural and object-oriented (OO)
programs at some extent. Once you have test suites in conformance with programs implemented in both paradigms,
the quality of such suited in termos of code coverage may vary depending on the size and characteristics of the
applications under testing.

Keywords: Software testing, Aspect-oriented programming, Object-oriented programming, Software refactoring,
Test reuse

*Correspondence: fabiano@dc.ufscar.br
1Computing Department, Federal University of São Carlos, Rod. Washington
Luis, km 235, 13565-905 São Carlos, SP, Brazil
Full list of author information is available at the end of the article

© 2015 Ferrari et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192926427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0040-1-x&domain=pdf
mailto: fabiano@dc.ufscar.br
http://creativecommons.org/licenses/by/4.0/


Ferrari et al. Journal of the Brazilian Computer Society  (2015) 21:20 Page 2 of 25

Introduction
In 2004, Alexander et al. [1] first discussed the chal-
lenges posed by aspect-oriented programming (AOP) to
the software testing researchers. They enumerated poten-
tial sources of faults in aspect-oriented (AO) programs,
ranging from the base code itself (i.e. not directly related
to aspectual code) to emerging properties due to multi-
ple aspect interactions. In the same report, they proposed
a candidate, coarse-grained fault taxonomy for AO pro-
grams. Ever since, the software testing community has
been investigating ways of dealing with the challenges
described by them. In summary, research on testing of AO
programs (hereafter called AO testing) has been mainly
concerned with: (i) the characterisation of fault types and
bug patterns [2–7], (ii) the definition of underlying test
models and test selection criteria [8–18] and (iii) the
provision of automated tool support [11, 14, 16, 18–22].
In particular, structural-based and mutation-based test-
ing have been on focus by several research initiatives
[8, 9, 11–29].
Despite the variety of approaches for testing AO soft-

ware, too little has been reported about the difficul-
ties of applying them based on practical experience.
In other words, researchers rarely discuss the difficulty
of fulfilling AO-specific test requirements and the abil-
ity of their approaches in revealing faults in AO pro-
grams. For example, questions like “how hard is for
one to create a test case to traverse a specific path
in an AO program graph (in structural-based testing)?”
and “how hard is for one to kill an AO mutant (in
mutation-based testing)?” can hardly be answered based
on the analysis and discussions presented in the exist-
ing literature. Besides this, we observe that, even after
almost two decades of the AOP dissemination, it is still
adopted with caution by practitioners and researchers.
This fact was observed in two relatively recent reports
[30, 31]. From our experience and observations, when
adopted, AOP is applied to refactor existing object-
oriented (OO) systems to achieve better modularisation
of behaviour that appears intertwined or spread across
the system modules (these are the so-called crosscutting
concerns [32]). Examples of AOP applied in this con-
text can be found in the work of van Deursen et al. [2],
Mortensen et al. [33], Ferrari et al. [34] and Alves et al.
[35, 36], not limited to particular technologies such as Java
and AspectJ.
Our previous research investigated the fault-proneness

of AO programs based on faults identified during
the testing of real-world AO applications [34]. This
is related to the first aforementioned topic (i.e. fault
characterisation). The conclusion was that, amongst
the main mechanisms commonly used in AO pro-
grams, none of them stands out in terms of fault-
proneness. In that exploratory study, we used test sets

built upon the OO versions of the applications and
then used such test sets to evaluate the AO counter-
parts with some test set customisations. Even though
that study [34] addressed the reuse of test suites in
refactoring scenarios, we did not provide any discus-
sion with respect to the achieved code coverages, nei-
ther with respect to effort required for reusing test
sets.
In this paper, we revisit our contributions on AO test-

ing achieved by our research group along the last decade.
We discuss the challenges and difficulties of testing AO
programs from three perspectives: (i) structural-based
testing, (ii) fault-based testing and (iii) test set reuse across
programming paradigms. Regarding perspectives (i) and
(ii), we analyse the impact of using AOP mechanisms on
the testability of programs in terms of the definition of
the underlyingmodels, the derivation of test requirements
and the coverage of the requirements. In regard to the
perspective (iii), considering the OO and AO paradigms,
we address the effort for adapting test suites from one
paradigm to the other and analyse the quality of reused
test sets in both paradigms.
We highlight upfront that this paper extends the dis-

cussions and results presented in a previous publication
[37]. In order to extend our previous work, we focused on
the aforementioned perspective (iii)—test set reuse across
programming paradigms. We report on the results of a
recently performed exploratory study that measures the
effort (in terms of code changes) required to adapt test
suites from one paradigm to the other and vice versa.
Beyond this, we measure the structural coverage that
results from the applied test sets. The reader should notice
the points presented in this paper rely on our practi-
cal experience of establishing and applying approaches to
test AO programs by means of theoretical definitions and
exploratory assessments.
The remainder of this paper is organised as fol-

lows: section ‘Background’ describes basic background
on structural and fault-based testing. It also presents
basic concepts of aspect-oriented programming and the
AspectJ language. Sections ‘Structural-based viewpoint
analysis’ and ‘Mutation-based viewpoint analysis’ revisit
the contributions of our research group on structural and
mutation testing of AO programs, respectively. Section
‘Reuse-centred viewpoint analysis’ brings novel results
of an exploratory study that addressed the reuse of test
sets across the OO and AO paradigms. Examples and
experimental results are presented along sections ‘Struc-
tural-based viewpoint analysis’, ‘Mutation-based view-
point analysis’ and ‘Reuse-centred viewpoint analysis’.
Section ‘Related work’ summarises related research.
Finally, section ‘Final remarks, limitations and research
directions’ points out future research directions and con-
cludes this work.
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Background
Structural testing
Structural testing—also called white-box testing—is a
technique based on internal implementation details of
the software. In other words, this technique establishes
testing requirements based on internal structures of an
application. As a consequence, the main concern of this
technique is with the coverage degree of the program logic
yielded by the tests [38].
In structural testing, a control flow graph (CFG) is typ-

ically used to represent the control flow of a program. A
CFG is a directed graph representing the order in which
the individual statements, instructions or function calls
of program are executed. In a CFG, nodes represent a
statement or a block of statements, and edges represent
the flow of control from one statement or block of state-
ments to another. In the context of this paper, we define
a block of statement as a set of statements of a program.
After the execution of the first statement of the block,
the other statements within the block are sequentially
executed according to the control flow. Each block corre-
sponds to a node in the CFG and the transfer of control
from one node to another is represented by directed edges
between nodes.
Test selection criteria (or simply testing criteria) based

on control flow use only information about the execu-
tion flow of the program such as statements and branches
to determine which structures need to be tested. Typical
structural-based testing criteria defined based on a CFG
are all-nodes, all-edges and all-paths [38]. These criteria
require test cases that exercises all nodes (i.e. all state-
ments), all edges (i.e. all branches), and all paths (i.e. all
possible combination of nodes and edges) that compose a
CFG, respectively. It is important to notice that, although
desirable, the coverage of all of these criteria is unfeasi-
ble in general. For instance, the coverage of the all-paths
criterion may be impracticable due to the high number
of paths in a CFG. This and other limitations of the con-
trol flow-based criteria motivated the introduction of data
flow-based criteria.
For data flow-based testing, the def-use graph extends

the CFG with information about the definitions and uses
of variables [39]. Data flow-based testing uses data flow
analysis as source of information to derive testing require-
ments. In other words, the interactions involving defini-
tion of variables and use of such definitions are explored
to derive test requirements. For our purposes, the occur-
rence of a variable in a program is classified either as a
definition or a use. We consider as a definition a value
assignment to a variable. With respect to use occurrences,
we consider as a predicate use (p-use), a use of a variable
associated with the decision outcome of the predicate por-
tion of a decision statement—e.g. if (x == 0)—and as a
computational use (c-use), a use of a variable that directly

affects a computation and it is not a p-use—e.g. y = x + 1.
P-uses are associated to the def-use graph edges and c-
uses are associated to the nodes. A definition clear path
(def-clear path) is a path that goes from the definition
place of a variable to a subsequent c-use or p-use, such
that the variable is not redefined along the way. A def-use
pair with respect to some variable is then a pair of defi-
nition and subsequent use locations such that there is a
def-clear path with respect to that same variable from the
definition to the use location [39]. If a def-use graph is
used as the underlying model, typical criteria are all-defs
and all-uses [39]. In short, such data flow-based criteria
require test cases that traverse paths that include the def-
inition and subsequent uses of variables of the program.
For more information about the structural-testing criteria
mentioned in this section, the reader may refer to seminal
studies of structural testing [38, 39]).

