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Abstract
This paper investigates the existence of traveling wave solution to a three species
reaction-diffusion system with delays, which includes competitive relationship,
cooperative relationship and predator-prey relationship. By using the method of
upper-lower solutions, the cross iteration method and Schauder’s fixed point
theorem, the existence of a traveling wave solution is obtained.
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1 Introduction
In population dynamics, Lotka-Volterra competitive, cooperative, and competitive-coop-
erative systems with diffusion have received great attention and have been studied ex-
tensively [–]. To illustrate and predict some ecological phenomena, various types of
predator-prey model described by differential systems were proposed [–]. In studying
the dynamics of predator-prey systems, one of the important topics is the existence of
traveling wave solutions [–].

In this paper, we are concerned with the existence of traveling wave of the following
competitive-cooperative system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d

∂u(x,t)
∂x + ru(x, t)( – au(x, t – τ) – au(x, t – τ)

– au(x, t – τ)),
∂u(x,t)

∂t = d
∂u(x,t)

∂x + ru(x, t)( – au(x, t – τ) – au(x, t – τ)
+ au(x, t – τ)),

∂u(x,t)
∂t = d

∂u(x,t)
∂x + ru(x, t)( + au(x, t – τ) + au(x, t – τ)

– au(x, t – τ)),

()

where all parameters di, ri, aij are positive constants, τij ≥ , i, j = , , , and the quantities
u(x, t), u(x, t), u(x, t) can be interpreted as the population densities of the three species
at space x and time t.
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It is necessary to point out that, when any one of the quantities u(x, t), u(x, t), and
u(x, t) are taken as zero, some cooperative system or competitive system can be derived
from system (), such as, when u = , system () becomes the two species cooperative
system

{
∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( – au(x, t – τ) + au(x, t – τ)),

∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( + au(x, t – τ) – au(x, t – τ)),

()

considered by Huang and Zou []. When u = , system () is reduced to the two species
predator-prey system

{
∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( – au(x, t – τ) – au(x, t – τ)),

∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( + au(x, t – τ) – au(x, t – τ)),

()

studied by Zhang and Li []. When u =  system () is reduced to the two species com-
peting system

{
∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( – au(x, t – τ) – au(x, t – τ)),

∂u
∂t = d

∂u(x,t)
∂x + ru(x, t)( – au(x, t – τ) – au(x, t – τ)),

()

discussed by Lv and Wang [].
This paper is organized as follows. In Section , we introduce some notations and lem-

mas which will be essential to our proofs. By applying the cross iteration method and
Schauder’s fixed point theorem, we establish the existence result of traveling wave so-
lutions for a general delayed reaction-diffusion system. In Section , by using the results
given in Section  and constructing a pair of upper-lower solution, we obtain the existence
of traveling wave solutions to the system ().

2 Preliminaries
For convenience, we first give some notations and definitions of traveling wave solutions.

In this paper, we shall use the standard partial ordering in R, namely, for u = (u, u, u)T ,
v = (v, v, v)T , we denote u ≤ v if ui ≤ vi, i = , , ; u < v if u ≤ v but u �= v; and u � v if
u ≤ v but ui �= vi, i = , , . If u �= v, we denote (u, v] = {w ∈ R : u < w ≤ v}, [u, v) = {w ∈ R :
u ≤ w < v}, and [u, v] = {w ∈ R : u ≤ w ≤ v}. We use | · | to denote the Euclidean in R and
‖ · ‖ to denote the supremum norm in C([–τ , ], R).

Definition  ([, ]) A traveling wave solution of system () is a special solution of the
form u(t, x) = φ(x + ct), v(t, x) = ϕ(x + ct), w(t, x) = ψ(x + ct), where φ,ϕ,ψ ∈ C(R, R) are
the wave profiles that propagate through the one-dimensional spatial domain at a constant
velocity c > .

To show the existence of a traveling wave solution to system (), we first discuss the
following general reaction-diffusion system:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = d

∂u(x,t)
∂x + f(u(x, t), v(x, t), w(x, t)),

∂v(x,t)
∂t = d

∂v(x,t)
∂x + f(u(x, t), v(x, t), w(x, t)),

∂w(x,t)
∂t = d

∂w(x,t)
∂x + f(u(x, t), v(x, t), w(x, t)).

