Du and Xu Boundary Value Problems (2016) 2016:46 0 BOU nda ry Value PrOblemS
DOI 10.1186/513661-016-0556-0 a SpringerOpen Journal

RESEARCH Open Access

Traveling wave solution for a B
reaction-diffusion competitive-cooperative
system with delays

Zengji Du” and Dongcheng Xu

Dedicated to Professor Weigao Ge

"Correspondence:

duzengji@163.com Abstract

School of Mathematics and ) . . . . . .
Statistics, Jiangsu Normal University, This paper investigates the existence of traveling wave solution to a three species
Xuzhou, Jiangsu 221116, PR. China reaction-diffusion system with delays, which includes competitive relationship,

cooperative relationship and predator-prey relationship. By using the method of
upper-lower solutions, the cross iteration method and Schauder’s fixed point
theorem, the existence of a traveling wave solution is obtained.

MSC: 92D25; 35K57

Keywords: reaction-diffusion system; traveling wave solution; upper-lower solution

1 Introduction
In population dynamics, Lotka-Volterra competitive, cooperative, and competitive-coop-
erative systems with diffusion have received great attention and have been studied ex-
tensively [1-7]. To illustrate and predict some ecological phenomena, various types of
predator-prey model described by differential systems were proposed [8—10]. In studying
the dynamics of predator-prey systems, one of the important topics is the existence of
traveling wave solutions [11-19].

In this paper, we are concerned with the existence of traveling wave of the following
competitive-cooperative system:
durul) dl% + i (x, ) (1= anu (x, £ — 1) — anuz(x, £ = 112)
—azuz(%,t — T13)),

2
Buplel) _ g 00D 4 14y (3, £)(1 — g1y (3, £ — To1) — A ttp (¥, £ — Top)

at

+ ay3uz(x, L — T23)),
dusz(x,t) 82 u3 (x,1)
S = dy =+ rsus(x, 1) (1 + azin (x, £ — T31) + asata (%, — T32)

— assuz(x,t — T33)),

where all parameters d;, r;, a; are positive constants, 7;; > 0, i,j = 1,2, 3, and the quantities
uy (%, £), ua(x, £), us(x, t) can be interpreted as the population densities of the three species
at space x and time ¢.
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It is necessary to point out that, when any one of the quantities u;(x,t), us(x, £), and
us(x, t) are taken as zero, some cooperative system or competitive system can be derived
from system (1), such as, when u; = 0, system (1) becomes the two species cooperative
system

at
dus _ g, Puntes 2)

{ Y d, JL(“) + 1ot (%, £)(1 — Ao tto (%, t — Taa) + dozuz (%, t — T23)),
ot x2

+ r3ug (%, £)(1 + asata (%, £ — T32) — azsuz(x, t — T33)),

considered by Huang and Zou [2]. When u; = 0, system (1) is reduced to the two species
predator-prey system

3)

dug

{ by _ g, T lel)  pyy (x, £)(1 = ann (x, £ — i) — ansus (x, £ — 113)),
ot

0 )
= dsi;sTx) +r3uz(x, £)(1 + aziun (%, £ — T31) — assuz (%, t — 733)),

studied by Zhang and Li [17]. When u3 = 0 system (1) is reduced to the two species com-

peting system

at (4)

- d, BL(M) + 1ot (%, £)(1 — amun (%, £ — To1) — anatin (%, £ — T22)),

. 2
: b — g dul—(x’t) + (o, ) (1 — anu (%, £ — ™) — anus (X, t — 112)),
ot

discussed by Lv and Wang [12].

This paper is organized as follows. In Section 2, we introduce some notations and lem-
mas which will be essential to our proofs. By applying the cross iteration method and
Schauder’s fixed point theorem, we establish the existence result of traveling wave so-
lutions for a general delayed reaction-diffusion system. In Section 3, by using the results
given in Section 2 and constructing a pair of upper-lower solution, we obtain the existence
of traveling wave solutions to the system (1).