Fault-based testing andmutation testing
The fault-based testing technique derives test require-
ments based on information about recurring errors made
by programmers during the software development pro-
cess. It focuses on types of faults which designers and
programmers are likely to insert into the software and
on how to deal with this issue in order to demonstrate
the absence of such prespecified faults [40]. In this tech-
nique, fault models (or fault taxonomies) guide the selec-
tion or design of test cases that are able to reveal fault
types characterised on suchmodels. Fault models and tax-
onomies can be devised from a combination of historical
data, researchers’ and practitioners’ expertise and specific
programming paradigm concepts and technologies.
Themost investigated and applied fault-based test selec-

tion criterion is the mutant analysis [41], also known as
mutation testing. Basically, it consists in creating several
versions of the program under testing, each one contain-
ing a simple fault. Such modified versions of the program
are called mutants and are expected to behave differ-
ently from the original program. Each mutant is executed
against the test data and is expected to produce a differ-
ent output when compared to the execution of the original
program.
In mutation testing, given an original program P,muta-

tion operators encapsulate a set of modification rules
applied to P in order to create a set of mutants M. Then,
for each mutant m, (m ∈ M), the tester runs a test suite
T originally designed for P. If ∃t, (t ∈ T) | m(t) �= P(t),
this mutant is considered killed. If not, the tester should
enhance T with a test case that reveals the difference
between m and P. If m and P are equivalent, then P(t) =
m(t) for all test cases that can be derived from P’s input
domain.
Mutation testing can be applied with two goals: (i) eval-

uation of the program under test (i.e. P) or (ii) evaluation
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of the test data (i.e. T). In the first case, faults in P are
uncovered when fault-revealing mutants are identified.
Given that S is the specification of P, a mutant is said to be
fault-revealing when it leads to the creation of a test case
that shows that P(t) �= S(t), (t ∈ T) ([42] p. 536).
In the second case, mutation testing evaluates how sen-

sitive the test set is in order to identify as many faults
simulated by mutants as possible.
Mutation testing is usually performed in four steps [41]:

(1) execution of the original program, (2) generation of
mutants, (3) execution of the mutants and (4) analysis
of the mutants. After each cycle of mutation testing, the
current result is calculated through the mutation score,
which is the ratio of the number of killed mutants to the
total number of generated (non-equivalent) mutants. The
mutation score is a value in the interval [ 0, 1] that reflects
the quality of the test set with respect to the produced
mutants. The closer to 1 the mutant set is, the higher the
quality of the test set [42].

Aspect-oriented programming
Aspect-oriented programming (AOP) [32] relies in the
principle of separation of concerns (SoC) [43]. Software
concerns, in general, may address both functional require-
ments (e.g. business rules) and non-functional properties
(e.g. synchronisation or transaction management). In the
context of AOP, a concern is handled as a coarse-grained
feature that can be modularised within well-defined
implementation units. In AOP, the so-called crosscutting
concerns cannot be properly modularised within conven-
tional units [32]. For example, in traditional programming
approaches like procedural and object-oriented program-
ming (OOP), code that implements a crosscutting concern
usually appears scattered over several modules and/or
tangled with other concern-specific code. Other (non-
crosscutting) concern codes comprise the base code of the
software.
To improve the modular implementation of crosscut-

ting concerns, AOP introduces the notion of aspects.
An aspect can be either a conceptual programming unit
or a concrete, specific unit named aspect (as in widely
investigated languages such as AspectJ1 and CaesarJ2).
Once both aspects and base code are developed, they are
combined during a weaving process [32] to produce a
complete system.
In AspectJ, which is the most investigated AOP lan-

guage and whose implementation model has inspired the
proposition of several other languages, aspects have the
ability to modify the behaviour of a program at specific
points during its execution. Each of the points at which
aspectual behaviour is activated is called a join point. A
set of join points is identified by means of a pointcut
descriptor or simply pointcut. A pointcut is represented
by a language-based matching expression that identifies a

set of join points that share some common characteris-
tic (e.g. based on properties or naming conventions). This
selection ability is often referred to as quantification [44].
During the program execution, once a join point is

identified, a method-like construct named advice may
run, depending or not of some runtime checking routine.
Advices can be of different types depending on the sup-
porting technology. For example, in AspectJ, advices can
be defined to run at three different moments when a join
point is reached: before, after or around (in place of) it.
AspectJ can also perform structural modifications of

modules that comprise the base code. These modifica-
tions are achieved by the so-called intertype declara-
tions (ITDs). Examples of intertype declarations are the
introduction of a new attribute or method into a base
module or a change in the class’ inheritance.

Structural-based viewpoint analysis
This section revisits the contributions of our research
group on structural testing of AO programs. It addresses
three main concerns of systematic testing: the establish-
ment of underlying structural models (section ‘Creating
an underlying model’), the identification of relevant test
requirements based on that models (section ‘Deriving
test requirements’) and the difficult to analyse and cover
such requirements (section ‘Covering and analysing test
requirements’).

Creating an underlying model
As described in Section ‘Structural testing’, the basic idea
behind structural testing criteria is to ensure that spe-
cific elements (control elements and data structures) in
a program are exercised by a given test set, providing
evidence of the quality of the testing activity. It is sup-
posed that the underlying model represents the dynamic
behaviour of programs based on static information to gen-
erate relevant test requirements. In general, such static
information is extracted from the source code. However,
there may be differences between what is extracted from
source code and what is the real dynamic behaviour. In
techniques such as OO programming, such differences
can be seen in cases of, for example, member (e.g. method
or attribute) overriding and method overloading. In such
cases, a special representation of these cases in the under-
lying model can help to reveal problems related to the
dynamic behaviour.
In AOP, this situation seems to be more critical. Under-

lying models for AO testing are often adapted from other
paradigms and programming techniques. Such models
adapt existing abstractions by simply adding nodes and
edges to represent the integration of some aspectual
behaviour with the base program [8, 15, 45]. This is a
limitation because the gap between the static information
used to build the underlying model in AOP and the its
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dynamic behaviour is more evident. For example, AOP
allows the use of different mechanisms, such as the cflow
command or the around advice, which are inherently
runtime-dependent.
To ameliorate the aforementioned problem, our

research group applies a more sophisticated approach.We
devised a series of underlying test models based on static
information which are closer to the dynamic behaviour
of the program. We consider specific situations that
happens in OO and AO to be represented in the models
and then generate relevant test requirements for testing
dynamic behaviour of that program. We use the Java
bytecode to generate the underlying model for programs
written in Java and AspectJ [11, 14, 16, 24, 46]. We take
advantage of the AspectJ weaving process to extract static
information of two different programming languages
from one unified representation (the Java bytecode). This
reduces the gap between static information and dynamic
behaviour of a program. Moreover, our approach handles
some particular cases where the bytecode does not have
sufficient information for building the underlying model.
This is related to information that enables the genera-
tion of relevant test requirements for testing OO and
AO programs such as overriding, recursion and around
advice.

Deriving test requirements
Structural testing uses an internal perspective of the sys-
tem to define testing criteria and derive test requirements.
These test requirements aim at exercising the program’s
data structures and its control flow. To better analyse the
issues of deriving test requirements in AO programs, we
summarise some research that has proposed structural
testing criteria for procedural and OO programs. After-
wards, we describe adapted (procedural and OO) criteria
to AO programs and contrast them with AO-specific to
emphasise the tricks of deriving test requirements in AO
programs.

Structural requirements for procedural and OO programs
Control flow- and data flow-based criteria for procedu-
ral programs (e.g. all-nodes, all-edges and all-uses) are
well-established. They date from 30 years ago [39] and
have been evolved to address the integration level [47].
The underlying models explicitly show the internal logic
of units and the data interactions when either unit or
integration testing is on focus.
For OO programs, control flow and data flow criteria

are evolutions of criteria defined for procedural programs.
For instance, Harrold and Rothermel [48] addressed the
structural testing of OO programs by defining data flow-
based criteria for four test levels: intra-method, inter-
method, intra-class and inter-class. The authors addressed
only explicit unit interactions; dealing with polymorphic

calls and dynamic binding issues—i.e. OO specificities—
was listed as future work [48].
Inspired by Harrold and Rothermel’s criteria, Vincenzi

et al. [49] presented a set of testing criteria based on both
control flow and data flow for unit (i.e. method) testing.
Vincenzi et al. approach relies on Java bytecode analysis
and is automated by the JaBUTi tool. As the reader can
notice, unit interactions was again not addressed by the
author.

Structural requirements for AO programs
In our research [11], we developed an approach for unit
testing of AO programs considering amethod or an advice
as the unit under testing. We proposed a model to rep-
resent the control flow of a unit and the join points that
may activate an advice. Special types of nodes, the so
called crosscutting nodes, are included in the CFG to rep-
resent additional information about the type of advice that
affects that point, as well as the name of the aspect the
advice belongs to. Control flow and data flow testing crite-
ria are proposed to particularly require paths that include
the crosscutting nodes and their incoming and outgoing
edges.
To address the integration level, we explored the pair-

wise integration testing of OO and AO programs [14]. In
short, the approach combines two communicating units
into a single graph. We also defined a set of control
flow and data flow criteria based on such representa-
tion. Figure 1 exemplifies the integration of two units
(caller and called). Note that one of the units is affected
by a before advice, which is represented with the cross-
cutting node notation. Note that crosscutting nodes are
represented as dashed, elliptical nodes.
Neves et al. [46] developed an approach for integra-

tion testing of OO and AO programs in which a unit
is integrated with all the units that interact with it in a
single level of integration depth. We presented an evo-
lution [24] of the approaches presented by ourselves
[11, 14] and by Neves et al. [46]. We augmented the inte-
gration of units considering deeper interaction chains (up
to the deepest level), without making the integration test-
ing activity too expensive, since we integrate units in a
configurable level of integration depth. Such augmented
integration approach also brings customised control flow
and data flow criteria.We highlight that all the representa-
tion models we proposed relies on Java bytecode analysis;
furthermore, they all represent crosscutting nodes using a
special type of node as shown in Fig. 1.
Our most recent approach characterises the whole exe-

cution context for a given piece of advice in a model that
represents the execution flow from the aspect perspec-
tive [16]. A set of control flow and data flow criteria was
proposed to require the execution of paths related to base
code-advice integration.
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(a) (b) (c)
Fig. 1 Example of an integrated CFG for the pairwise approach [14]

Covering and analysing test requirements
In a series of preliminary assessment studies, we
emphasised the effort required to cover test require-
ments derived from the proposed criteria for pair-
wise testing [14], multi-level integration testing [24] and

pointcut-based integration testing [16]. A summary of the
results is depicted in Table 1.
For each application we collected, for example, the num-

ber of test cases required to cover 100 % of all-nodes,
all-edges and all-uses of each unit (#u.TCs in Table 1)

Table 1 Results of evaluation study of structural-based testing approaches

Application and basic metrics Pairwise [14] Multi-level integration [24] Pointcut-based [16]

Max

#C #A #u #u. #ad. %ad. #u. Depth #ad. %ad. #u. #ad. %ad.

