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analysis for discovery of nonlinear interactions
in high-dimensional data
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Abstract

Background: Advance in high-throughput technologies in genomics, transcriptomics, and metabolomics has
created demand for bioinformatics tools to integrate high-dimensional data from different sources. Canonical
correlation analysis (CCA) is a statistical tool for finding linear associations between different types of information.
Previous extensions of CCA used to capture nonlinear associations, such as kernel CCA, did not allow feature selection
or capturing of multiple canonical components. Here we propose a novel method, two-stage kernel CCA (TSKCCA) to
select appropriate kernels in the framework of multiple kernel learning.

Results: TSKCCA first selects relevant kernels based on the HSIC criterion in the multiple kernel learning framework.
Weights are then derived by non-negative matrix decomposition with L1 regularization. Using artificial datasets and
nutrigenomic datasets, we show that TSKCCA can extract multiple, nonlinear associations among high-dimensional
data and multiplicative interactions among variables.

Conclusions: TSKCCA can identify nonlinear associations among high-dimensional data more reliably than previous
nonlinear CCA methods.

Keywords: Kernel canonical correlation analysis, Hilbert-Schmidt independent criterion, L1 regularization

Background
Canonical correlation analysis (CCA) [1] is a statistical
method for finding common information from two differ-
ent sources of multivariate data. This method optimizes
linear projection vectors so that two random multivari-
ate datasets are maximally correlated. With advances in
high-throughput biological measurements, such as DNA
sequencing, RNA microarrays, and mass spectroscopy,
CCA has been extensively used for discovery of inter-
actions between the genome, gene transcription, protein
synthesis, and metabolites [2–5]. Because CCA solution
is reduced to an eigenvalue problem, multiple compo-
nents of interactions with sparse constraints are readily
introduced [4, 6, 7].
Kernel CCA (KCCA) was introduced to capture non-

linear associations between two blocks of multivariate
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data [8–11]. Given two blocks of multivariate data x and z,
KCCA finds nonlinear transformations f (x) and g(z) in a
reproducing kernel Hilbert space (RKHS) so that the cor-
relation between f (x) and g(z) is maximized. In order to
avoid overfitting and to improve interpretability of results,
sparse additive functional CCA (SAFCCA) [12] constrains
f (x) and g(z) as sparse additive models and optimizes
them using the biconvex back-fitting algorithm [13]. How-
ever, it is not straightforward to obtain multiple orthog-
onal transformations for extracting multiple components
of associations. Another method for finding nonlinear
associations is to maximize measures of nonlinear match-
ing, such as the Hilbert-Schmidt Independent Criterion
(HSIC) [14] and the Kernel Target Alignment (KTA) [15]
between linearly projected datasets x and z [16]. While
these methods can obtain multiple orthogonal projec-
tions by iteratively analyzing residuals, it is impossible for
thesemethods to remove irrelevant features, making them
prone to overfitting.
In this paper, we propose two-stage kernel CCA

(TSKCCA), which enables us (1) to select sparse features
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in high-dimensional data and (2) to obtain multiple non-
linear associations. In the first stage, we represent target
kernels with a weighted sum of pre-specified sub-kernels
and optimize their weight coefficients based onHSICwith
sparse regularization. In the second stage, we apply stan-
dard KCCA using target kernels obtained in the first stage
to find multiple nonlinear correlations.
We briefly review CCA, KCCA, and two-stage MKL,

and then present TSKCCA algorithm. We apply TSKCCA
to three synthetic datasets and nutrigenomic experimen-
tal data to show that the method discovers multiple
nonlinear associations within high-dimensional data, and
provides interpretation that are robust to irrelevant fea-
tures.

CCA, kernel CCA, andmultiple kernel learning
In this section, we briefly review the bases of our pro-
posed method, namely, linear canonical correlation anal-
ysis (CCA), kernel CCA (KCCA), and multiple kernel
learning (MKL).