2 Preliminaries

For convenience, we first give some notations and definitions of traveling wave solutions.
In this paper, we shall use the standard partial ordering in R®, namely, for u = (u3, uy, us)T,

v=(v,vo,v3) , wedenote u <vifu, <v;, i=1,2,3; u<vifu<vbutu+#v;and u < v if

u<vbutu; #v; i=1,2,3.Ifu #v, we denote (u,v] = {we R® :u<w <v}, [u,v) = (we R®:

u<w<v)and [u,v] = (we R®:u <w < v}. We use | - | to denote the Euclidean in R® and

| - || to denote the supremum norm in C([-1,0], R3).

Definition 1 ([15, 18]) A traveling wave solution of system (1) is a special solution of the
form u(t,x) = ¢(x + ct), v(t,x) = p(x + ct), w(t,x) = ¥ (x + ct), where ¢, 9, € C>(R,R) are
the wave profiles that propagate through the one-dimensional spatial domain at a constant
velocity ¢ > 0.

To show the existence of a traveling wave solution to system (1), we first discuss the
following general reaction-diffusion system:

dulst) _ gy WD) £ (1, 1), vl 2), Wi, 1)),

av;;t d 3 vxt +fz(1/l(xr V(x, ) w(x, t)) (5)

E)wdict d 32th +f3(u(x,t) V(x,t) w(x, t))
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Substituting u(x, £) = ¢(x + ct), v(x, ) = @(x + ct), wx, £) = ¥ (x + ct) into (5) and denote
the traveling wave coordinate x + ct still by ¢, then (5) has a traveling wave solution if and
only if the following system:

d19"(t) — cd'(t) + far (P2, 01, Vi) = 0,
dZ(p//(t) - 690/([) +ﬁ2(¢t: Dts 1#:) = 01 (6)
dzy"(t) — e’ (t) + fe3(br 01, Y1) = O,

with asymptotic boundary conditions

Jim o) = ¢, Jim () =¢-, Jim y(6) =y,

7)
lim ¢(t) = ¢, lim <.0(t) =@+ tEIJrnoQW(t) =V

t—+00 t—+00

has a solution (¢(¢), ¢(¢), ¥ (¢)) on R, where (¢_, ¢_, ¥_) and (¢,, ¢,, ¥,) are steady states of
(1) and the functions f;; : X, = C([—ct,0],R?) — R3, i =1,2,3, are defined by

filg 0. 9) = fil 9%, 95, ¥°), #“(s) = ¢(cs),

@“(s) = p(cs), Ve(s) = ¥(cs), sel[-t,0].

Without loss of generality, we can assume
(¢—’§0—’1ﬁ—) = (07 O; 0)7 (¢+t (‘) I/f+) = (klrkZ’in)’

and we seek for traveling wave solution connecting these two steady states. In order to
address traveling waves of (6) and (7), we make the following assumptions:
(A1) £(0,0,0) = fi(ky, ko, k3) = 0 for i = 1,2,3;
(A2) there exist three positive constants L; > 0 (i = 1,2, 3), such that
[fi(@1, 01, ¥1) = fi(¢2, 02, ¥2)| < Lull @ = W,
Va1, 01, Y1) — fol 2, 02, ¥2)| < Lol @ — W,
f3(d1, 01, ¥1) — f3 (@2, 02, ¥2) | < Lsl| D — W],
for P = (¢11 ¥1, 1/’1), v = (¢2) (0271ﬁ2) € C([—T,O],RS) Wlth 0 =< d)i(s) =< Mlv 0 < QDi(s) =< MZ;
0 < ¥;(s) < M3, i =1,2, where M; > k; (j = 1,2, 3) are positive constants.

The reaction terms satisfy the following partial quasi-monotonicity conditions (PQM),
different from [15, 18, 19].