TCs TCs TCs TCs Depth TCs TCs TCs TCs TCs

1. Stack 4 2 13 5 0 0 5 4 0 0 5 0 0

2. Subj-obs 5 2 14 6 0 0 6 2 0 0 6 0 0

3. Bean 1 1 15 5 0 0 5 4 0 0 5 0 0

4. Telecom 6 3 46 22 2 9 23 3 2 9 22 1 5

5. Music 10 2 45 19 3 16 22 4 4 18 19 3 16

6. Shape 5 1 52 25 6 24 14 6 21 150 25 0 0

Average 5.2 1.8 30.8 13.7 1.8 8.2 12.5 3.8 4.5 29.5 13.7 0.7 3.5

#C number of classes, #A number of aspects, #u number of units, #u.TCs number of tests for units, #ad.TC number of tests added to cover criteria, %ad.TC % of tests added to
cover criteria
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and the number of additional test cases required to cover
requirements derived from the testing criteria of each
approach (#ad.TCs in Table 1). Note that in these studies,
we targeted optimal test sets with the minimum number
of test cases as possible.
Analysing Table 1, we notice that in three applications

(Stacks, Subj-obs and Bean), no additional effort was nec-
essary considering all testing approaches. The other three
applications (Telecom,Music and Shape) needed less than
25 % of additional test cases from the initial unit test set to
cover the testing criteria of each approach. Thus, it is pos-
sible to say that the average of additional test cases needed
to cover the requirements for integration testing criteria is
not high. The cost of using these criteria is not high com-
pared to the possible benefits achieved by applying such
criteria. The only exception was the number of additional
test cases of the multi-level integration approach in the
Shape application. In this case, due to the depth consid-
ered during the generation of the test requirements, the
cyclomatic complexity of some units largely increased the
number of required test cases. In this way, we can say that,
despite the possible applicability of the criteria, some of

them may be heavily affected by structural characteristics
of the implementation.
Despite the low number of additional test cases required

to cover all test requirements of the proposed approaches,
the analysis of the underlying model for creating test cases
is not trivial. It is essential that the model facilitates the
understanding of the dynamic behaviour of a program and
thus the generation of relevant test cases.
The example of Fig. 2 illustrates how an around advice

that is activated at a method call can be represented
to enhance the comprehension of dynamic behaviour
of a program. Is is obtained by applying the aforemen-
tioned multi-level integration approach by Cafeo and
Masiero [24].
In this example, the node labelled with “0” represents

the call to m2 which happens inside m1 (line 3). In this
case, the CFG of the around advice is integrated in place
of the m2’s CFG (this integration starts in node labelled
with “(1).1.0”). Along the around execution, the proceed
instruction may be invoked, depending on a predicate
evaluation (line 18, which is included in the “(1).1.0”
node). If the proceed is invoked, then the original join

(a) (b)

Fig. 2 CFG of an around advice with a proceed command
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point is executed (nodes labelled with “(2).1.0”, “(3).1.0”
and “(2).1.4”). Alternatively, only around instructions are
executed (this is represented by the node labelled with
“(1).1.23”).
In short, the CFG shown in Fig. 2 tries to represent an

execution that depends on a runtime evaluation by show-
ing the replacement of the join point by the advice and
the return of the execution flow to the join point by the
execution of the proceed command.

Related work on structural-based testing of AO programs
To the best of our knowledge, few approaches and test-
ing criteria have been defined for structural testing of AO
programs. Table 2 shows a list of them. Such pieces of
work either propose testing approaches or explore inter-
nal implementation details of the software to support
testing activity. The studies were selected based on recent
literature and on a systematic review about AO software
testing [50]. For each work listed in the table, the following
information is presented: authors (Authors), year of pub-
lication (Year), testing level (Level), whether the approach
defines testing criteria (Criteria) and whether the work
implements a supporting tool (Tools). The table highlights
in italics the contributions that are not from our research
group in order to compare them with our work.
Zhao [8, 51] developed a data-flow testing approach for

AO programs, based on the OO approach proposed by
Harrold et al. [48], addressing the testing of interfaces
from the aspect perspective and from the class perspec-
tive. Differently from the contributions of our research
group, Zhao considers a unit to be a class or an aspect
and relies on source code analysis to enables the graph
generation.

Table 2 List of related work on structural testing of AO programs

Number Authors Year Level Criteria Tools

1 Zhao [51] 2002 Unit N Y

2 Zhao [8] 2003 Unit Y N

3 Xie and Zhao [52] 2006 – Y Y

4 Lemos and Masiero [11] 2007 Unit Y Y

5 Bernardi and Lucca [45] 2007 Integration Y Y

6 Xu and Rountev [53] 2007 Unit N Y

7 Lemos et al. [14] 2009 Integration Y Y

8 Neves et al. [46] 2009 Integration Y Y

9 Wedyan and Gosh [15] 2010 Integration Y Y

10 Lemos and Masiero [16] 2011 Integration Y Y

11 Cafeo and Masiero [24] 2011 Integration Y Y

12 Mahajan et al. [25] 2012 – N N

13 Wedyan et al. [29] 2015 Integration Y Y

Y/N yes/no, − not mentioned

Xie and Zhao [52] presented an approach for structural-
and state-based testing with support of a framework called
Aspectra. In their approach, the framework generates
wrapper classes. These classes are the input of a tool that
generates test cases for aspectual behaviour considering
structural and state-based coverage. This approach is a
mixed approach (structural- and state-based) focusing on
test case generation. Our contributions focus on propos-
ing different control flow and data flow testing criteria for
AO programs.
Bernardi and Lucca [45] also proposed a similar

approach to our work [14, 16, 24, 46]. They defined
a graph to represent the interactions between a base
program and the pieces of advice interacting with it.
They also defined some control flow-based criteria from
such model. However, their approach does not incorpo-
rate data-flow analysis. Furthermore, to the best of our
knowledge, no implementation of the approach has been
presented yet.
Xu and Rountev [53] proposed an approach for regres-

sion testing of AO programs. This approach uses a con-
trol flow graph to analyse additional behaviour added by
aspects as a way of generating regression testing require-
ments. Despite using control flow graph and proposing a
tool for generating test requirements, Xu and Rountev did
not propose testing criteria for AO programs.
Mahajan et al. [25] applied genetic algorithm to improve

data flow-based test data generation. In this approach,
the authors use the CFG to generate the data flow model
of the program under test (i.e. def-use graph). Based on
this information, they apply a genetic algorithm on it with
many different parameters. The goal is to generate several
test sets in order to reach 100 % of coverage of the all-
uses criterion. Differently from the contributions of our
research group, Mahajan et al. focus on generating test
sets based on structural information instead of present-
ing an approach with an underlying model and testing
criteria.
Finally, Wedyan and Gosh [15] and Wedyan et al. [29]

presented an approach and tool implementation for mea-
suring data flow coverage based on state variables defined
in base classes or aspects. The goal of the approach is
to prevent faults resulting from interactions (i.e. data
flow) between base classes and aspects by focusing on
attributes responsible for change the behaviour of both
(state variables). Similarly to the work of our research
group, they also define data flow criteria for AO programs.
However, they only focus on the interaction between
base classes and aspects established by the so-called state
variables.

Mutation-based viewpoint analysis
Similarly to section ‘Structural-based viewpoint analysis’,
this section revisits the contributions of our research
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group on fault-based testing (in particular, mutation test-
ing) of AO programs.

Creating an underlying model
As introduced in section ‘Fault-based testing and muta-
tion testing’, fault-based testing relies on fault models and
fault taxonomies—that is, sets of prespecified faults [40].
For AO software, fault taxonomies are mostly based on
the pointcut–advice–intertype declaration (ITD) model
implemented in AspectJ. We proposed a preliminary fault
taxonomy for AO programs that take into consideration
only faults related to pointcuts [54]. Afterwards, we iden-
tified, grouped together and added to our taxonomy sev-
eral fault types for AO software that have been described
by other researchers [1–5]. Additionally, we included new
fault types that can occur in programs written in AspectJ
[7, 12].
In total, our taxonomy encompasses 26 different fault

types distributed over four categories. Category F1
includes eight pointcut-related fault types that address,
for instance, incorrect join point quantification, misuse
of primitive pointcut designators and incorrect pointcut
composition rules. Category F2 includes nine fault types
that regard ITD- and declare-like expressions. Exam-
ples of fault types in this category are improper class
member introduction, incorrect changes in exception-
dependent control flow and incorrect aspect instantiation
rules. Category F3 describes six types of faults related
to advice definition and implementation. Examples of F3
fault types are improper advice type specification, incor-
rect advice logic and incorrect advice-pointcut binding.
Finally, category F4 includes three faults types whose root
causes can be assigned to the base program. For instance,
code evolution that causes pointcuts to break and
duplicated crosscutting code due to improper concern
refactoring.
We used the taxonomy to classify 104 faults docu-

mented from three medium-sized AO systems [7]. The
chart of Fig. 3 summarises the distribution. In the x-axis,

fault types 1.1–1.8 are related to pointcuts, 2.1–2.9 are
related to ITDs, 3.1–3.6 are related do advices and 4.1–
4.3 are related to the base code. Overall, the taxonomy
has shown to be complete in terms of fault categories.
It also helped us to characterise recurring faulty imple-
mentation scenarios3 that should be checked during the
development of AO software.