Canonical correlation analysis (CCA)
Let D = {(xn, zn)}Nn=1 beN pairs of samples, where xn and
zn are the n-th samples drawn from p- and q-dimensional
Euclidian space, respectively. Let fw(x) ≡ wTx and gv(z) ≡
vTz denote the projection of x ∈ R

p by w ∈ R
p and that

of z ∈ R
q by v ∈ R

q, respectively. The objective of linear
CCA is to find projections that maximize Pearson’s corre-
lation between Fw ≡ {fw(xn)}Nn=1 and Gv ≡ {gv(zn)}Nn=1
and formulated as the following optimization problem:

max
w∈Rp,v∈Rq

Cov(Fw,Gv) (1a)

subject to Var(Fw) = Var(Gv) = 1, (1b)

where Var(·) and Cov(·, ·) denote the empirical variance
and covariance of the data, respectively. The optimal solu-
tion (w∗, v∗) of Eq. (1a and 1b) is obtained by solving
generalized eigenvalue problems and successive eigen-
vectors represent multiple components. The projections,
f ∗(x) = w∗Tx and g∗(z) = v∗Tz, are said to be canonical
variables for x ∈ R

p and z ∈ R
q, respectively. If we intro-

duce sparse regularization on w and v, we obtain sparse
projections [4, 6, 7].

Kernel CCA
In Kernel CCA (KCCA), we suppose that the original data
are mapped into a feature space via nonlinear functions.
Then linear CCA is applied in the feature space. More
specifically, nonlinear functions φx : Rp → Hx and φz :
R
q → Hz transform the original data {(xn, zn)}Nn=1 to fea-

ture vectors {(φx(xn),φz(zn))}Nn=1 in reproducing kernel
Hilbert spaces (RKHS) Hx and Hz. Inner-product kernels
forHx andHz are defined as kx(x, x′) = φx(x)Tφx(x′), and
kz(z, z′) = φz(z)Tφz(z′).

Let us implement fw(x) and gv(z) by projections fw(x) ≡
wTφx(x) and gv(z) ≡ vTφz(z). By introducing appropriate
regularization terms, Eq. (1a and 1b) can be reformulated
as the following optimization problem ([8, 9]):

max
α∈RN ,β∈RN

αTKxKzβ (2a)

subject to αT
(
Kx + Nκ

2
I
)2

α = 1 (2b)

βT
(
Kz + Nκ

2
I
)2

β = 1, (2c)

where Kx and Kz are N-by-N kernel matrices defined as
[Kx]nn′ = kx(xn, xn′) and [Kz]nn′ = kz(zn, zn′) 1. I is theN-
by-N identity matrix and κ (κ > 0) is the regularization
parameter.
Once having obtained the solution of Eq. (2a–2c),

denoted by (α∗,β∗), canonical variables for x ∈ R
p and

z ∈ R
q are given by

f ∗(x) =
N∑

n=1
kx(x, xn)α∗

n (3a)

g∗(z) =
N∑

n=1
kz(z, zn)β∗

n , (3b)

respectively. As indicated by Eq. (2a–2c), the nonlinear
functions, φx and φz, are not explicitly used in the compu-
tation of KCCA. Instead, the kernels kx and kz implicitly
specify the nonlinear functions, and the main goal is
to solve the constrained quadratic optimization problem
with 2N-dimensional variables.

Multiple kernel learning
Kernel methods usually require users to design a particu-
lar kernel, which critically affects the performance of the
algorithm. To make the design more flexible, the frame-
work of multiple kernel learning (MKL) was proposed for
classification and regression problems [17, 18]. In MKL,
wemanually designMx sub-kernels {k(m)

x }Mx
m=1, where each

sub-kernel k(m)
x uses only a distinct set of features in x.

Also, Mz sub-kernels {k(l)
z }Mz

l=1 for z is also designed in
the same manner. Then, kx and kz are represented as the
weighted sum of those sub-kernels:

kx(x, x′) =
Mx∑
m=1

ηmk(m)
x (x, x′) (4a)

kz(z, z′) =
Mz∑
l=1

μlk(l)
z (z, z′), (4b)

where weight coefficients of sub-kernels, {ηm}Mx
m=1 and

{μl}Mz
l=1 are tuned to optimize an objective function.
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A specific example of this framework is the two-stage
MKL approach [15, 19]: In the first stage, the weight coef-
ficients are optimized based on a similarity criterion, such
as the kernel target alignment; then, a standard kernel
algorithm, such as support vector machine, is applied in
the second stage.