(PQM) There exist three positive constants S, 2, B3 > 0 such that

Ja(br,01,91) — fa (b2, 91, ¥1) + Bi[d1(0) — $2(0)] = 0,

Ja(pn, 91, ¥1) —fa(ér, 02, 92) <0,

S (@101, 91) — fea (1, 02, ¥2) + Ba[01(0) — 2(0)] = 0,
Joa (@1, 01,91) = fea 2, 01, 91) <0,

Ses(@1, 91, ¥1) = fea (b1, 02, ¥2) + B3[¥1(0) — ¥2(0)] = 0,
Je3(@1, 01, 91) = fes (2,91, ¥1) <0,

(8)
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where ¢;, i, ¥ € C([-7,0],R), i = 1,2, 0 < ¢y(s) < 1(s) < My, 0 < @a(s) < p1(s) <
M27 0 =< l/fZ(S) =< l/fl(s) < MS’ s e [_t’ O]

We need the following definition of upper and lower solutions.

Definition 2 ([15, 18]) A pair of continuous functions p = (¢, @, ¥) and p=(¢,0 V) are
called a pair of upper and lower solutions of the system (1) if p and p are twice differentiable
almost everywhere in R and they are essentially bounded on R, and we have

dla” - Cal +ﬁ1($tr gt’ ﬂt) < 0, a.e. in R,
dry@" — @' + foo (Qt,@,wt) <0, ae. inR, (9)
ay -y +f3(@,9,¥,) <0, aeinR

and
d]?” - C?, +ﬂ1 (?ty @t’ Wt) Z 0, a.e. in R,
drg" —c¢' +fo(Pp9,¥ )20, aeinR, (10)
a3y —cy' +f3(dp@,¥,) =0, aeinR.
Let

C'k = {(¢»<P: 1vﬂ)|(0’07 O) < (¢;(P; %0) < (MI:M27M3)’f0r te R}

We shall combine Schauder’s fixed point theorem with the method of upper and lower
solutions to establish the existence of solutions. For this purpose, we need to introduce a
topology in C(R, R?).

Let i > 0 and let C(R, R®?) be equipped with the exponential decay norm defined by

@], = supe | D(t)| 5.
teRr
Define
B.(RR?) ={® e C(R,R®):|®|, < o0}

Then it is easy to check that (B,(R,R®),| - |,) is a Banach space. We shall look for the
traveling wave solution of system (6) in the following profile set:

I ((@: b, ﬂ), (5’ (2 E))

(i) ¢(t) < p(t) < P(1), 0(t) < () <), ¥ (1) < ¥ (1) < Y (t);
=1 (ii) &°[p(2) - (1)), " [B(2) — P(2)], €7 [0(2) — (1)), ™*[p(1) - @ (1)],
e’ [y (¢) — ¥ (2)], P [ (£) — ¥ (¢)] are nondecreasing for ¢ € R

It is easy to see that I'((¢, 0, ¥), (¢, @, ¥)) is nonempty, convex, closed, and bounded.

In the following, we assume that there exist a pair of upper and lower solutions
(@), (1), ¥ (1)), (p(2), p(t), ¥ (t)) of (6) satisfying the conditions (P1) and (P2):

(P1) (0,0,0) < (@(), (), ¥ (1)) < (1), #(2), ¥(8)) < (My, My, Ms), t € R.
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(P2) limy _oo(9(£), 9(2), ¥ (£)) = (0,0,0), limy_, 10 (@(2), (), ¥ (1)) = (ky, ko, k3).
Define the operators H; : C(R, R®) — C(R,R®) by

Hi(¢, 0, ¥)(8) = fei(be, 01, Vi) + BiOi(E), &, 0,9 € C(R,R),i=1,2,3, (11)
where

o), ifi=1,
0:6) = { o), ifi=2,
w(o), ifi=3,

and the constants 8; > 0 are as in inequalities (8). The operators Hj, i = 1,2, 3 satisfy the
following properties.

Lemmal Assume that (Al) and (8) hold, fort € Rwith 0 < ¢y(t) < ¢1(t) < M1,0 < ¢a(t) <
@1(t) < Ma, 0 < Yn(t) < Yn(t) < M3, then

Hi(¢2, 01, Y1) < Hi(d, o1, Y1), Hy(¢1, 91, Y1) < Hi(ér, 2, ¥2),
Hy (1, 02, ¥2) < Ho (o1, @1, Y1), Hy(é1, 01, Y1) < Ha(ga, 01, Y1),

Hs (g1, 02, ¥2) < H3(¢1, 01, Y1), Hs (g1, 01, Y1) < Hs(d2, 01, ¥1).