Deriving test requirements
According to section ‘Fault-based testing and mutation
testing’, mutation testing [41] is a largely explored fault-
based criterion. Based on a fault taxonomy, mutation
operators are designed to insert faults into a program (i.e.
to create the mutants). The mutants are used to evalu-
ate the ability of the tests to reveal those artificial faults.
In this context, in this section, we first summarise how
mutation operators have been designed for procedural
and OO paradigms. Then, we contrast this process with
the designing of AO operators.

Mutation operators for procedural and OO programs
Agrawal et al. [55] designed a set of unit mutation
operators—77 operators in total—for C programs, which
was based on an existing set of 22 mutation opera-
tors for Fortran [56]. Although the number of C-based
mutation operators is much larger than the number of
Fortran-based ones, Agrawal et al. explain that their
operators are either customisations or extensions of the
latter, however considering the specificities of the C
language.
Delamaro et al. [57] addressed the mutation testing of

procedural programs at the integration level. The authors
characterised a set of integration faults related to com-
munication variables (i.e. variables that are related to the
communication between units such as formal parameters,
local and global variables and constants).
They then proposed the interface mutation criterion,

which focuses on communication variables and encom-
passes a set of 33 mutation operators for C programs.

Fig. 3 Distribution of faults through the analysed systems
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In 2004, Vincenzi [58] analysed the applicability of these
two sets of C-based operators in the context of OO pro-
grams. The author focused on C++ and Java programs.
With a few customisations and restrictions, Vincenzi
concluded that most of the operators are straightfor-
wardly applicable to programs written in these two
languages.
The 24 inter-class mutation operators for Java programs

proposed by Ma et al. [59] intend to simulate OO-specific
faults. They focus on changes of variables but also address
the modification of elements related to inheritance and
polymorphism (e.g. deletion of an overriding method or
class field or removal of references to overridden meth-
ods and fields). This is clearly an attempt to address
paradigm-specific issues, even though some preliminary
assessment has shown that the operators are not effective
in simulating non-trivial faults [60]4.
Based on this brief analysis, we conclude that design-

ing those operators was a “natural” evolution of opera-
tors previously devised for procedural programs, despite
addressing different testing levels (i.e. unit and integra-
tion testing) and fault types. A few exceptions regard some
class-level operators [59] which still require assessment
through empirical studies.

Mutation operators for AO programs
Similarly to structural-based approaches for OO pro-
grams, all the mentioned sets of mutation operators
can be applied to AO programs. However, they are
not intended to cover AOP-specific fault types.5 To
apply mutation testing to AO programs properly, one
must consider the new concepts and, in particular, the

AOP mechanisms together with fault types that can be
introduced into the software. The design of mutation
operators for AO programs must take these factors into
account.
In our previous research, we designed a set of 26 muta-

tion operators for AspectJ programs [12]. The opera-
tors address instances of several fault types (18 in total)
described in the taxonomymentioned in section ‘Creating
an underlying model’. In particular, the operators simu-
late instances of faults within the first three categories
(the groups are named G1, G2 and G3, each one simulat-
ing faults of categories F1, F2 and F3, respectively). These
fault types are strictly related with the main concepts
introduced by AOP.
In a preliminary assessment study, we checked the abil-

ity of the operators to simulate non-trivial faults [26]. We
applied the operators to 12 small AspectJ applications and
ran the non-equivalent mutants on a functional-based test
set. Table 3 summarises the study results. It includes some
metrics for the systems (e.g. the number of classes and
aspects); the number of mutants by group of operators;
the number of equivalent, anomalous and live mutants;
the number of mutants killed by the original test set; and
the number of test cases that have been added to kill the
mutants that remained alive.
Regarding the numbers of mutants for each group of

operators (columns four to six in the table), we can
observe that changes applied to pointcuts (i.e. operators
from G1 group) yield the largest number of mutants for
all systems except for FactorialOptimiser. In total, they
represent nearly 76 % of mutants (703 out of 922). This
was expected since G1 is the largest operator group,

Table 3 Results of evaluation study of mutation-based testing

Mut. Mut. Mut. Equiv. Equiv. Killed by Added

Application #Ca #A G1 G2 G3 Total Aut. Man.l Anom. Alive original TCs

TCs

1. BankingSystem 9 6 108 2 26 136 68 – 18 50 50 –

2. Telecom 6 3 82 2 27 111 46 10 12 53 31 4

3. ProdLine 8 8 158 0 41 199 125 – 16 58 58 –

4. FactorialOptimiser 1 1 14 0 15 29 8 1 6 15 14 –

5. MusicOnline 7 2 47 0 10 57 25 2 5 27 22 2

6. VendingMachine 1 3 82 2 29 113 58 13 8 47 23 5

7. PointBoundsChecker 1 1 46 0 24 70 32 – 10 28 28 –

8. StackManager 4 3 34 0 11 45 24 – 0 21 21 –

9. PointShadowManager 2 1 38 0 12 50 25 5 4 21 13 2

10. Math 1 1 16 0 4 20 13 2 0 7 4 1

11. AuthSystem 3 2 45 0 7 52 28 1 3 21 17 2

12. SeqGen 8 4 33 0 7 40 19 8 3 18 4 3

Total 51 35 703 6 213 922 471 42 85 366 285 19

aIt considers only relevant classes, excluding the driver ones
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and the mutation rules encapsulated in these operators
addresses varied parts of pointcuts. Nonetheless, as dis-
cussed in the next section, the analysis step for pointcut-
related mutants can be partially automated, thus reducing
the effort required for this task.

Covering and analysing test requirements
According to the results presented in Table 3, the oper-
ators were able to introduce non-trivial faults into the
systems. In total, 39 mutants remained alive after their
execution against the respective test sets in 7 out of 12
systems.
The main point with respect to covering and analysing

mutation-based test requirements regarded the analysis
of mutants to figure out if we needed to either classify
them as equivalent or devise new test cases to kill them.
The analysis of conventional mutants (i.e. derived from
non-AO programs) is typically unit-centred; the task is
concentrated on the mutated statement and perhaps on
its surrounding statements. For AOmutants, on the other
hand, detecting the equivalent onesmay require a broader,
in-depth analysis of the woven code.6 This is due to the
quantification and obliviousness properties [44] that are
realised by AOP constructs such as pointcuts, advices and
declare-like expressions.
In the sequence, we present an example to illustrate sce-

narios in which in-depth system analyses were required in
order to classify mutants as equivalent.
The code excerpts shown in Fig. 4 characterise a sce-

nario in which an in-depth analysis was required. It con-
sists of a pair advice–pointcut and a pointcut mutant
produced by the PWIW operator (pointcut weakening by
insertion of wildcards) for the MusicOnline system, which
consists in an online music service presented by Bodkin
and Laddad [62]. The mutation is the replacement of
a naming part of the pointcut (i.e. the owed attribute
that appears in line 2) with the “∗” wildcard. At the first
view, the mutant could not be classified as equivalent,

since the mutant pointcut matched four join points in the
base code, while the original pointcut matched only three.
This additional activation of the after returning advice
represents undesired control flow. However, the extra
advice execution did not produce an observable failure.
In this case, the advice logic sets the account status—
suspended or not—according to the current credit limit.
The extra advice execution would set the suspended
attribute as false twice in a roll; nevertheless, the sys-
tem behaves as expected despite this undesired execution
control flow. Consequently, this mutant must be classi-
fied as equivalent. For this mutant, the conclusion is that
even though the mutation impacted on the quantifica-
tion of join points, the behaviour of the woven application
remained the same.
Mutations such as the one shown in Fig. 4 requires

dynamic analyses of the woven code to help one iden-
tify (un)covered test requirements, since the aspect-base
interactions cannot be clearly seem at the source code
level. Even though current IDEs such as AJDT7 provide
the developer with hints about the relationship about
aspects and the base code, understanding the behaviour of
the woven application to decide about equivalence regard-
ing semantics cannot be feasible based only on static infor-
mation. On the other hand, as shown in Table 3, many
mutants were automatically classified as equivalent.8 In
total, around 50 % of the mutants were automatically
classified as equivalent (471 out or 922). They are all
pointcut-related mutants, and the automatic detection of
the equivalent ones is based on the analysis of join point
static shadows [63]. If two pointcuts capture the same set
of join points, they are considered equivalent, despite the
dynamic residues left in the base code during the weaving
process.
Recently, we investigated the cost reduction of mutation

testing based on the identification of sufficient mutation
operators [28]. We ran the sufficient procedure [64] on a
group of 12 small AspectJ applications, which are the same

Fig. 4 Example of an equivalent mutant of the MusicOnline application
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applications tested by Ferrari et al. [26]. The procedure
output is a subset of mutation operators that can keep the
effectiveness of a reduced test suite in killing mutants pro-
duced by all operators. The results of our study point out
a five-operator set that kept the mutation score close to
94 %, with a cost reduction of 53 % with respect to the
number of mutants we had do deal with.