Methods
In this section, we propose a novel nonlinear CCA
method, two-stage kernel CCA (TSKCCA), inspired by
the concepts of sparse multiple kernel learning and kernel
CCA. In the following, we present the general framework
of TSKCCA, followed by our solutions for practical issues
in the implementation.

First stage: multiple kernel learning with HSIC and sparse
regularizer
In TSKCCA, sub-kernels are restricted to the same class
as Eq. (4a and 4b), allowing us to express the kernel
matrices Kx and Kz as

Kx =
Mx∑
m=1

ηmK (m)
x (5a)

Kz =
Mz∑
l=1

μlK (l)
z , (5b)

where [K (m)
x ]nn′ = k(m)

x (xn, xn′) and [K (l)
z ]nn′ =

k(l)
z (zn, zn′). The goal of the first stage is to opti-
mize the weight vector η = (η1, . . . , ηMx)

T and
μ = (μ1, . . . ,μMz)

T so that kernel matrices Kx and Kz
statistically depend on each other as much as possible,
while irrelevant sub-kernels are filtered out.
The statistical dependence between Kx and Kz is eval-

uated by the Hilbert-Schmidt Independent Criterion
(HSIC) and approximated by its empirical estimator [14]:

D(Kx,Kz) = Tr(KxHKzH)

(N − 1)2
, (6)

whereH is anN-by-N matrix such that [H]nn′ = δnn′ − 1
N ,

and δnn′ is Kronecker’s delta. Tr(·) denotes the trace. In
our setting, optimization problem is reduced to a simple
biliear form with respect to η and μ:

D(Kx,Kz) = ηTMμ, (7)

whereM is aMx-by-Mz matrix such that

[M]ml = Tr(K (m)
x HK (l)

z H)

(N − 1)2
. (8)

In addition to maximizing the dependency measure
D(Kx,Kz), η and μ should be sparse in order to filter out
irrelevant sub-kernel matrices. To this end, we determine

optimal weight vectors as the solution of the following
constrained optimization problem:

max
η∈RMx ,μ∈RMz

D(Kx,Kz) = ηTMμ (9a)

subject to η ≥ 0, μ ≥ 0,
‖η‖2 = ‖μ‖2 = 1, (9b)
‖η‖1 ≤ c1, ‖μ‖1 ≤ c2, (9c)

where ‖x‖p = (
∑

i |xi|p)1/p is the Lp-norm of the vector x
and c1 and c2 are parameters (See also “Parameter tuning
by a permutation test” section). This optimization prob-
lem is an example of penalizedmatrix decomposition with
non-negativity constraints [4]. Accordingly, we can obtain
optimal weight coefficients by performing singular value
decomposition of matrixM under constraints. In this pro-
cess, the i-th left singular vector η(i) = (η

(i)
1 , . . . , η(i)

Mx
)T as

well as the right singular vector μ(i) = (μ
(i)
1 , . . . ,μ(i)

Mz
)T

are obtained iteratively by Algorithm 1.

Algorithm 1 Penalized Matrix Decomposition for
Learning Kernels

Input:M (Eq. 8), regularization c1 and c2
for i = 1 to rank(M) do

initialize ηi to a first left singular vector ofM
repeat

μ(i) ← S((η(i)TM)+,�)

‖S((η(i)TM)+,�)‖2
η(i) ← S((Mμ(i))+,�)

‖S((Mμ(i))+,�)‖2
until Convergence
compute i-th singular value as σi ← η(i)TMμ(i)

obtain residual asM ← M − σiη(i)μ(i)T

end for
Output: {μ(i)}rank(Mx)

i=1 and {η(i)}rank(Mz)
i=1

In Algorithm 1, S denotes the element-wise soft-
thresholding operator: Them-th element of S(a, c) is given
by sign(am)(|am| − c)+, where (x)+ is x if x ≥ 0 and 0 if
x < 0. In each step, � is chosen by a binary search so that
L1 constraints ‖η‖1 ≤ c1 and ‖μ‖1 ≤ c2 are satisfied. In
general, the above iteration does not necessarily converge
to a global optimum. For each iteration, we initialize η(i)

with a non-sparse, left singular vector ofM, following the
previous study, to obtain reasonable solutions [4].