Proof From (8), a direct calculation shows that

Hi(¢1, 91, Y1) — Hilgho, 01, Y1) = fa (b1, 01, Y1) —fr (2, 1, Y1) + Br[01(0) — $2(0)] > 0,
Hi(¢1, 91, Y1) = Hi(1, 92, ¥2) = faa (b1, @1, Y1) = far (P1, 92, ¥2) <0,

Hy (1, 91, ¥1) — Ha (1, 92, ¥2) = fea (b1, 01, Y1) — fa (@1, 02, ¥2) + Bo @1(0) — 92(0)] = 0,
Hy (1, 91, Y1) — Ha(¢2, 01, Y1) = fea (@1, 91, Y1) — fea (2, 91, Y1) <0,

Hs (1,91, Y1) — Ha(¢1, 92, ¥2) = fes (1, 01, Y1) —fes (b1, 02, ¥2) + B3[¥1(0) — ¥2(0)] > 0,
H3 (1, @1, ¥1) — H3(¢2, 01, Y1) = fea (1, 01, Y1) = fea (b2, 01, Y1) < 0. O

From the definitions of H;, Hy, and H3 in (11), system (6) can be rewritten as

dif]'(t) — c0;(t) — Br6;(t) + Hi(p, 0, ¥)(£) =0, i=1,2,3. (12)
We define
c—+/c+ 4B d; c++/c+4pd;
A’l = —’ )\‘2 = —’
2d1 2dl
c—+/c2 +4Bydy c++/c+4Byd,
}‘_3 =, )\.4 = )
2d2 2d2
. c—+/c2+4p3d; . c++/c+4p3d;
5= ) 6 = .
2d3 2d3
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For (¢, 9, V) € Cr(R, R®), we define F = (Fy, Fy, F3) : Ci(R,R?) — C(R, R®) by

Fi(¢, ¢, ¥)(2)

t +00
! [ / P, (b, 0, 0)(s) ds + / 2 (6, 0,9)(6) ds],
_ t

T dOa - )
Fy(¢, 0, 9)(t)
t +00
) m UOO ¢y (9,0, Y)(s)ds + / I (¢, 0, 9)(s) ds},

FB(¢: @, 170)(’f)

1 t +00
= 40 i) [/_Oo &SI H3 (¢, ¢, )(s) ds +/¢ e Hy (¢, 0, ¥)(s) ds:|.

It is easy to see that F;(¢, ¢, V) (i = 1,2, 3) satisfy
diF;/(¢; (2 Iﬁ) - CFZ/(QS, ®, ‘ﬁ) - ﬂiFi(¢7 @, W) + Hi(¢; @, 1,”) =0. (13)
Corresponding to Lemma 1, we have the same results of F.

Lemma 2 Assume that (A2) holds, then F = (Fy, F,, F3) is continuous with respective to the
norm | - | in B, (R, R?).

Lemma 3 Assume that (A2) and (8) hold, then
F(F ((Q’ 2 ﬂ)’ (5’ @, W))) cr ((fr [ ﬂ)’ (5: @, J)) .
Lemma 4 Assume that (8) holds, then

F: F((¢: o), (51 @E)) g F((Q’ () ﬂ)r (5’ [ E))

is compact.

Remark 1 The proofs of Lemmas 2-4 are similar to those of Lemmas 3.4-3.6 in [19], and

we omit them here.

Theorem 1 Assume that (Al), (A2), and (8) hold. Suppose there is a pair of upper and
lower solutions ® = (¢, 9, V), and W = (9,9, ¥) for (6) satisfying (P1) and (P2), then system
(1) has a traveling wave solution.

Proof Combining Lemmas 1-4 with Schauder’s fixed point theorem, we know that there
exists a fixed point (¢*(2), 9*(¢), ¥*(¢)) of F in I'((¢, ¢, ¥), (¢, @, ¥)), which gives a solution
of (6).