Related work onmutation-based testing
Apart from our contributions, some other researchers
have been investigating fault based-testing for AO pro-
grams, mainly focusing on mutation testing. Their ini-
tiatives are summarised in Table 4. Such pieces of work
either customise the mutation testing for AO programs,
apply the criterion as a way of assessing other testing
approaches, or describe a tool. Again, the studies were
selected based on recent literature and on a systematic
review about AO software testing [50]. For each work
listed in the table, the following information is presented:
authors (Authors), year of publication (Year), whether the
approach customises mutation testing to be applied to AO
programs and whether the work implements a supporting
tool (Tools). The table highlights in italics the contribu-
tions that are not from our research group in order to
compare them with our work.
Mortensen and Alexander [9] defined three muta-

tion operators to strengthen and weaken pointcuts and
to modify the advice precedence order. However, the
authors did not provide details of syntactic changes and
implications of each operator. In our research [12], we
precisely described the mutations performed by each
operator.

Table 4 List of related work on fault-based testing of AO
programs

Number Authors Year Criteria Tools

1 Mortensen and Alexander [9] 2005 Y N

2 Lemos et al. [54] 2006 N N

3 Anbalagan and Xie [13] 2008 Y Y

4 Ferrari et al. [12] 2008 Y N

5 Delamare et al. [23] 2009 Y N

6 Ferrari et al. [21] 2010 N Y

7 Wedyan and Ghosh [17] 2012 N N

8 Omar and Ghosh [18] 2012 Y Y

9 Ferrari et al. [26] 2013 Y N

10 Levin and Ferrari [27] 2014 N N

11 Lacerda and Ferrari [28] 2014 N N

12 Parizi et al. [22] 2015 N Y

13 Leme et al. [65] 2015 Y Y

Y/N yes/no

Anbalagan and Xie [13] automated two pointcut-related
mutation operators defined by Mortensen and Alexander
[9]. Mutants are produced through the use of wildcards
as well as by using naming parts of original pointcut and
join points identified from the base code. Based on heuris-
tics, the tool automatically ranks the most representative
mutants, which are the ones that more closely resemble
the original pointcuts. The final output is a list of the
ranked mutants; no other mutation step is supported. The
set of mutation operators proposed in our research [12]
includes and refines the operators defined by Anbalagan
and Xie.
Delamare et al. [23] proposed an approach based on

test-driven development concepts and mutant analysis for
testing AspectJ pointcuts. Their goal was to validate point-
cuts by means of test cases that explicitly define sets of
join points that should be affected by specific advices. A
mutation tool named AjMutator [20] implements a sub-
set of our pointcut-related operators [12]. The mutant
pointcuts are used to validate the effectiveness of their
approach.
More recently, Wedyan and Ghosh [17] proposed the

use of simple object-based analysis to prevent the gen-
eration of equivalent mutants for some mutation oper-
ators for AspectJ programs. They argue that reducing
the amount of equivalent mutants generated by some
operators would consequently reduce the cost of muta-
tion testing as a whole. The authors used three test-
ing tools (namely, AjMutator [20], Proteum/AJ [21] and
MuJava [60]) to assess their technique. Apart from tra-
ditional class-level mutation operators [59], Wedyan and
Ghosh applied a subset of operators defined in our pre-
vious work [12] using the Proteum/AJ and AjMutator
tools.
Omar and Ghosh [18] presented four approaches to

generate higher order mutants for AspectJ programs. The
approaches were evaluated in terms of the ability to create
mutants of higher order resulting in higher efficacy and
less effort when compared with first order mutants. All
approaches proposed can produce higher order mutants
that can be used to increase testing effectiveness and
reduce testing effort and reduce the amount of equivalent
mutants. Differently from Omar and Ghosh’s work, our
work only considers first order mutations.
Parizi et al. [22] presented an automated approach

for random test case generation and uses mutation test-
ing as a way of assessing their approach. Basically, their
automated framework analyses AspectJ object code (i.e.
Java bytecodes) and exercises compiled advices (i.e. Java
methods) as a way of validating the implementation of
crosscutting behaviour. Mutants are generated with a
modified version of the AjMutator tool [20], which imple-
ments a subset of operators defined in our previous
work [12].
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Reuse-centred viewpoint analysis
As discussed in section ‘Introduction’, AOP is typically
applied to refactor existing systems to achieve better mod-
ularisation of crosscutting concerns [2, 33–36]. Given this
scenario of AOP adoption, our recent work investigated
the difficulty of testing AO and OO programs, in partic-
ular when there is a migration from one paradigm to the
other. In particular, we aim to analyse the following: (i) the
effort required to adapt a test suites from one paradigm
to the other and vice versa, given that two equivalent pro-
grams (regarding their semantics) are available (one OO
and another AO) and (ii) the structural code coverage
yielded by such adapted test suites.
Results of objective (i)—effort to adapt test sets—were

presented by Levin and Ferrari [27] and are summarised
in section ‘Effort to adapt test sets across paradigms’.
In this paper, we extend Levin and Ferrari’s work by
testing a hypothesis using statistical procedures. In the
sequence, section ‘Structural coverage yielded by test sets
across paradigms’ brings novel results regarding objec-
tive (ii)—structural coverage of adapted test sets. We start
by describing the study configuration, including target
applications and applied procedures.

Study configuration
We identified 12 small applications plus one medium-
sized application for which we fully created functional-
based test sets in conformance with the systematic
functional testing (SFT) criterion [66]. In short, SFT com-
bines equivalence partitioning and boundary-value anal-
ysis [38] aiming at associating the benefits of functional
testing (independent implementation) and greater code
coverage on test [66]. The test set must include at least
two test cases that cover each equivalence class and one
test case to cover each boundary value. According to the
SFT proponents, this minimises problems of coincidental
correctness.
Table 5 brings general information for each applica-

tion. Note that six applications have a “DP” suffix and
consist of randomly selected examples of design patterns
implemented by Hannemann and Kiczales [67]. Other
columns show the number of classes (#C) and the number
of aspects (#A) in each system.9
These applications were selected because they all had

OO and AO equivalent implementations developed by
third-party researchers. Furthermore, their source code
was either available for download or listed in the original

Table 5 Target applications—study of reuse of test sets across paradigms

Application name Description Total LOC #C #C/#A

OO/AO

1. AbstractFactory (DP) Creates the initial GUI that allows the user to choose
a factory and generate a new GUI with the elements
that the respective factory provides [67]

90/97 4 4/1

2. Boolean Testing boolean formulas with terms AND, OR, XOR,
NOT and variables [68, 69]

301/316 12 10/2

3. Bridge (DP) Decouple an abstraction from its implementation so
that the two can vary independently [67]

76/82 6 6/1

4. Chess Chess game containing GUI [35] 1155/945 13 13/1

5. Interpreter (DP) This system implements an interpreter for a language
of boolean expressions [67]

118/126 8 8/1

6. VendingMachine VendingMachine consists in an application for a
vending machine into which the customer inserts
coins in order to get drinks [70]

209/245 9 9/1

7. Question Database Facilitate the management, reuse and improving
collection of questions of evidence prepared by
teachers [71]

6447/6479 27 27/5

8. ATM-log Manager application of the bank account [35] 496/519 12 11/1

9. ChainOfResponsability (DP) This system implements an GUI interface based in
design pattern ChainOfResponsability [67]

96/150 5 5/2

10. Flyweight (DP) This system show on the screen a message with
characters in upper or lower case according with the
parameters [67]

44/61 4 4/2

11. Memento (DP) This system records a value in a point of execution [67] 29/64 2 3/ 2

12. ShopSystem Simplified e-commerce system [69] 360/381 10 8/8

13. Telecom This system calculates and reports the charges and
duration of phone calls (local and long distance calls)
[72]

186/197 8 8/2

#C number of classes, #C/#A number of classes and aspects
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reports (references can be found in Table 5). The spec-
ifications of these applications, which we used to define
test requirements, were either documented in the original
reports or were elaborated after analysing the source code.
For Question Database (application #7 in Table 5), due to
its size, we only tested non-functional concerns that are
implemented with aspects in the AO version. Obviously,
such concerns are also present in the OO implementa-
tion, though spread across or tangled with code of other
concerns.
To design and perform the tests, initially we defined two

groups of applications (namely, group A and group B),
each one including OO and AO implementations of six
programs plus two concerns10 of the Question Database
system. In group A, we created SFT-adequate test sets
for the OO implementation (i.e. test sets written purely
in Java). Then, we adapted test cases to make them exe-
cutable in the AO equivalent implementations. On the
other way around, in group B, we firstly created test sets
for the AO implementations, then adapted such test sets
to the OO counterparts.
Table 6 illustrates the specification of functional test

requirements for an operation of the ATM-log applica-
tion. The table shows the input/output conditions, the
valid and invalid (equivalence) classes and the bound-
ary values. This template of specification was applied to
all tested systems and guided the creation of test cases
for both groups of applications (group A and group B).
The last three columns of Table 8 summarise the num-
ber of test requirements and the number of test cases with
respect to each target application.