()
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Substituting u(x, t) = φ(x + ct), v(x, t) = ϕ(x + ct), w(x, t) = ψ(x + ct) into () and denote
the traveling wave coordinate x + ct still by t, then () has a traveling wave solution if and
only if the following system:

⎧
⎪⎨

⎪⎩

dφ
′′(t) – cφ′(t) + fc(φt ,ϕt ,ψt) = ,

dϕ
′′(t) – cϕ′(t) + fc(φt ,ϕt ,ψt) = ,

dψ
′′(t) – cψ ′(t) + fc(φt ,ϕt ,ψt) = ,

()

with asymptotic boundary conditions

lim
t→–∞φ(t) = φ–, lim

t→–∞ϕ(t) = ϕ–, lim
t→–∞ψ(t) = ψ–,

lim
t→+∞φ(t) = φ+, lim

t→+∞ϕ(t) = ϕ+, lim
t→+∞ψ(t) = ψ+,

()

has a solution (φ(t),ϕ(t),ψ(t)) on R, where (φ–,ϕ–,ψ–) and (φ+,ϕ+,ψ+) are steady states of
() and the functions fci : Xc = C([–cτ , ], R) → R, i = , , , are defined by

fci(φ,ϕ,ψ) = fi
(
φc,ϕc,ψ c), φc(s) = φ(cs),

ϕc(s) = ϕ(cs), ψ c(s) = ψ(cs), s ∈ [–τ , ].

Without loss of generality, we can assume

(φ–,ϕ–,ψ–) = (, , ), (φ+,ϕ+,ψ+) = (k, k, k),

and we seek for traveling wave solution connecting these two steady states. In order to
address traveling waves of () and (), we make the following assumptions:

(A) fi(, , ) = fi(k, k, k) =  for i = , , ;
(A) there exist three positive constants Li >  (i = , , ), such that

∣
∣f(φ,ϕ,ψ) – f(φ,ϕ,ψ)

∣
∣ ≤ L‖� – �‖,

∣
∣f(φ,ϕ,ψ) – f(φ,ϕ,ψ)

∣
∣ ≤ L‖� – �‖,

∣
∣f(φ,ϕ,ψ) – f(φ,ϕ,ψ)

∣
∣ ≤ L‖� – �‖,

for � = (φ,ϕ,ψ), � = (φ,ϕ,ψ) ∈ C([–τ , ], R) with  ≤ φi(s) ≤ M,  ≤ ϕi(s) ≤ M,
 ≤ ψi(s) ≤ M, i = , , where Mj ≥ kj (j = , , ) are positive constants.

The reaction terms satisfy the following partial quasi-monotonicity conditions (PQM),
different from [, , ].

(PQM) There exist three positive constants β,β,β >  such that

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
φ() – φ()

] ≥ ,

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ ,

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
ϕ() – ϕ()

] ≥ ,

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ ,

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
ψ() – ψ()

] ≥ ,

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ ,

()
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where φi,ϕi,ψi ∈ C([–τ , ], R), i = , ,  ≤ φ(s) ≤ φ(s) ≤ M,  ≤ ϕ(s) ≤ ϕ(s) ≤
M,  ≤ ψ(s) ≤ ψ(s) ≤ M, s ∈ [–τ , ].

We need the following definition of upper and lower solutions.

Definition  ([, ]) A pair of continuous functions ρ = (φ,ϕ,ψ) and ρ = (φ,ϕ,ψ) are
called a pair of upper and lower solutions of the system () if ρ and ρ are twice differentiable
almost everywhere in R and they are essentially bounded on R, and we have

⎧
⎪⎨

⎪⎩

dφ
′′ – cφ′ + fc(φt ,ϕt ,ψ t) ≤ , a.e. in R,

dϕ
′′ – cϕ′ + fc(φt ,ϕt ,ψ t) ≤ , a.e. in R,

dψ
′′ – cψ ′ + fc(φt ,ϕt ,ψ t) ≤ , a.e. in R

()

and

⎧
⎪⎨

⎪⎩

dφ
′′ – cφ′ + fc(φt ,ϕt ,ψ t) ≥ , a.e. in R,

dϕ
′′ – cϕ′ + fc(φt ,ϕt ,ψ t) ≥ , a.e. in R,

dψ
′′ – cψ ′ + fc(φt ,ϕt ,ψ t) ≥ , a.e. in R.