From (P2) and the fact that

(010’ O) = (f: f} ﬂ) =< (¢*(t)7 <P*(t)7 I/f*(t)) = ($¢ ¢7 W) = (M1¢M2¢M3):
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we know that

Jim (6" (6), ¢ (0), ¥*(2)) = (0,0,0); (¢ (0, 0" (1), ¥(8) = (ki ko, o).

lim
t—>+00
Therefore, the fixed point (¢*(£), o*(¢), ¥*(¢)) satisfies the asymptotic boundary condi-
tions (7). a

3 Existence of traveling waves
In this section, we will apply Theorem 1 to establish the existence of traveling wave solu-

tions for system (1). Assuming that

an ap a3 1 an a3
D= a1 dyy dAz3| > 0, D1 =1 ary dz3| > 0,
ds  das dss 1 a3 as
an 1 a3 an ap 1
D2 = |41 1 ars| > 0, D3 =|dy1 dr 1| >0.
a1 1 as a1 ax 1

We are interested in looking for a traveling wave solution of (1) connecting (0,0, 0) and
a positive equilibrium (ky, ky, k3). Here k; = % (i = 1,2,3) are the roots of the following

equations:

ﬂukl + 6112/(2 + 6113/(3 = 1,
ﬂ21k1 + 6122/(2 + ﬂzgkg = 1, (14)
ﬂglkl + ﬂgzkz + ﬂggkg =1.

Substituting s = x + ¢t into (1) and denoting the variable s still by ¢, then the corresponding
wave profile equations are

di¢"(t) — cd'(t) + ndp ()1 — an@(t — ) — ane(t — 112) —a¥(t — 113)) = 0,
dar" (t) = o' (t) + 1o () (1 — an@(t — T21) — A (t — Toz) + a3 ¥ (t — 723)) =0, (15)
Az " (t) — e’ (£) + 3y ()1 + azip(E — T31) + az@(t — T32) — asz (£ — 133)) = 0.

Lemma 5 Assume that t; (i =1,2,3) are small enough, then the functions (fi,f,f3) satisfy
(PQM).

Proof For any ¢1(s), ¢2(s), p1(s), 92(5), ¥1(s), ¥2(s) € C([-7,0], R),
(i) 0=¢n(s) < ¢i(s) =M1, 0 < gas) < pu(s) <My, 0 < ¥a(s) < Y1(s) < M3, s € [-7,0];
(ii) eP15((s) — Pa(s)), €5(g1(s) — @a(s)), and e(y1(s) — Y5 (s)) are nondecreasing in
s € [-1,0].
If 741 is small enough, we can choose f; > 0 satisfying

Ja(dr, 1, Y1) —fa(d2, 1, Y1)
= r1¢1(0)(1 - ane(-m1) — a1291(-712) — arzy(-713))

- r1¢2(0)(1 - anda(-tu1) — a@1(-112) — a13¥1(-113))
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=11(41(0) = $2(0)) — anri (¢1(0)p1(=n1) — ¢2(0)¢2(~7n1))

— a1 (=112) (1(0) — $2(0)) — arzr1 Y (—113) (41(0) — $2(0))
> (1 — @M, — aizMs — an M) ($1(0) — ¢2(0))

- anri¢(0)(¢1(-n) — ¢2(-m11))
> r1(1 - a1Ms — a13Ms — anM — anMieP™) (¢1(0) - ¢2(0)).

Let
prz=-n (1 — apMy — aizsMz — anM; — ﬂuMleﬁ”u),
then it is easy to show that fy; (¢1, @1, Y1) — fua (@2, 1, ¥1) + B1(¢1(0) — $2(0)) > 0, and

Ja(on, 1, v1) —fa(dr, @2, ¥2)
= 11¢1(0)(1 - angn(-m1) — a1 (-112) — a3 Y1 (-113))
- 11$1(0)(1 - angi(-m1) - a12¢2(-712) — a1z Ya(—113))
= 1191(0)(a12 (02(-112) — @1(~112)) + a3 (Y2 (—113) — Y1 (-113)))
<0.