Effort to adapt test sets across paradigms
As described by Levin and Ferrari [27], in this investi-
gation, we wanted to study the effect of different pro-
gramming paradigms on the effort required to migrate
(i.e. adapt) test code from OO to AO programs and vice
versa. To extend the original analysis [27], we define the
hypotheses listed in Table 7 (namely, H1, H2, H3 and H4).
Note that the hypotheses are related to metrics described
in the sequence and assume that there is no difference
between the effort required to migrate test sets across

Table 7 Hypotheses formulated for effort-related analysis

(Null) hypotheses

H1 TOTAL-LOC-TCOO↔AO = TOTAL-LOC-TCAO↔OO

H2 ADDOO↔AO = ADDAO↔OO

H3 MODOO↔AO = MODAO↔OO

H4 REMOO↔AO = REMAO↔OO

OO and AO implementations (i.e. they represent null
hypotheses).
Metrics and tool: The metrics we collected to evalu-

ate the effort required to adapt test sets across paradigms
focus on code churn. Code churn is generally used to
predict the defect density in software systems, and it is
easily collected from a system change history [73]. Usu-
ally, this kind of metric is used to compare system versions
to measure how many lines were added, changed and
removed. In particular, we collected the following: Total-
LOC-TC—number of non-commented LOC in the test
classes; ADD—number of lines added to the new version
of a test class; MOD—number of lines changed in the
new version of the test class in comparison with its pre-
vious version; and REM—number of lines removed from
the previous version of a test class to create a new ver-
sion. Note that by ‘new version’, we mean the test class that
has been adapted to the new paradigm. We used the Meld
tool11 to provide visual support in the analysis of code
changes between different implementations of the same
application.
Results and analysis: Table 8 summarises results

regarding the collected metrics. On average, for group A,
adapting OO test sets to AO implementations required
additions of 5.70 %, modifications in 4.46 % of test code
lines, with no code removal in any application. For group
B, on the other hand, more modifications and removals
were needed than for group A. On average, test code was
9.57 % modified and 3.10 % removed to conform with OO
implementations, while only 1.93 % lines were added to
the test code.
Overall, our preliminary findings were that (i) less code

is written for testing OO programs, specially because

Table 6 Example of a specification of functional test requirements for the withdraw operation (ATM-log system)

Input condition Valid class Invalid class Boundary value

Withdrawn value “v”

(C1) v� account balance (I1) v> account balance (B1) v = 0

(B2) v = account balance

(B3) v = account balance + 1

Output condition Valid class

Success message (O1) “successful withdraw”

Logging message (O2) operation is logged
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Table 8 Results of test adaptation effort measurement—group A and group B

Application Name Total %. Churn LOC TC Test requirements

LOC size ADD %ADD MOD %MOD REM %REM Equiv. Bound. Total

TC diff. classes values TC

Group A: OO - OA

1. AbstractFactoryOO 20 4 1 4

AbstractFactoryOA 20 0 0 0 0 0 0 0

2. BooleanOO 29 7 3 7

BooleanOA 37 +27.58 8 27.58 1 3.44 0 0

3. BridgeOO 76 16 2 16

BridgeOA 76 0 0 0 0 0 0 0

4. ChessOO 281 28 13 39

ChessOA 302 +7.47 21 7.47 8 2.84 0 0

5. InterpreterOO 47 48 2 48

InterpreterOA 47 0 0 0 0 0 0 0

6. VendingMachineOO 41 9 10 10

VendingMachineOA 43 +4.87 2 4.87 5 12.19 0 0

7. QuestionDatabaseOO 47 5 3 8

QuestionDatabaseOA 47 0 0 0 6 12.76 0 0

Average +5.70 5.70 4.46 0

Group B: OA - OO

8. ATM-logOA 111 9 5 15

ATM-logOO 111 0 0 0 4 3.6 0 0

9. ChainOfResponsabilityOA 108 6 0 6

ChainOfResponsabilityOO 96 −11.11 0 0 18 16.66 12 11.11

10. FlyweightOA 36 4 4 4

FlyweightOO 36 0 2 5.55 4 11.11 2 5.55

11. MementoOA 31 2 2 3

MementoOO 31 0 0 0 8 25.8 0 0

12. ShopSystemOA 256 22 35 30

ShopSystemOO 256 0 0 0 0 0 0 0

13. TelecomOA 257 12 16 23

TelecomOO 244 −5.05 0 0 15 5.83 13 5.05

7. QuestionDatabaseOA 50 5 5 6

QuestionDatabaseOO 54 +8 4 8 2 4 0 0

Average −1.16 1.93 9.57 3.10

test cases for AO implementations required more specific
code to expose context information to build JUnit asser-
tions, and (ii) test code for OO programs conforms better
with the open-closed principle [74], since a higher num-
ber of changes were required to make test sets of group B
executable in OO implementations and (iii) test code for
OO programs is more reusable, which is reflected by the
MOD and REM averages that indicate recurring interven-
tions in test sets for AO systems in order to adapt them to
OO implementations.

Figure 5 shows an example of how the test set for the
Chess application was adapted from the OO implemen-
tation to the AO counterpart. Different test code lines
are 15 (OO version) and 15–17 (AO version). In the first
case, the srtErrorMsg attribute of the pawn object is
used in the assertion. In the migrated (AO) test code, the
aspectOf() AspectJ-specific method is used to allow
the retrieval of the context information (i.e. the error mes-
sage). In this example, the ADDmetric accounts for 2 and
MODmetric accounts for 1, respectively.
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Fig. 5 Test case example for the Chess application

To evaluate if the preliminary findings have statistical
relevance, we tested the hypotheses defined in Table 7.
Initially, we checked whether the data has normal distri-
bution. For this, we applied the Shapiro-Wilk test. Results
are summarised in Table 9.
Note that, for statistical significance, we adopted the tra-

ditional confidence of 95 %; thus, our analysis considers
p values below 0.05 significant. For all statistical tests, we
used the R language and environment.12
As the reader can notice, apart from TOTAL-LOC-

TCAO↔OO and MODAO↔OO, all other p values are below
the defined threshold of 0.05. Therefore, the null hypothe-
ses (that is, the data has normal distribution) are rejected.
We then applied the non-parametric Mann-Withney

test to compare the effort to migrate test sets across the
two paradigms, given that such test does not assume nor-
mal distributions [75]. Results are summarised in Table 10.

The results reveal that, even though the preliminary
findings favoured the OO paradigm regarding the anal-
ysed test sets (and their reuse), this could be not assessed
with statistical rigour. Overall, the null hypotheses could

Table 9 Results of Shapiro-Wilk test for effort-related metrics

p-value

Group A

TOTAL-LOC-TCOO↔AO 0.00515

ADDOO↔AO 0.00515

MODOO↔AO 0.01878

REMOO↔AO 0.00000

Group B

TOTAL-LOC-TCAO↔OO 0.26280

ADDAO↔OO 0.00098

MODAO↔OO 0.37110

REMAO↔OO 0.02156
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Table 10 Results of Mann-Whitney test for effort-related metrics

(Null) hypotheses test p value

H1 TOTAL-LOC-TCOO↔AO = TOTAL-LOC-TCAO↔OO 0.10160

H2 ADDOO↔AO = ADDAO↔OO 0.35770

H3 MODOO↔AO = MODAO↔OO 0.17490

H4 REMOO↔AO = REMAO↔OO 0.07541

not be rejected due to the low probability of perceiv-
ing difference between the two paradigms with respect to
the analysed issue. One should notice that not rejecting
a hypothesis does not mean the hypothesis is accepted.
In fact, we cannot accept a null hypothesis, but only find
evidence against it. In our case (i.e. results presented in
section ‘Effort to adapt test sets across paradigms’), pos-
sible explanations for the lack of statistical significance of
preliminary findings may rely on (i) the small number of
analysed programs (14, in total) or (ii) the impossibility
of showing differences between the two paradigms (i.e.
there is no difference between them at all). Case (i) will
be addressed in our future work, as stated in section ‘Final
remarks, limitations and research directions’. The impos-
sibility (and consequent conclusion) regarding case (ii)
can be assessed with the enlargement of our application
sets.