The second stage: kernel CCA
After learning kernels via penalizedmatrix decomposition
as above, we perform the second stage of standard ker-
nel CCA [8, 9] to obtain optimal coefficients α∗ and β∗
(Eq. 3a and 3b) with parameter κ for each pair of singu-
lar vectors {η(i),μ(i)}rank(M)

i=1 . Given test kernel {K (m)
x,test}Mx

m=1
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and {K (l)
z,test}Mz

l=1, test correlation corresponding to the i-
th singular vectors is defined as correlation between∑Mx

m=1 ηmK (m)
x,testα

∗ and
∑Mz

l=1 μlK (l)
z,testβ

∗.

Practical solutions for TSKCCA implementation
TSKCCA still has several options for sub-kernels to be
designed manually. In this study, we focus on feature-
wise kernel and pair-wise kernel defined in the following
sections.

Feature-wise kernel
Feature-wise kernel was introduced to perform feature-
wise nonlinear Lasso [20]. In the previous study, using
feature-wise kernels as sub-kernels in sparse MKL
resulted in sparsity in terms of features since each sub-
kernel corresponds to each feature. With xnm and znl
representing the m-th feature for xn and l-th feature for
zn, respectively, we adopt the following Gaussian kernel in
this study:

[K (m)
x ]nn′ = exp

{−γx(xnm − xn′m)2
}

(10a)

[K (l)
z ]nn′ = exp

{−γz(znl − zn′l)
2} , (10b)

where γx and γz are width parameters. By applying
feature-wise kernels, projection functions are restricted to
additive models defined as f ∗(x) = ∑p

m=1 fm(x.m) and
g∗(z) = ∑q

l=1 gl(z.l), where fm : R → R (m = 1, . . . , p)
and gl : R → R (l = 1, . . . , q) are certain nonlinear
functions 2. Note that the number of sub-kernels,Mx and
Mz, are equivalent to the number of features, p and q,
respectively.

Pair-wise kernel
We introduce pair-wise kernels as sub-kernels to consider
cross-feature interactions among all possible pairs of fea-
tures. Since the sparseness is induced to the weight of
sub-kernels, the pair-wise kernels result in selecting rel-
evant cross-feature interactions. Projection functions are
defined as f ∗(x) = ∑p

m<m′ fm,m′(x.m, x.m′) and g∗(z) =∑q
l<l′ gl,l′(z.l, z.l′), where fm,m′ : R2 → R and gl,l′ : R2 →

R are certain nonlinear functions with two dimensional
inputs. Note that the number of sub-kernels, Mx and Mz,
are, p(p − 1)/2 and q(q − 1)/2, respectively.

Preprocessing for MKL
We normalize the sub-kernels to have uniform variance
in RKHS. This is an important procedure in the context
of MKL because each feature-wise kernel has a different
scale. Thismakes it difficult to evaluate weight coefficients

[21]. To compensate for that, we calculate the variance σ 2

in RKHS as

σ 2 = 1
N

N∑
n

∥∥∥∥∥φ (xn) − 1
N

N∑
n′

φ (xn′)

∥∥∥∥∥
2

2

(11a)

= 1
N

N∑
n

φ (xn)T φ (xn) − 1
N2

N∑
n,n′

φ (xn′)T φ (xn′)

(11b)

= 1
N

N∑
n
[K ]nn − 1

N2

N∑
n,n′

[K ]nn′ . (11c)

Dividing each sub-kernel by its variance K → K
σ 2 , we

can achieve normalization of each sub-kernel.

Parameter tuning by a permutation test
When the kernel matrix Kx (or Ky) is full rank, as is typ-
ically our case, KCCA with a small κ (κ � 1) can always
find a solution such that the maximum canonical corre-
lation nearly equals one. This property makes it difficult
to tune the regularization parameters for the first stage c1
and c2. To solve the issue, we introduce a simple heuristics.
The key idea is to conduct a permutation test for decid-

ing whether to reject a null hypothesis that the maximal
canonical correlation induced by i-th singular vectors is
no more than those attained when x and z are statistically
independent. Since the p-value of this test is interpreted
as the deviance between the actual outcome and those
expected under the null hypothesis, we use it as a score
to evaluate the significance of i-th singular vectors where
smaller p-value is more significant.
Algorithm 2 summarizes our implementation for the

permutation test. Only for the first singular vectors η(1)

and μ(1), this procedure is applied to various pairs of
(c1, c2) that satisfy the constraints of 1 ≤ c1 ≤ √

Mx and
1 ≤ c2 ≤ √

My [4]. Among them, the pair with the lowest
p-value is chosen as the optimal parameters of c1 and c2.