For f.,, we have

Jea (@1, 01, Y1) = fea b1, 02, 92)
=r201(0) (1 - an¢1(~721) — 2291 (~T22) — G231 (~123))
= 12¢2(0) (1 — an 1 (~Ta1) — A2202(~T22) — A23Y2(~T23))
=72(¢1(0) = 92(0)) — @272 (91(0)p1(~721) — 92(0)¢p1 (—721))
= a7 (91(0)@1(~T22) — 2(0)@2(~122))
— az3r2(@1(0) Y1 (—T23) — 92(0) 2 (—T23))
> ra(1 — anMy)(91(0) — 2(0)) — azara (92(0)¢1 (= 22) — ©2(0) 2 (~T722)
+ (1(0) = 92(0)) 1(—122)) + @372 (92(0) Y1 (=T23) — 92(0) Y2 (~Ta3)
+ (1(0) — 02(0)) Y1(~723))
> r1(1 - anMy — arsMs — an My — arnMre™™2 — ay3Mse™3) (¢1(0) — 2(0)).

Let By > ro(1 — an M — axsMs — anMy — arMoeP2™2 — ay3 Msef3™3), then
S (b1, 01, 91) — fa (@1, 02, ¥2) + B2 @1(0) — 92(0)] = 0
and

Jea b1, 01, Y1) — feo (b2, @1, Y1)

= 1201(0) (1 — an1(~t21) — a22¢1(~T22) — A3 Y1 (—T23))
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—1201(0)(1 = an ¢ (~Ta1) — a1 (~T22) — A23 Y1 (~T23))
= r201(0)a1 (¢2(—721) — P(-721))
<0.

In a similar way for f,3, we let B3 > r3(1 — azzsMs — azMze?3™3), then f3(¢1, 01, Y1) —

Jea(d1, 02, ¥2) + B3[1(0) —¥2(0)] > 0, and fe3(1, @1, ¥1) —fe3 (b2, 91, 1) < 0. This completes
the proof. d

Let

c>c* = max(Z\/ dli"l, 2\/6127'2(1 + 6l23M3), 2\/d3}"3(1 + ﬂglMl + ﬂggMg)).
There exist A; >0 (i =1,3,5) so that

dl)\% — C)»l +r = 0,
dg)»% - C)Lg + 7'2(1 + 6l23M3) = O,

dz?né —chs + r3(1 + az My + azoM,) = 0.
We find that there exist &; > 0 (i = 0,1,2,3, 4,5, 6) satisfying

anéi — ain€q4 — ai13€¢ > €9,
—a21€ + 283 — A23E5 > €0,
as1&€y —azp€sz + €5 > €Eo, (16)
&y —d1E3 — A13€5 > €0,

—ai €1 + €4 + a13€5 > &,

1-ks +eg> 0.

For the above constants and suitable constants ¢; > 0 (i = 1,2, 3, 4,5, 6), we define the con-
tinuous functions ® = (¢(2), @(2), ¥ (¢)) and W = (@(2), p(2), ¥ (¢)) as follows:

a(t) _ e)hltv t S tl) ¢(t) _ 07 t S t2r
ki+ee ™, t>t, = ki—exe™, t> 1,
_ e, t<ts, 0, t<ty,
o) = Yy P = Y’
ko + e3e7,  t>ts, ky —ege™,  t>ty,
A5l
_ est, t<ts, 0, t <tg,
(1) = - (1) = -
4 ks + ese7, t>ts, v ks —ege™, t>t,

where A > 0 is a constant to be chosen later and
min{tly t3, t5} - Cmax{fij, l’] =1, 2: 3} > max{tZ, ta, t6}’ ty > te.