()

Let

Ck :=
{

(φ,ϕ,ψ)|(, , ) ≤ (φ,ϕ,ψ) ≤ (M, M, M), for t ∈ R
}

.

We shall combine Schauder’s fixed point theorem with the method of upper and lower
solutions to establish the existence of solutions. For this purpose, we need to introduce a
topology in C(R, R).

Let μ >  and let C(R, R) be equipped with the exponential decay norm defined by

|�|μ = sup
t∈R

e–μ|t|∣∣�(t)
∣
∣
R .

Define

Bμ

(
R, R) =

{
� ∈ C

(
R, R) : |�|μ < ∞}

.

Then it is easy to check that (Bμ(R, R), | · |μ) is a Banach space. We shall look for the
traveling wave solution of system () in the following profile set:

�
(
(φ,ϕ,ψ), (φ,ϕ,ψ)

)

=

⎧
⎪⎨

⎪⎩

(i) φ(t) ≤ φ(t) ≤ φ(t),ϕ(t) ≤ ϕ(t) ≤ ϕ(t),ψ(t) ≤ ψ(t) ≤ ψ(t);
(ii) eβs[φ(t) – φ(t)], eβs[φ(t) – φ(t)], eβs[ϕ(t) – ϕ(t)], eβs[ϕ(t) – ϕ(t)],

eβs[ψ(t) – ψ(t)], eβs[ψ(t) – ψ(t)] are nondecreasing for t ∈ R

⎫
⎪⎬

⎪⎭
.

It is easy to see that �((φ,ϕ,ψ), (φ,ϕ,ψ)) is nonempty, convex, closed, and bounded.
In the following, we assume that there exist a pair of upper and lower solutions

(φ(t),ϕ(t),ψ(t)), (φ(t),ϕ(t),ψ(t)) of () satisfying the conditions (P) and (P):
(P) (, , ) ≤ (φ(t),ϕ(t),ψ(t)) ≤ (φ(t),ϕ(t),ψ(t)) ≤ (M, M, M), t ∈ R.
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(P) limt→–∞(φ(t),ϕ(t),ψ(t)) = (, , ), limt→+∞(φ(t),ϕ(t),ψ(t)) = (k, k, k).
Define the operators Hi : C(R, R) → C(R, R) by

Hi(φ,ϕ,ψ)(t) = fci(φt ,ϕt ,ψt) + βiθi(t), φ,ϕ,ψ ∈ C(R, R), i = , , , ()

where

θi(t) =

⎧
⎪⎨

⎪⎩

φ(t), if i = ,
ϕ(t), if i = ,
ψ(t), if i = ,

and the constants βi >  are as in inequalities (). The operators Hi, i = , ,  satisfy the
following properties.

Lemma  Assume that (A) and () hold, for t ∈ R with  ≤ φ(t) ≤ φ(t) ≤ M,  ≤ ϕ(t) ≤
ϕ(t) ≤ M,  ≤ ψ(t) ≤ ψ(t) ≤ M, then

H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ), H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ),

H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ), H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ),

H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ), H(φ,ϕ,ψ) ≤ H(φ,ϕ,ψ).