Algorithm 2 A Permutation Test

Input: {K (m)
x }Mx

m=1, {K (l)
z }Mz

l=1, c1, and c2
c = Cor({K (m)

x }Mx
m=1, {K (l)

z }Mz
l=1, η

(i),μ(i))
for b = 1 to B do

permute the samples of x and calculate {K̃ (m)
x }Mx

m=1

obtain M̃ where [ M̃]ij = Tr(K̃ (m)
x HK (l)

z H)

(N−1)2

perform the first stage; matrix decomposition of M̃
to obtain η̃(i) and μ̃(i)

calculate cb = Cor({K̃ (m)
x }Mx

m=1, {K (l)
z }Mz

l=1, η̃
(i), μ̃(i))

end for
p =

∑B
b=1 I(|cb|>|c|)

B+1
Output: p
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For simplicity, other parameters, such as γ in the Gaus-
sian kernel and κ in KCCA, are fixed heuristically. γ −1 is
set to the median of the Euclidean distance between data
points and κ is set to 0.02 as recommended in the previous
study [9].

Results
In this section, we experimentally evaluate the perfor-
mance of our proposed TSKCCA, SAFCCA [12], and
other methods using synthetic data and nutrigenomic
experimental data.

Dataset 1: single nonlinear association
To evaluate the ability to extract a single nonlinear associ-
ation, we generated simple synthetic data which consisted
of a single pair of relevant features in quadratic associ-
ation and noise, in which standard CCA and KCCA are
known to performance poorly [12]. LetN(μ, s2) andU(A)

denote the normal distribution with mean μ, variance
s2, and uniform distribution supported in A, respectively.
The synthetic data were generated as

x.m ∼ U([−0.5, 0.5] ) m = 1, . . . ,D
z.1 = x2.1 + ε

z.l ∼ U([−0.5, 0.5] ) l = 2, . . . ,D
ε ∼ N(0, s2),

where D was the total number of dimensions and ε was
independent noise.
The optimal model in each method was trained using N

training samples. Here, we assumed c1 = c2 in the range
of 1 ≤ c1, c2 ≤

√
D
2 and obtained optimal values using

a permutation test with B = 100. The test correlation

was evaluated with separate 100 test samples, averaged
over 100 simulation runs as we varied the number of
dimensions, the sample size, and the noise level.
Figure 1 shows the test correlations achieved by

TSKCCA and SAFCCA with different data dimensions D,
sample size N , and noise level s. In the first stage, our
method selected only two sub-kernels, corresponding to
x1 and z1, among 2×D sub-kernels in the first stage, espe-
cially in the case of N = 100 and N = 150. As a result, it
achieved better test correlation than SAFCCA, especially
with high-dimensional data, indicating that our method
was sufficiently robust.
In addition, Fig. 2 shows average computation time for

each method over 100 simulation runs with dataset 1.
Computation time of TSKCCA was comparable with that
of SAFCCA, and could scale up with the feature size.
Note that all the experiments were performed on a Mac-
Book Pro with Intel Core i7 (2.9GHz dual core processor
with 4MB L3 cache) with 8GB main memory. All the
simulation programs were implemented in MATLAB®.

Dataset 2: multiple nonlinear associations
To test whether our method could extract multiple non-
linear associations precisely, we generated the following
data:

x.m ∼ U([−0.5, 0.5] ) m = 1, . . . , 25
z.1 = x.1 + exp(−x2.4) + ε1

z.2 = x2.2 + sin(πx.5/2) + ε2

z.3 = |x.3| + 1/(1 + exp(−5x.6)) + ε3

z.l ∼ U([−0.5, 0.5] ) l = 4, . . . , 25
εl ∼ N(0, 0.12) l = 1, 2, 3.