Lemma 6 Assume thatD >0,D;>0 (i =1,2,3) and (16) hold, then ® = (¢(t),9(t), ¥ (t)) is
an upper solution of system (15).
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Proof When t > t; + ctn1, o(t) = ky + £1e7*, we have

A" () - cd () + n(O)[1 - and(t — ctn) — ang(t — ctiz) — a3 ¥ (¢ - ci3)]
=dieir’e ™ + cerhe ™ +ri(ky +e1e7) (1—an (ki + 816_’\(“”11))
—ap (k2 _ 84e—>»(t—0112)) — a3 (k3 _ 86e—k(t—cna)))

= 11 ()\.).
Obviously,

L(0) = ri(ky + &1) (1 — an (ki + £1) — ara(ky — £4) — ars(ks — €6))

=ri(ky + &1)(—an e + aneq + arzse).
It is easy to see that /;(0) < 0 and there exists A} > 0, such that

g’ () - cd () + (&)1 - and(t - ctn)) — ang(t — c1iz) — az ¥ (¢ - c113)] < 0,

for all A € (0,A).
If t <1, ¢(t) = 1%, we have

g’ () - cd () + ()1 - and(t - ctn) — ang(t — c11z) — a3 ¥ (¢ - cti3)]

<d )\2 ME_en et 4 ettt = 0.
Ift; <t <t + cty1, then we have

A" (t) — ¢ (t) + n(B)[1 - and(t — ctn) — ang(t - cr) — a Y (t - cus)]
=dier e +cere™ + 1y (ko + ele_“) (1 — apeta-em)
—ain (k2 — 84,6_“) —ais (k3 — 86€_M))

= 12()\.).

For small enough 73, there exists & (0 <&} < - ) such that e M1 > 1 — ¥, Thus we

k +61
have

5(0) = ri(ks + &1)(1 - ane =) — ay, (ky — e4) — ars (ks — €))

ri(ki + &1 (ﬂukl +a12€q +di3€e —ane e (K + 81))
< ri(ky + &1) (anks + anes + arze — an (1 - &) (ky + 1))

)(
rlk + & ( g0 + aney (ki +€1))

N

< 0.
Therefore, there exists a A}, such that for all A € (0,13), we have

A" () - cd () + (&)1 - and(t — ctn) — ang(t — ctiz) — a3 ¥ (¢ - criz)] < 0.
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From the above argument, we see that
g () - cd () + (&)1 - and(t - ctn)) — ang(t — c1z) — az Y (¢ - c113)] < 0,

for small enough A € (0, ;), where A, = min{A%, A3).
When t > t3 + cToa, @(t) = ko + 83¢7*, we have
dy@" () — @' (t) + 1@ ()1 — and(t — cta1) — AP (t — ct22) — azs P (¢ — cTa3) |
<dye3)*e™M + ceshe™ +r3(ky + e367M) (1 - an (ki — e2e7)
—a (k2 + €3€_M) + 6{23(/(3 + 85))

= 13 (}\.)
Obviously,

13(0) = r3(ky + £3) (1 — an (ki — £2) — az(ky + £3) — ar3(ks + £5))

= r3(ky + &3)(an1€2 — az2€3 + A2385).
It is easy to see that /3(0) < 0 and there exists A} > 0, such that
dy @ (t) = @' (£) + ra@(t)[1 — an (¢ — cT1) — a2 @(t — cTo2) — a3 (£ — cT23)| <0,

for all A € (0,A3).
If t < t3, 9(t) = "3, we have

@ (£) — c@'(£) + ra@()[1 — an (¢ — cta1) — an@(t — cT22) — Az (£ — cTa3) |

< d2)\.§€k3t - ckge“t + VQ@ASt(l + day3M3) = 0.
If t3 <t < t3 + cTy9, then we have

dy@" () — @' (£) + ra@(t)[1 - an (¢ — cTo1) — a2 @(t — cToa) + A3y (£ — CTa3)]
<dpesh’e™ + ceshe ™ + 1y (ky + 367 (1 - an (ky — e2¢7)
— a3 2) 1 gys (ks + e5))

= 14()\,)

For small enough 7y, there exists €5 (0 < &5 < 7) such that €322 > 1 — ¢4, Thus we

ﬂzz(kg+83
have
1,00) < raky + £3) (1 — an(ky — £3) — ane™ 32 (ky + £3) + a3 (ks + £5))
<rylky + 83)(1 —ay (ki — &) - ﬂzz(l - 8;)(/@ +&3) + ap(ks + 85))
< ry(ky + 83)(—80 + (ky + 83)8;)

< 0.