Structural coverage yielded by test sets across paradigms
With the aim of assessing the quality of reused test
sets, we now analyse the structural coverage that can be
achieved when test sets are reused across paradigms. In
other words, we want to study the effect of different pro-
gramming paradigms on the test coverage with respect
to the structure (statements and branches) of OO and
AO programs. This investigation develops in terms of the
hypotheses defined in Table 11:
Metrics and tool: To evaluate H5 and H6, we computed

the code coverage yielded by SFT-adequate test sets con-
sidering the same groups of applications (i.e. group A
and group B). The metrics we collected are statement
coverage and branch coverage, which are similar to the
all-nodes and all-edges traditional control flow-based cri-
teria. For the Question Database system, we focused the
analysis on parts of the code affected by the crosscutting
behaviour that, in the AO implementation, was encap-
sulated within one or more aspects. For the remaining
(small) applications, we considered the full code (base

Table 11 Hypotheses formulated for coverage-related analysis

(Null) hypotheses

H5 STATEMENTOO↔AO = STATEMENTAO↔OO

H6 BRANCHOO↔AO = BRANCHAO↔OO

code and aspects, if any) for computing test requirements
and coverage.
The metrics collection task was automated by

EclEmma13, which is code coverage analysis tool devel-
oped as an Eclipse plugin. Note we had to manually
inspect the coverage of AspectJ implementations due
to the fact that EclEmma, as other Java-based coverage
tools, processes ordinary bytecode (i.e. Java compiled
code) to trace the traversed paths during test execution.
When it comes to AspectJ, the standard ajc14 compiler
adds some structures to the compiled bytecode that
are not recognised by EclEmma. These structures cor-
respond to specific AOP constructions. For example,
for each pointcut in the source code, the ajc compiler
adds a method to the bytecode. Such method is often
created only for retaining pointcut-related information
that could be lost after compilation. However, EclEmma
treats this spurious method as code that should be equally
covered by the tests and hence must not be considered
for coverage purposes. Such spurious requirements were
spotted and discarded through a manual inspection
step.
We highlight that the JaBUTi/AJ tool, developed by

our group to support AO-specific structural criteria
[11, 14, 16, 24, 46], is able to compute test requirements
and trace the execution for particular modules of a system
under testing, depending on the chosen level of integra-
tion. In other words, JaBUTi/AJ instruments and runs spe-
cific parts of a system, according to the tester’s selection.
Since we intended to compute the coverage for all system
modules, to speed up the process, we adopted EclEmma.
Such tool is able to run full test set in a single run and
compute the coverage of the full application, even though
manual inspection was necessary to achieve precise
results.
Results and analysis: Table 12 shows the results regard-

ing statement and branch coverage for small applications
of group A and group B. Visual representation can be
found in Figs. 6 and 7. Similarly, Table 15 and Figs. 8
and 9 present results for the Question Database applica-
tion, though separately from the other small applications.
Note that results with respect to the Question Database
application will be later discussed in this section.
Regarding small applications, Table 12 and Figs. 6 and

7 indicate that there are only minimal differences in cov-
erage when both criteria are considered. In group A, test
sets yielded average statement coverage of 90.5 and 89.5 %
for OO and AO implementations, respectively. For branch
coverage in the same group, averages are 78.9 and 77.9 %.
Individual differences can be checked in columns labelled
with “diff %”. Despite the lower coverages obtained for
applications of group B, the values for different paradigms
are again very close: 86.3 % of covered statements for
OO implementations and 84.9 % for AO counterparts and
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Table 12 Statement and branch coverage for small applications

Application name % diff # # Covered/ % diff # # Covered/
Covered % Statem. missing Covered % Branches missing
Statem. statem. branches branches

Group A: OO - AO

1. AbstractFactoryOO 100.0 134 134/0 n/a n/a n/a

AbstractFactoryAO 100.0 0.0 147 147/0 n/a n/a n/a n/a

2. BooleanOO 87.5 431 377/54 66.7 24 16–8

BooleanAO 85.5 −2.0 532 455/77 70.8 4.2 24 17–7

3. BridgeOO 100.0 120 120/0 100.0 4 4/0

BridgeAO 100.0 0.0 151 151/0 100.0 0.0 4 4/0

4. ChessOO 75.8 955 724/231 63.8 232 148/84

ChessAO 76.8 1.0 964 740/224 65.3 1.5 248 162/86

5. InterpreterOO 92.0 225 207/18 71.4 14 10/4

InterpreterAO 85.5 −6.5 290 248/42 78.6 7.2 14 11/3

6. VendingMachineOO 87.9 321 282/39 87.5 16 14/2

VendingMachineAO 89.1 1.2 366 326/40 80.0 −7.5 5 4/1

Average OO 90.5 77.9

Average AO 89.5 −1.0 78.9 1.1

Group B: AO - OO

8. ATM-logAO 72.7 326 237/89 71.4 14 10/4

ATM-logOO 80.8 0.0 271 219/52 83.3 11.9 12 10/2

9. ChainOfResponsabilityAO 76.7 257 197/60 68.8 16 11/5

ChainOfResponsabilityOO 77.7 1.1 157 122/35 66.7 −2.1 18 12/6

10. FlyweightAO 82.5 120 99/21 87.5 8 7/1

FlyweightOO 85.4 2.9 82 70/12 75.0 -12.5 8 6/2

11. MementoAO 100.0 112 112/0 n/a n/a n/a

MementoOO 100.0 0.0 44 44/0 n/a n/a n/a n/a

12. ShopSystemAO 85.7 1581 1355/226 75.6 41 31/10

ShopSystemOO 82.6 −3.1 872 720/152 73.8 −1.9 80 59/21

13. TelecomAO 91.8 477 438/39 100.0 20 20/0

TelecomOO 91.6 −0.2 381 349/32 100.0 0.0 20 20/0

Average AO 84.9 67.2

Average OO 86.3 1.4 66.5 −0.8

Fig. 6 Statement and branch coverage for small applications—group A



Ferrari et al. Journal of the Brazilian Computer Society  (2015) 21:20 Page 19 of 25

Fig. 7 Statement and branch coverage for small applications—group B

66.5 % and 67.2 % of covered branches for OO and AO
implementations, respectively.
To evaluate whether such minimal coverage differ-

ences have statistical relevance, we tested the hypotheses
defined in Table 11, considering the differences amongst
coverages (statements and branches—“dif %” columns) in
both groups and paradigms. Initially, again, we checked
whether the data has normal distribution. For this, we
applied the Shapiro-Wilk test. Results are summarised in
Table 13.
Differently from the analysis presented in section ‘Effort

to adapt test sets across paradigms’, the p values obtained
for the STATEMENTi and BRANCHi metrics are all
above the defined threshold of 0.05. Thus, the null
hypotheses (that is, the data has normal distribution)
cannot be rejected. We then applied the Student’s t test
to compare the structural coverage yielded by test sets
that are originally built for programs written under one
paradigm (namely, OO and AO) and then migrated to the
other one. Results are summarised in Table 14. Note that
the null hypotheses cannot be rejected, since p values are
above 0.05.
The results confirms the preliminary findings that, for

small applications, there is no difference between the two
paradigms with respect to (control flow-based) structural
coverage when test sets are reused across them.
Differently from results for small applications, tests exe-

cuted on Question Database resulted in higher statement
and branch coverage in all OO implementations (see

Table 15 and Figs. 8 and 9). For example, for the Time
concern in the OO implementation, statement and branch
coverages were 72.2 and 44.6 %, respectively, while the
samemeasures for the AO version were 25.8 and 3.8 %. On
average, statement and branch coverage in group A were
59.2 and 33.9 % for OO implementation and 24.1 and 4.3 %
for the AO implementation, respectively. Similar results
(in terms of higher coverage for OO implementation) are
observed for group B.
The numbers for the Question Database system have

some peculiarities. Firstly, considering both paradigms,
test execution resulted in low coverage rates for all con-
cerns (the only exception is TimeOO—see Table 15). As
mentioned in the beginning of this section, for this system
the coverage analysis focused only on modules—aspects
and classes—which are related to the selected crosscutting
concerns. For them, the tool computed test requirements
and their respective coverage. Despite this concern-driven
analysis, we emphasise that test cases were designed to
those particular concerns and hence did not exercise sub-
stantial parts of the involved modules.
Secondly, and equally important, we can notice a much

higher number of test requirements in the AO implemen-
tations. Such difference relies basically on two reasons:
(i) the generality of the aspect possibly to facilitate sys-
tem evolution without breaking pointcuts and (ii) the
strategy adopted by the developer to create aspects (and
their internal parts) using AspectJ mechanisms. Both rea-
sons are related to the conservative procedure to define

Fig. 8 Statement and branch coverage for Question Database—group A
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Fig. 9 Statement and branch coverage for Question Database—group B

pointcuts with wide scope15—i.e. they select a high num-
ber of join points—and with the advice activation logic
that is resolved at runtime by the executing environment
(see Fig. 10, which is described in the sequence). Besides
this, the weaving process performed by the ajc compiler
adds complexity to the internal logic of the base code.
Examples of such added complexity are advice calls, which
may or may not be nested within conditional structures
inserted before, after or in place (around) the selected join
points.
Figure 10 shows an example of a highly generic pointcut

named printStackTrace, which captures pointcuts of
the whole system, except from the ExceptionLogging
aspect itself. The weaving of the associated around advice
with the base code inserts, at each join point, condi-
tional structures to decide on join point activation. As a
consequence, a high number of statements and branches
are processed as test requirements by the coverage tool,
even though exceptions will never be raised in part of the
selected join points (i.e. unfeasible requirements).
We call the reader’s attention to the fact that, in the con-

text of small systems (in which join point quantification
is somehow restricted to a few modules) we can conclude
systematically developed test sets, when properly adapted
from one paradigm to the other, may result in similar
code coverage levels. However, as long as the quantifica-
tion of join points increases (as in the case of the Question
Database system), the existing test set produces higher
coverage in OO code. The cause may be the conserva-
tive approach for using AOP constructs such as pointcuts
and advice. From a developer’s perspective, widely scoped

Table 13 Results of Shapiro-Wilk test for coverage-related
metrics

p value

Group A
STATEMENTOO↔AO 0.05591

BRANCHOO↔AO 0.75190

Group B
STATEMENTAO↔OO 0.57470

BRANCHAO↔OO 0.57750

pointcuts may ease the evolution of programs without
causing pointcuts to break (this problemwas observed in a
previous study of fault-proneness of AO evolving AO pro-
grams [34]). Besides this, delegating the advice activation
decision to the executing environment is also a facilitating
strategy. However, from the tester’s perspective, advanced
and automated program analysis techniques are required
to avoid the substantial increase in the number of test
requirements to be analysed.