Fig. 1 Comparison of test correlation averaged over simulation runs in Data 1. The horizontal axis denotes the number of dimensions D, and the
vertical axis denotes test correlations. The number of training samples is 50, 100, and 150. TSKCCA outperforms SAFCCA, especially with
high-dimensional data
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Fig. 2 Comparison of computation time for Data 1. The horizontal axis denotes the number of dimensions D, and the vertical axis denotes
computation time in log-scale. The number of training samples is 50, 100, 150 for SAFCCA and TSKCCA. Computation time of TSKCCA is moderate
and can be scaled

First, we performed a permutation test with B = 1000
for ten singular vectors {η(i),μ(i)}10i=1 corresponding to the
ten highest singular values ofM given by Eq. (8). P-values
of the top three were significant (p < 0.001) and the rest
were non-significant. This result suggests that only the
three singular vectors included nonlinear associations.
Figure 3 shows the transformations f (x) and g(z)

obtained with TSKCCA. In the first singular vectors, the
contributions of η11, η14 and μ1

1 were dominant, indicat-
ing that x.1, x.4 and z.1 were associated. The contributions

of η22, η
2
5 and μ2

2 in the second singular vectors were also
dominant, indicating that x.2, x.5 and z.2 were associated.
Finally, the contributions of η33, η36 and μ3

3 in the third sin-
gular vectors were dominant, indicating that x.3, x.6 andz.3
were associated. Some singular vectors averaged over 100
simulation runs are listed in Table 1. Our results suggest
that TSKCCA achieved feature selection precisely.
We further evaluated test correlation, precision, and

recall averaged over 20 simulation runs. Table 2 shows that
SAFCCA failed to detect all relevant features because it is

Fig. 3 Transformations f (x) and g(z) obtained with TSKCCA. The top three rows and the bottom row show the resulting functions corresponding to
relevant and irrelevant features, respectively
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Table 1 Feature selection through singular vectors (SVs) in data 2

1st SV (η(1)) 2nd SV (η(2)) 3rd SV (η(3))

η1 0.98 (0.002) 0.00 (0.018) 0.00 (0.001)

η2 0.00 (0.003) 0.21 (0.033) 0.00 (0.001)

η3 0.00 (0.001) 0.00 (0.010) 0.22 (0.029)

η4 0.22 (0.013) 0.00 (0.017) 0.00 (0.005)

η5 0.00 (0.000) 0.98 (0.004) 0.00 (0.005)

η6 0.00 (0.004) 0.00 (0.002) 0.98 (0.003)

1st SV (μ(1)) 2nd SV (μ(2)) 3rd SV (μ(3))

μ1 0.99 (0.005) 0.01 (0.022) 0.01 (0.014)

μ2 0.01 (0.027) 0.99 (0.004) 0.01 (0.015)

μ3 0.01 (0.024) 0.01 (0.018) 0.99 (0.003)

μ4 0.01 (0.023) 0.01 (0.026) 0.01 (0.017)

These results show mean weight coefficients (standard deviation) in 100 simulation
runs. Significant weight coefficients are bold faced

not able to obtain multiple canonical correlations, while
our method detected 9 relevant sub-kernels out of 50 in
the first stage in most runs. Note that the precision is the
fraction of retrieved features that are relevant and recall is
the fraction of relevant features that are retrieved.

Dataset 3: feature interactions
To assess the capability of TSKCCA in discovering non-
linear interactions, we generated data with a product
term:

x.m ∼ U([−0.5, 0.5] ) m = 1, . . . ,D
z.1 = x.1x.2 + ε

z.l ∼ U([−0.5, 0.5] ) l = 2, . . . ,D
ε ∼ N(0, 0.12),

where D was the number of dimensions. For this dataset,
we used feature-wise kernels and pair-wise kernels as sub-
kernels in order to handle both single feature effects and
cross-feature interactions like the term x.1x.2. There were
D + D × (D − 1)/2 sub-kernels, the weight coefficients of
which were optimized in our method.

Table 2 Comparison of test correlation, precision, and recall in
data 2

Correlation Precision Recall

TSKCCA 0.9670 0.9163 1

0.9636

0.9732

SAFCCA 0.7585 0.6350 0.4375

TSKCCA can identify most relevant features through three significant singular
vectors, while SAFCCA can only identify a small set of them

First, to evaluate the performance of our method with
feature-wise and pair-wise kernels, we obtained test cor-
relations evaluated by individual test data (N = 100) in
different numbers of dimensions D. Next, to evaluate the
accuracy of feature selection of the model, we assessed
recall and precision. Average test correlations, recall, and
precision over 100 simulation runs are shown in Fig. 4.
Our results illustrate that in the case of D < 10 (i.e. the
number of sub-kernels is less than 10 + 10 × 9/2 = 55),
our method successfully determined the relation between
z.1 and x.1x.2.