Proof From (), a direct calculation shows that

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
φ() – φ()

] ≥ ,

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ ,

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
ϕ() – ϕ()

] ≥ ,

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ ,

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
ψ() – ψ()

] ≥ ,

H(φ,ϕ,ψ) – H(φ,ϕ,ψ) = fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) ≤ . �

From the definitions of H, H, and H in (), system () can be rewritten as

diθ
′′
i (t) – cθ ′

i (t) – βθi(t) + Hi(φ,ϕ,ψ)(t) = , i = , , . ()

We define

λ =
c –

√
c + βd

d
, λ =

c +
√

c + βd

d
,

λ =
c –

√
c + βd

d
, λ =

c +
√

c + βd

d
,

λ =
c –

√
c + βd

d
, λ =

c +
√

c + βd

d
.
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For (φ,ϕ,ψ) ∈ Ck(R, R), we define F = (F, F, F) : Ck(R, R) → C(R, R) by

F(φ,ϕ,ψ)(t)

=


d(λ – λ)

[∫ t

–∞
eλ(t–s)H(φ,ϕ,ψ)(s) ds +

∫ +∞

t
eλ(t–s)H(φ,ϕ,ψ)(s) ds

]

,

F(φ,ϕ,ψ)(t)

=


d(λ – λ)

[∫ t

–∞
eλ(t–s)H(φ,ϕ,ψ)(s) ds +

∫ +∞

t
eλ(t–s)H(φ,ϕ,ψ)(s) ds

]

,

F(φ,ϕ,ψ)(t)

=


d(λ – λ)

[∫ t

–∞
eλ(t–s)H(φ,ϕ,ψ)(s) ds +

∫ +∞

t
eλ(t–s)H(φ,ϕ,ψ)(s) ds

]

.

It is easy to see that Fi(φ,ϕ,ψ) (i = , , ) satisfy

diF ′′
i (φ,ϕ,ψ) – cF ′

i (φ,ϕ,ψ) – βiFi(φ,ϕ,ψ) + Hi(φ,ϕ,ψ) = . ()

Corresponding to Lemma , we have the same results of F .

Lemma  Assume that (A) holds, then F = (F, F, F) is continuous with respective to the
norm | · | in Bμ(R, R).

Lemma  Assume that (A) and () hold, then

F
(
�

(
(φ,ϕ,ψ), (φ,ϕ,ψ)

)) ⊂ �
(
(φ,ϕ,ψ), (φ,ϕ,ψ)

)
.

Lemma  Assume that () holds, then

F : �
(
(φ,ϕ,ψ), (φ,ϕ,ψ)

) → �
(
(φ,ϕ,ψ), (φ,ϕ,ψ)

)

is compact.

Remark  The proofs of Lemmas - are similar to those of Lemmas .-. in [], and
we omit them here.

Theorem  Assume that (A), (A), and () hold. Suppose there is a pair of upper and
lower solutions � = (φ,ϕ,ψ), and � = (φ,ϕ,ψ) for () satisfying (P) and (P), then system
() has a traveling wave solution.

Proof Combining Lemmas - with Schauder’s fixed point theorem, we know that there
exists a fixed point (φ∗(t),ϕ∗(t),ψ∗(t)) of F in �((φ,ϕ,ψ), (φ,ϕ,ψ)), which gives a solution
of ().

From (P) and the fact that

(, , ) ≤ (φ,ϕ,ψ) ≤ (
φ∗(t),ϕ∗(t),ψ∗(t)

) ≤ (φ,ϕ,ψ) ≤ (M, M, M),



Du and Xu Boundary Value Problems  (2016) 2016:46 Page 7 of 14

we know that

lim
t→–∞

(
φ∗(t),ϕ∗(t),ψ∗(t)

)
= (, , ); lim

t→+∞
(
φ∗(t),ϕ∗(t),ψ∗(t)

)
= (k, k, k).

Therefore, the fixed point (φ∗(t),ϕ∗(t),ψ∗(t)) satisfies the asymptotic boundary condi-
tions (). �

3 Existence of traveling waves
In this section, we will apply Theorem  to establish the existence of traveling wave solu-
tions for system (). Assuming that

D =

∣
∣
∣
∣
∣
∣
∣

a a a

a a a

a a a

∣
∣
∣
∣
∣
∣
∣

> , D =

∣
∣
∣
∣
∣
∣
∣

 a a

 a a

 a a

∣
∣
∣
∣
∣
∣
∣

> ,

D =

∣
∣
∣
∣
∣
∣
∣

a  a

a  a

a  a

∣
∣
∣
∣
∣
∣
∣

> , D =

∣
∣
∣
∣
∣
∣
∣

a a 
a a 
a a 

∣
∣
∣
∣
∣
∣
∣

> .