Related work
This section summarises related work that addresses
issues for testing AO programs (including some proposals
for dealing with such issues) and studies that compare the
testing of programs developed under different paradigms.
Note that sections ‘Related work on structural-based test-
ing of AO programs’ and ‘Related work onmutation-based
testing’ have summarised more specific-related research
(namely, related to structural and mutation testing of AO
programs).
Ceccato et al. [3] discussed the difficulties for testing

AO programs in contrast with OO programs. They argued
that if aspects could be tested in isolation, AO testing
should be easier thanOO testing. According to them, code
that implements a crosscutting concern is typically spread
over several modules in OO systems, thus hardening test
design and evaluation. At some extent, our findings with
respect to the quality of test sets applied to OO and
AO implementations go against these observations. The
results indicate lower quality (in terms of code coverage)
in the AO paradigm when concern scattering grows even
with the execution of systematically developed test sets.
Ceccato et al. also proposed a testing strategy to integrate
base code and aspects incrementally. However, they did

Table 14 Results of t test for coverage-related metrics

(Null) hypotheses test p value

H5 STATEMENTOO↔AO = STATEMENTAO↔OO 0.43660

H6 BRANCHOO↔AO = BRANCHAO↔OO 0.67740
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Table 15 Statement and branch coverage for Question Database

Application Name % # # Covered/ % # # Covered/
Covered Statem. Missing Covered Branches Missing
Statem. Statem. Branches Branches

Group A: OO - AO

1. TimeOO 72.2 2329 1681/648 44.6 112 50/62

TimeAO 25.8 7971 2059/5912 3.8 1028 39/989

2. LoggingOO 46.3 605 280/325 23.1 26 6/20

LoggingAO 22.4 2015 451/1564 4.8 228 11/217

Average OO 59.2 33.9

Average AO 24.1 4.3

Group A: OO - AO

1. ConnectionAO 11.3 3384 381/3003 2.7 413 11/402

ConnectionOO 24.9 977 243/734 15.4 26 4/22

2. ExceptionAO 5.5 7500 409/7091 2.7 308 8/300

ExceptionOO 16.2 2199 357/1842 5.0 126 6/120

Average AO 8.4 2.7

Average OO 20.6 10.2

not report any kind of evaluation of their strategy as we
did in the previous sections of this paper.
Zhao and Alexander [76] proposed an approach to

test AspectJ AO programs as OO programs. Based on
a decompilation process, AspectJ applications can be
tested as ordinary Java applications using conventional
approaches. Although this may ease the tests, it may
impose other obstacles specially when a fault is detected
in the decompiled code. In such case, identifying the fault
in the original—i.e. aspectual—code may become unfea-
sible due to code transformations that occur during the
forwards and backwards compilation/weaving processes.
Differently, in this paper we summarised a set of testing
approaches that are directly applied to AspectJ programs,
without requiring any decompilation step.
Xie and Zhao [77] discussed existing solutions for AO

testing such as test input generation, test selection and
runtime checking, mostly developed by the authors. For

instance, their tools support automatic test generation
based on compiled AspectJ aspects (i.e. classes as byte-
codes). They also discussed unit and integration testing
of aspects using wrapping mechanisms, control flow-
and data flow-based testing focused on early versions of
AspectJ and mutation testing applied to code obtained
from refactoring aspects into ordinary Java classes. Dif-
ferently from our work, Xie and Zhao did not present
assessment studies neither selected examples extracted
from practical evaluation.
With respect to test reuse and evaluation across

paradigms, Prado et al. [78] and Campanha et al. [79] com-
pared procedural and OO programming using a set of
programs from the data structures domain (e.g. queues,
stacks and lists). The two pieces of research focus on
structural and mutation testing, respectively. The results
of Prado et al. study show that there is no evidence for
the existence of differences in cost and strength between

Fig. 10 Example of conservative (weak) pointcut of the Question Database application
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procedural and OO paradigms. This is similar to our
results for small-sized OO and AO applications (details
in section ‘Structural coverage yielded by test sets across
paradigms’). The results of Campanha et al. study, applied
to the same domain and programs, show that both cost
and the strength of the mutation testing are higher in
programs implemented in the procedural paradigm than
in the OO paradigm. No comparison with our results is
possible, given that we did not apply mutation testing to
assess the quality of reused test sets.

Final remarks, limitations and research directions
A report recently published summarised the contribu-
tions of the Brazilian community to the ‘world’ of AO
Software Development [80]. For testing, five key chal-
lenges are listed: (1) identifying new potential problems;
(2) defining proper underlying models; (3) customising
existing test selection criteria and/or defining new ones;
(4) providing adequate tool support; and (5) experiment-
ing and assessing the approaches. We can add another key
challenge to this group: (6) reuse of test sets to validate
AO-based software refactorings.
In spite of the challenges addressed by our research

(mainly challenges 1–4 and 6), amajor open issue enumer-
ated by Kulesza et al. [80] concerns the lack of experimen-
tal studies to assess the usefulness and feasibility of AO
testing approaches, as well as the generalisation of results.
With respect to this, results of the preliminary studies pre-
sented in sections ‘Structural-based viewpoint analysis’,
‘Mutation-based viewpoint analysis’ and ‘Reuse-centred
viewpoint analysis’ represent only initial evaluation stage.
Other studies that address AO systems larger than the
ones used in the preliminary evaluation, as well as larger
samples, are indeed necessary, though not available for the
time being. For instance, for medium-sized AO systems,
we have estimated the effort to cover structural require-
ments derived from the pointcut-based approach based
on a theoretical analysis [16]. Besides this, we have also
roughly estimated the cost of mutation testing in terms of
number of mutants for medium-sized AO systems [26].
However, only by creating adequate test suites for such
systems one shall be able to draw stronger conclusions
about the feasibility and usefulness of AO-specific test
selection criteria.
We highlight that this limitation is general in regard

to research on AO testing and, at some extent, to some
other research on AO software development [53, 81, 82].
Overall, other research on AO testing addressed only
small-sized applications [10, 13, 15, 23, 45]. Just a few
studies and approaches that may be related to testing (e.g.
characterisation of bug patterns for exception handling
[6] and AO refactoring supported by regression testing
[2]) have handled larger AO systems, though with a dif-
ferent focus if compared to the evaluation we presented

in section ‘Reuse-centred viewpoint analysis’. In other
cases, testing approaches are partially applied to larger
systems; for example, as in the work of Parizi et al.
[22], who applied a subset of our mutation operators
[12] and limited the number of generated mutants per
program.
As future work, we are planning cross-comparison stud-

ies considering test selection criteria of different tech-
niques within the AO context. This shall enable us to
empirically establish a subsume relation for the investi-
gated criteria and to define incremental testing strategies.
We also intend to target AO systems larger than the ones
typically analysed in current research. The motivation is
that designing a test case to exercise a large program path
that includes integrated units, or analysing a mutant that
has wide impact on join point quantification, is very likely
to require effort and complexity that cannot be easily
quantified only in terms of the number of test cases or the
number of test requirements.
Other research initiatives from our group include

enlarging our application sets to reproduce the studies
that compare effort and quality of test suites developed
for implementations in different paradigms and check-
ing the ability of adapted test sets from one paradigm
to another to reveal faults simulated by mutants. To do
so, we can apply mutation operators incrementally, start-
ing from unit mutation operators towards AOP-specific
ones.

Endnotes
1http://www.eclipse.org/aspectj/—accessed on

23/07/2015.
2http://caesarj.org/—accessed on 23/07/2015.
3For more details of the fault classification and

examples of faulty scenarios, the reader may refer to the
work of Ferrari et al. [7]

4By non-trivial faults, we mean faults that are not easily
revealed with an existing test set, be it systematically
developed or not.

5It is likely that a test case designed to cover a fault
modelled by a traditional (e.g. unit-level) mutation
operator may also reveal a different, perhaps
AOP-specific fault. However, it has been empirically
shown [61] that context-specific test sets (e.g. for unit
testing) may have reduced ability to reveal faults in a
different context (e.g. at the integration level).

6The inter-class mutation operators for Java [59] pose a
similar challenge: mutations of inheritance and
polymorphism elements also require broad analyses of
the compiled application.

7http://www.eclipse.org/ajdt/—accessed in 23/07/2015.
8The testing process and criterion application was

supported by the Proteum/AJ tool [21]. More details can
be found in a previous paper [26].

http://www.eclipse.org/aspectj/
http://caesarj.org/
http://www.eclipse.org/ajdt/
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9OO implementations have only classes, while AO
counterparts have both classes and aspects.

10In group A, concerns are time (security procedure
that locks the screen after a given time without mouse
movement or any pressed key) and logging. In group B,
concerns are exception logging (raised exceptions are
displayed to the user) and database connection control.

11http://meldmerge.org/—accessed on 23/07/2015.
12http://www.r-project.org/—accessed on 30/07/2015
13http://www.eclemma.org/—accessed on 23/07/2015.
14https://www.eclipse.org/aspectj/doc/next/devguide/

ajc-ref.html—accessed on 23/07/2015.
15Also known as weak pointcuts [9, 13].
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