Dataset 4: nutrigenomic data
We then analyzed a nutrigenomic dataset from a previ-
ous mouse study [22, 23]. In this study, expression of 120
genes in liver cells that would be relevant in the context of
nutrition and concentrations of 21 hepatic fatty acids were
measured on 20 wild-type mice and 20 PPARα-deficient
mice.Mice of each genotype were fed 5 different diets with
different levels of fat. For matrix notation, gene expression
data were denoted by X ∈ R

40×120, and data regarding
concentrations of fatty acids was denoted by Z ∈ R

40×21.
Data were standardized to have a mean of zero and unit
variance in each dimension. Several linear correlations
between X and Z were detected by applying a regularized
version of the linear CCA [5, 23].
First, we performed a permutation test for sparse CCA,

KCCA, SAFCCA, and TSKCCA on parameters defined
by equally-spaced grid points in order to identify signif-
icant associations in these data. In KCCA and SAFCCA,
there were no significant associations; thus, we focused
on sparse CCA and TSKCCA in the following analysis.
We identified two significant linear associations in sparse
CCA (p < 0.001 using a permutation test) and one
nonlinear association in TSKCCA (p = 0.0067 using a
permutation test) with c1 = 2.6257 and c2 = 1.9275.
Figures 5 and 6 show the results of feature selection of

sparse CCA and TSKCCA, respectively. Genes selected
by the first singular vector of our method have dif-
ferent expression levels in different genotypes (marked
with asterisk), suggesting that our method successfully
extracted the nonlinear correlation associated with geno-
types.
For further analysis, cross-validation was performed in

100 runs. In each run, 40 samples were randomly split
into 30 training samples used for fitting models and 10
validation samples used for evaluating the canonical cor-
relation for fitted models. Figure 7 shows box plots of
correlation coefficients in sparse CCA and TSKCCA. Left
one represents the first canonical correlation coefficient
in sparse CCA and right one represents correlation coef-
ficient obtained with the first singular vectors. Signifi-
cantly higher test correlation (p < 10−6 with a t-test)
were achieved by the first singular vectors of TSKCCA,
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Fig. 4 The performance of pair-wise kernels in Data 3. (Left) Test correlations averaged over 100 simulation runs in different numbers of dimensions.
(Right) Recall and precision averaged over 100 simulation runs in different numbers of dimensions. Our method successfully extracts nonlinear
associations with relevant features

indicating that it avoided overfitting despite having
nonlinearity.
To account for interactions between features into our

model, we calculated pair-wise kernels for nutrigenomic
data. Although the number of sub-kernels was huge (120+
120 × 119/2 = 7260 sub-kernels for genes, 21 + 21 ×
20/2 = 231 sub-kernels for fatty acids), TSKCCA suc-
cessfully extracted a significant association (p < 0.001
using a permutation test). To evaluate the stability of fea-
ture selection, we performed TSKCCA on 1000 runs with
data generated by random sampling of empirical data with
replacement. Table 3 shows the frequencies of features
(i.e. pairs of features) selected across 1000 runs, sug-
gesting that PMDCI played an important role within the
interactions.

Discussion
Other researchers have employed the sparse additive
model [13] to extend KCCA to high-dimensional prob-
lems, and have defined two equivalent formulations, such
as sparse additive functional CCA (SAFCCA) and sparse
additive kernel CCA (SAKCCA) [12]. The former was
defined in a second order Sobolev space and solved using
the biconvex back-fitting procedure. The latter, defined
in RKHS, was derived by applying representer theorem
to the former. Given some function fm ∈ Hm, these
algorithms optimize the additive model, f1 ∈ H1, f2 ∈
H2, . . . , fp ∈ Hp. In contrast, our formulation supposes an
additive kernel, such as

∑
ηmKm associated with RKHS

Hadd and finds correlations in this space. This approach
enables us to reveal multiple components of associations.