We are interested in looking for a traveling wave solution of () connecting (, , ) and
a positive equilibrium (k, k, k). Here ki = Di

D (i = , , ) are the roots of the following
equations:

⎧
⎪⎨

⎪⎩

ak + ak + ak = ,
ak + ak + ak = ,
ak + ak + ak = .

()

Substituting s = x + ct into () and denoting the variable s still by t, then the corresponding
wave profile equations are

⎧
⎪⎨

⎪⎩

dφ
′′(t) – cφ′(t) + rφ(t)( – aφ(t – τ) – aϕ(t – τ) – aψ(t – τ)) = ,

dϕ
′′(t) – cϕ′(t) + rϕ(t)( – aφ(t – τ) – aϕ(t – τ) + aψ(t – τ)) = ,

dψ
′′(t) – cψ ′(t) + rψ(t)( + aφ(t – τ) + aϕ(t – τ) – aψ(t – τ)) = .

()

Lemma  Assume that τii (i = , , ) are small enough, then the functions (f, f, f) satisfy
(PQM).

Proof For any φ(s),φ(s),ϕ(s),ϕ(s),ψ(s),ψ(s) ∈ C([–τ , ], R),
(i)  ≤ φ(s) ≤ φ(s) ≤ M,  ≤ ϕ(s) ≤ ϕ(s) ≤ M,  ≤ ψ(s) ≤ ψ(s) ≤ M, s ∈ [–τ , ];

(ii) eβs(φ(s) – φ(s)), eβs(ϕ(s) – ϕ(s)), and eβs(ψ(s) – ψ(s)) are nondecreasing in
s ∈ [–τ , ].

If τ is small enough, we can choose β >  satisfying

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ)

= rφ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

– rφ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)
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= r
(
φ() – φ()

)
– ar

(
φ()φ(–τ) – φ()φ(–τ)

)

– arϕ(–τ)
(
φ() – φ()

)
– arψ(–τ)

(
φ() – φ()

)

≥ r( – aM – aM – aM)
(
φ() – φ()

)

– arφ()
(
φ(–τ) – φ(–τ)

)

≥ r
(
 – aM – aM – aM – aMeβτ

)(
φ() – φ()

)
.

Let

β ≥ –r
(
 – aM – aM – aM – aMeβτ

)
,

then it is easy to show that fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β(φ() – φ()) ≥ , and

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ)

= rφ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

– rφ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

= rφ()
(
a

(
ϕ(–τ) – ϕ(–τ)

)
+ a

(
ψ(–τ) – ψ(–τ)

))

≤ .

For fc, we have

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ)

= rϕ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

– rϕ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

= r
(
ϕ() – ϕ()

)
– ar

(
ϕ()φ(–τ) – ϕ()φ(–τ)

)

– ar
(
ϕ()ϕ(–τ) – ϕ()ϕ(–τ)

)

– ar
(
ϕ()ψ(–τ) – ϕ()ψ(–τ)

)

≥ r( – aM)
(
ϕ() – ϕ()

)
– ar

(
ϕ()ϕ(–τ) – ϕ()ϕ(–τ)

+
(
ϕ() – ϕ()

)
ϕ(–τ)

)
+ ar

(
ϕ()ψ(–τ) – ϕ()ψ(–τ)

+
(
ϕ() – ϕ()

)
ψ(–τ)

)

≥ r
(
 – aM – aM – aM – aMeβτ – aMeβτ

)(
ϕ() – ϕ()

)
.

Let β ≥ r( – aM – aM – aM – aMeβτ – aMeβτ ), then

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ) + β
[
ϕ() – ϕ()

] ≥ 

and

fc(φ,ϕ,ψ) – fc(φ,ϕ,ψ)

= rϕ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)
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– rϕ()
(
 – aφ(–τ) – aϕ(–τ) – aψ(–τ)

)

= rϕ()a
(
φ(–τ) – φ(–τ)

)

≤ .