Du and Xu Boundary Value Problems (2016) 2016:46 Page 12 of 14

Therefore, there exists a A}, such that for all A € (0,1})

dy@"(t) — @' (t) + 1@ (t)[1 — an@(t — ct1) — an@(t — cTo) + ars P (t — c123)] < 0.
From the above argument, we see that

@ (t) — @' (£) + ra@(t)[1 — an(t — cto1) — a2 P(t — cTaz) + Ar3 ¥ (£ — cT23) | <0,

for small enough A € (O,X;), where X: =min{A3, A}
Similarly, for all ¢ € R, there exists a X; > 0, such that, for A € (O,Xz), we have

dsy’ (&) — ¥ () + sy (O)[1 + an@(t — cta1) + as@(t — cts) — ass ¥ (t — ct33)] < 0.

From all of the above argument, we see that ® = (¢(£), @(t), ¥ (¢)) is an upper solution of
(15) for small enough X € (0, 1), where A; = min{)%, A3 M%) O

Lemma 7 Assume that D >0, D; > 0 (i = 1,2,3), and (16) hold, then YV (¢, ¢, V) is a lower

solution of system (15).
Proof Ift <t,,

di§"(£) — ' (2) + rip(£)[1 - ang (¢ — ctir) — a1 @(t — c112) — ars Y (¢ — c1y3)| = 0.
Ift >ty + ctn,

di19"(t) — c¢'(£) + np(D)[1 — ang(t — ct1) — ap@(t — ct12) — arz ¥ (t — cti3) ]
> —digs)’e M — cerhe™ + 11 (ki — e267) (1 - an (ki — e267*)
—a(ky + &3) — az(ks + 85))
=:I;(7).

Obviously,

I5(0) = ri(ky — £2) (1 — an(ky — £2) — arp(ka + £3) — arz(ks + €5))

= (ki — &2)(anér — 41263 — a3€s).

angz — ann€s — ai3€s > & implies that I5(0) > 0 and there exists A} > 0 such that
di¢"(£) — ' (£) + np(£)[1 — ang(t — ctuy) — a1 @(t — ciz) — arz Y (¢ — c3)| = 0,

forall A € (0,A).
Ifty <t <ty +cmy,
di¢"(£) = cd'(t) + np()[1 - ane(t — cty) — ar@(t — ct1z) — a3 Y (¢ — ¢tz
> —d1€2)L26_M - csz}»e_“ +r (k1 - Sze_M) (1 — 6112(/(2 + 83) — 6113(/(3 + 85))

::16()\.).
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It is easy to see that Is > I5 > 0 and
di g (£) — ' (£) + rip(8)[1 - ang(t — ctuy) — a1 @(t - c113) — ars Y (¢ — c1y3)| = 0.
Similarly, for all ¢ € R, there exists a XZ > 0, such that for A € (O,X;), we have
do" () — ¢/ (£) + r29(8)[1 — an(t — cta1) — A229(t — cT22) + Ga3 ¥ (£ — cT23) | > 0.
For all ¢ € R, there exists a XZ > 0, such that for A € (O,XZ), we have
dsy"(£) — e/ () + rs Y (D)1 + am@(t — cT31) + asap(t — cTs2) — assy (£ — ct33)] > 0.

From all of the above arguments, we see that W(¢, ¢, ) is a lower solution of (15) for
small enough X € (0,%,), where 4, = min{Aj, A%, AZ} O

Theorem 2 [f D >0, D; >0 (i = 1,2,3), and (16) holds for every ¢ > ¢* = max{2+/dyr,
2/ drry (1 + arzMs), 2+/dsrs(1 + asi My + az, M)}, system (1) has a traveling wave solution

with speed ¢ connecting the trivial steady-state solution (0,0,0) and the position steady
state (ky, ko, k3).
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