Fig. 5 Feature selection of sparse CCA in nutrigenomic data. Left and right panels show selected genes and fatty acids, respectively. Genes marked
with asterisks show significantly different expression in different genotypes
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Fig. 6 Feature selection of TSKCCA using nutrigenomic data. Left and right panels show selected genes and fatty acids, respectively. Genes marked
with asterisks show significantly different expression in different genotypes. The left panel shows that the 1st singular vector extracts nonlinear
correlations associated with the genotype

Some problems specific to KCCA, such as choosing two
parameters (i.e. regularization parameter κ and the width
parameter γ ) and the number of components, remain
unsolved. While cross validation is applicable to set these
values [24], they are fixed for simplicity in our study, based
on the previous study [9].
Next, we discuss the validity of feature selection in

nutrigenomic data performed using sparse CCA and
TSKCCA. In the original study, the authors focused on
the role of PPARα as a major transcriptional regulator of
lipid metabolism and determined that PPARα regulates
the expression of many genes in mouse liver under lower
dietary fat conditions [22]. They provided a list of genes
that have significantly different expression levels between
wild-type and PPARα-deficient mice. While only a few
genes selected by sparse CCA were included in the list,
13 out of 14 genes selected with the 1st singular vector
in TSKCCA were included in the list. This result shows

that TSKCCA successfully extracts meaningful nonlinear
associations induced by PPARα-deficiency.
Moreover, in our analysis of pair-wise kernels, most of

the frequently selected pairs of genes retained PMDCI
known as a sort of enoyl-CoA isomerases involved in β-
oxidation of polyunsaturated fatty acids. This implies that
the interactions of PMDCI and other genes contribute to
lipid metabolism in PPARα-deficient mice.
Many variants of sub-kernels, such as string kernels or

graph kernels, can be employed in the same framework.
In the field of bioinformatics, Yamanishi et al. adopted
integrated KCCA (IKCCA), which exploited the simple
sum of multiple kernels to combine many sorts of bio-
logical data [11]. This technique can be improved by
optimizing weight coefficients of each kernel in the frame
of TSKCCA. Finally, if kernels are defined on groups of
features, it enables us to perform group-wise feature selec-
tion, just like group sparse CCA [25–27]. It is beneficial

Fig. 7 Box plot of test correlations in nutrigenomic data. Left and right panels show the box plot of 100 times test correlation using sparse CCA and
TSKCCA, respectively. TSKCCA achieves significantly higher test correlation through its first weight vector (p < 10−6 with a t-test)
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Table 3 Frequency of selection per sub-kernel corresponding to
genes (left) and fatty acids (right) in nutrigenomic data

Genes/Pair of genes Freq. Fatty acids/Pair of fatty acids Freq

PMDCI 643 C16.0-C18.0 622

CAR1-PMDCI 564 C18.0 485

PMDCI-THIOL 563 C16.0-C20.3n.6 429

ACBP-PMDCI 473 C16.0 340

L.FABP-PMDCI 451 C18.0-C20.3n.6 315

CYP4A10-PMDCI 379 - -

CYP3A11-PMDCI 370 - -

ALDH3-PMDCI 369 - -

Ntcp-PMDCI 354 - -

PMDCI-SPI1.1 347 - -

ACOTH-PMDCI 330 - -

PMDCI-SR.BI 306 - -

to consider group-wise feature selection for biomarker
detection problems.

Conclusions
This paper proposes a novel extension of kernel CCA that
we call two-stage kernel CCA, which is able to identify
multiple canonical variables from sparse features. This
method optimizes the sparse weight coefficients of pre-
specified sub-kernels as a sparse matrix decomposition
before performing standard kernel CCA. This procedure
enables us to achieve interpretability by removing irrel-
evant features in the context of nonlinear correlational
analysis.
Through three numerical experiments, we have demon-

strated that TSKCCA is more useful for higher dimen-
sional data and for extracting multiple nonlinear associa-
tions than an existing method, SAFCCA. Using nutrige-
nomic data, our results show that TSKCCA can retrieve
information about genotype and may reveal an interactive
mechanism of lipid metabolism in PPARα-deficient mice.

Endnotes
1 In this article, [ ·]nn′ denotes the (n, n′)-th elements of

the matrix enclosed by the brackets.
2 In this article, x.m denotes them-th feature of x.
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