In a similar way for fc, we let β > r( – aM – aMeβτ ), then fc(φ,ϕ,ψ) –
fc(φ,ϕ,ψ)+β[ψ()–ψ()] ≥ , and fc(φ,ϕ,ψ)– fc(φ,ϕ,ψ) ≤ . This completes
the proof. �

Let

c > c∗ = max
(

√

dr, 
√

dr( + aM), 
√

dr( + aM + aM)
)
.

There exist λi >  (i = , , ) so that

dλ

 – cλ + r = ,

dλ

 – cλ + r( + aM) = ,

dλ

 – cλ + r( + aM + aM) = .

We find that there exist εi >  (i = , , , , , , ) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

aε – aε – aε > ε,
–aε + aε – aε > ε,
aε – aε + ε > ε,
ε – aε – aε > ε,
–aε + ε + aε > ε,
 – k + ε > ε.

()

For the above constants and suitable constants ti >  (i = , , , , , ), we define the con-
tinuous functions � = (φ(t),ϕ(t),ψ(t)) and � = (φ(t),ϕ(t),ψ(t)) as follows:

φ(t) =

{
eλt , t ≤ t,
k + εe–λt , t > t,

φ(t) =

{
, t ≤ t,
k – εe–λt , t > t,

ϕ(t) =

{
eλt , t ≤ t,
k + εe–λt , t > t,

ϕ(t) =

{
, t ≤ t,
k – εe–λt , t > t,

ψ(t) =

{
eλt , t ≤ t,
k + εe–λt , t > t,

ψ(t) =

{
, t ≤ t,
k – εe–λt , t > t,

where λ >  is a constant to be chosen later and

min{t, t, t} – c max{τij, i, j = , , } ≥ max{t, t, t}, t > t.

Lemma  Assume that D > , Di >  (i = , , ) and () hold, then � = (φ(t),ϕ(t),ψ(t)) is
an upper solution of system ().
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Proof When t > t + cτ, φ(t) = k + εe–λt , we have

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

= dελ
e–λt + cελe–λt + r

(
k + εe–λt)( – a

(
k + εe–λ(t–cτ))

– a
(
k – εe–λ(t–cτ)) – a

(
k – εe–λ(t–cτ)))

=: I(λ).

Obviously,

I() = r(k + ε)
(
 – a(k + ε) – a(k – ε) – a(k – ε)

)

= r(k + ε)(–aε + aε + aε).

It is easy to see that I() <  and there exists λ∗
 > , such that

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≤ ,

for all λ ∈ (,λ∗
 ).

If t ≤ t, φ(t) = eλt , we have

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

≤ dλ

 eλt – cλeλt + reλt = .

If t < t ≤ t + cτ, then we have

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

= dελ
e–λt + cελe–λt + r

(
k + εe–λt)( – aeλ(t–cτ)

– a
(
k – εe–λt) – a

(
k – εe–λt))

=: I(λ).

For small enough τ, there exists ε∗
 ( < ε∗

 < ε
a(k+ε) ) such that e–λcτ >  – ε∗

 . Thus we
have

I() = r(k + ε)
(
 – aeλ(t–cτ) – a(k – ε) – a(k – ε)

)

= r(k + ε)
(
ak + aε + aε – ae–λcτ (k + ε)

)

≤ r(k + ε)
(
ak + aε + aε – a

(
 – ε∗


)
(k + ε)

)

< r(k + ε)
(
–ε + aε

∗
 (k + ε)

)

< .

Therefore, there exists a λ∗
, such that for all λ ∈ (,λ∗

), we have

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≤ .
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From the above argument, we see that

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≤ ,

for small enough λ ∈ (,λ∗
 ), where λ

∗
 = min{λ∗

 ,λ∗
}.

When t > t + cτ, ϕ(t) = k + εe–λt , we have

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

≤ dελ
e–λt + cελe–λt + r

(
k + εe–λt)( – a

(
k – εe–λt)

– a
(
k + εe–λt) + a(k + ε)

)

=: I(λ).

Obviously,

I() = r(k + ε)
(
 – a(k – ε) – a(k + ε) – a(k + ε)

)

= r(k + ε)(aε – aε + aε).

It is easy to see that I() <  and there exists λ∗
 > , such that

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≤ ,

for all λ ∈ (,λ∗
).

If t ≤ t, ϕ(t) = eλt , we have

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

≤ dλ

eλt – cλeλt + reλt( + aM) = .

If t < t ≤ t + cτ, then we have

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) + aψ(t – cτ)

]

< dελ
e–λt + cελe–λt + r

(
k + εe–λt)( – a

(
k – εe–λt)

– aeλ(t–cτ) + a(k + ε)
)

=: I(λ).

For small enough τ, there exists ε∗
 ( < ε∗

 < ε
a(k+ε) ) such that e–λcτ >  – ε∗

 . Thus we
have

I() ≤ r(k + ε)
(
 – a(k – ε) – ae–λcτ (k + ε) + a(k + ε)

)

≤ r(k + ε)
(
 – a(k – ε) – a

(
 – ε∗


)
(k + ε) + a(k + ε)

)

< r(k + ε)
(
–ε + (k + ε)ε∗


)

< .
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Therefore, there exists a λ∗
, such that for all λ ∈ (,λ∗

)

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) + aψ(t – cτ)

] ≤ .

From the above argument, we see that

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) + aψ(t – cτ)

] ≤ ,

for small enough λ ∈ (,λ∗
), where λ

∗
 = min{λ∗

,λ∗
}.

Similarly, for all t ∈ R, there exists a λ
∗
 > , such that, for λ ∈ (,λ∗

), we have

dψ
′′(t) – cψ ′(t) + rψ(t)

[
 + aφ(t – cτ) + aϕ(t – cτ) – aψ(t – cτ)

] ≤ .

From all of the above argument, we see that � = (φ(t),ϕ(t),ψ(t)) is an upper solution of
() for small enough λ ∈ (, λ̂), where λ̂ = min{λ∗

 ,λ∗
,λ∗

}. �

Lemma  Assume that D > , Di >  (i = , , ), and () hold, then �(φ,ϕ,ψ) is a lower
solution of system ().

Proof If t ≤ t,

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]
= .

If t > t + cτ,

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

≥ –dελ
e–λt – cελe–λt + r

(
k – εe–λt)( – a

(
k – εe–λt)

– a(k + ε) – a(k + ε)
)

=: I(λ).

Obviously,

I() = r(k – ε)
(
 – a(k – ε) – a(k + ε) – a(k + ε)

)

= r(k – ε)(aε – aε – aε).

aε – aε – aε > ε implies that I() >  and there exists λ∗
 >  such that

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≥ ,

for all λ ∈ (,λ∗
).

If t < t ≤ t + cτ,

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

]

≥ –dελ
e–λt – cελe–λt + r

(
k – εe–λt)( – a(k + ε) – a(k + ε)

)

=: I(λ).
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It is easy to see that I > I >  and

dφ
′′(t) – cφ′(t) + rφ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) – aψ(t – cτ)

] ≥ .

Similarly, for all t ∈ R, there exists a λ
∗
 > , such that for λ ∈ (,λ∗

), we have

dϕ
′′(t) – cϕ′(t) + rϕ(t)

[
 – aφ(t – cτ) – aϕ(t – cτ) + aψ(t – cτ)

] ≥ .

For all t ∈ R, there exists a λ
∗
 > , such that for λ ∈ (,λ∗

), we have

dψ
′′(t) – cψ ′(t) + rψ(t)

[
 + aφ(t – cτ) + aϕ(t – cτ) – aψ(t – cτ)

] ≥ .

From all of the above arguments, we see that �(φ,ϕ,ψ) is a lower solution of () for
small enough λ ∈ (, λ̂), where λ̂ = min{λ∗

,λ∗
,λ∗

}. �

Theorem  If D > , Di >  (i = , , ), and () holds for every c > c∗ = max{√
dr,


√

dr( + aM), 
√

dr( + aM + aM)}, system () has a traveling wave solution
with speed c connecting the trivial steady-state solution (, , ) and the position steady
state (k, k, k).
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