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Abstract

Introduction: Immunohistochemical Ki67 labelling index (Ki67 LI) reflects proliferative activity and is a potential
prognostic/predictive marker of breast cancer. However, its clinical utility is hindered by the lack of standardized
measurement methodologies. Besides tissue heterogeneity aspects, the key element of methodology remains
accurate estimation of Ki67-stained/counterstained tumour cell profiles. We aimed to develop a methodology to
ensure and improve accuracy of the digital image analysis (DIA) approach.

Methods: Tissue microarrays (one 1-mm spot per patient, n = 164) from invasive ductal breast carcinoma were
stained for Ki67 and scanned. Criterion standard (Ki67-Count) was obtained by counting positive and negative
tumour cell profiles using a stereology grid overlaid on a spot image. DIA was performed with Aperio Genie/Nuclear
algorithms. A bias was estimated by ANOVA, correlation and regression analyses. Calibration steps of the DIA by
adjusting the algorithm settings were performed: first, by subjective DIA quality assessment (DIA-1), and second, to
compensate the bias established (DIA-2). Visual estimate (Ki67-VE) on the same images was performed by five
pathologists independently.

Results: ANOVA revealed significant underestimation bias (P < 0.05) for DIA-0, DIA-1 and two pathologists’ VE, while
DIA-2, VE-median and three other VEs were within the same range. Regression analyses revealed best accuracy for the
DIA-2 (R-square = 0.90) exceeding that of VE-median, individual VEs and other DIA settings. Bidirectional bias for the
DIA-2 with overestimation at low, and underestimation at high ends of the scale was detected. Measurement error
correction by inverse regression was applied to improve DIA-2-based prediction of the Ki67-Count, in particular
for the clinically relevant interval of Ki67-Count < 40%. Potential clinical impact of the prediction was tested by
dichotomising the cases at the cut-off values of 10, 15, and 20%. Misclassification rate of 5-7% was achieved,
compared to that of 11-18% for the VE-median-based prediction.

Conclusions: Our experiments provide methodology to achieve accurate Ki67-LI estimation by DIA, based on
proper validation, calibration, and measurement error correction procedures, guided by quantified bias from reference
values obtained by stereology grid count. This basic validation step is an important prerequisite for high-throughput
automated DIA applications to investigate tissue heterogeneity and clinical utility aspects of Ki67 and other
immunohistochemistry (IHC) biomarkers.
* Correspondence: arvydas.laurinavicius@vpc.lt
1Department of Pathology, Forensic Medicine and Pharmacology, Faculty of
Medicine, Vilnius University, Vilnius, Lithuania
2National Center of Pathology, affiliate of Vilnius University Hospital
Santariskiu Clinics, Vilnius, Lithuania
Full list of author information is available at the end of the article

© 2014 Laurinavicius et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

https://core.ac.uk/display/192923183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:arvydas.laurinavicius@vpc.lt
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Laurinavicius et al. Breast Cancer Research 2014, 16:R35 Page 2 of 13
http://breast-cancer-research.com/content/16/2/R35
Introduction
Rapid development of digital pathology technologies, en-
abling high-resolution scanning of microscopy slides,
brings great efficiencies in data storage, transfer and
usage in research, clinical practice and education [1-3].
The most unique and significant benefit for pathology
practice and research can be expected from digital image
analysis (DIA) applications, opening new perspectives for
pathology to serve the needs of personalized medicine, by
providing more accurate and reproducible measurements
for tissue-based diagnosis, prognosis and prediction [4,5].
Microscopic images, used in pathology, contain an enor-
mous amount of data that can be retrieved by numerous
methods available to visualise tissue, cell and molecular
components, scan and process the images, generating rich
multi-parametric data of broad dynamic range. In a
broader context of biology, the quest for quantitative mi-
croscopy, with support of bio-image informatics, raises
the perspective that the days of manually chosen “repre-
sentative” images are numbered and such images will be
replaced by quantitative measures based on the underlying
image data [6]. Similarly, pathology is becoming a quanti-
tative or analytical discipline and has to adopt both bene-
fits and obligations that come together [7].
The most immediate benefits of DIA come with in-

creased capacity, precision and accuracy, compared to vis-
ual evaluation or counting, used in pathology diagnosis
and research. While the capacity and precision (reproduci-
bility and repeatability) aspects are rather obvious, the con-
cept of accuracy (objectivity, correspondence to ground
truth, criterion standard or reference values) is less familiar
to anatomic pathologists and is frequently confused with
the reproducibility aspect. This is probably due to the fact
that anatomic pathology has been a qualitative and semi-
quantitative discipline for many years, while pathology
diagnosis itself was seen as the ground truth in medicine.
Therefore, reproducibility rather than accuracy of path-
ology diagnosis or evaluation was mostly the focus. On the
other hand, targeted therapies should be validated against
and along with specific biomarker tests, leading to the de-
velopment of standard testing procedures and clinically
validated cut-off values. The validated tests and therapies
are considered clinically useful; however, usefulness should
not become a substitute for accuracy or objectivity [8].
Standardization of DIA for optimal use in pathology

involves many aspects - from tissue processing, sam-
pling, staining, scanning, to DIA settings and proper test
validation requirements, as extensively reviewed [8,9].
Although no studies have performed a full scale investi-
gation of every aspect of the DIA process, the combined
evidence shows that DIA is able to reproduce data at an
acceptable level, with no more variability than manual
assessment using conventional microscopy. Meanwhile,
validation of DIA has been performed by comparing
digital results with manual estimates, either quantitative
or semi-quantitative, or by comparing DIA with another
form of criterion standard, for example, fluorescence in
situ hybridization, or by comparing DIA with clinical
(often prognostic) information [9].
Although these validation approaches are common

and useful, a criterion standard in these studies is still
indirect and may be subject to its own bias. Ideally, to
validate and calibrate the DIA tools one should seek the
most direct reference values (RV) that answer the same
question as the algorithm is intended to do [7]. This
means that the same feature in the same image has to be
measured by an independent and most possibly objective
way; therefore, stereologically sound methods have to be
re-introduced to serve the validation and quality assur-
ance of DIA tools; in other words, the DIA tools have to
produce stereologically valid results [7,9].
Most useful DIA applications in pathology can be ex-

pected today in the area of immunohistochemistry (IHC),
a widely-used and relatively inexpensive technology, enab-
ling a broad spectrum of tissue-based biomarkers for per-
sonalized therapies; therefore, raising requirements for
IHC quantification and accuracy. Not surprisingly, many
DIA studies have been targeting IHC markers in breast
cancer and other pioneering areas of personalized therap-
ies. As an example, a paradox of an outstanding issue of
the cell proliferation marker Ki67 in breast (and other)
cancers can be recognized: it is regarded as an important
prognostic and predictive factor; however, its clinical util-
ity is hindered by the absence of harmonized methodology
of the test [10,11]. Besides the need for accurate enumer-
ation of the proportion of Ki67-positive tumour cell pro-
files (Ki67 labelling index - Ki67 LI), the issue is further
complicated by marked intra-tumour heterogeneity of
Ki67 expression in many cases, therefore, demanding
standardized sampling of the tissue for the analysis. Al-
though DIA is welcomed, current clinical recommenda-
tion asks pathologist to score at least 1,000 cells while 500
cells would be acceptable as the absolute minimum [11].
Gudlaugsson et al. [12] have recently compared the re-

producibility and prognosis prediction accuracy of differ-
ent techniques for measurement of Ki67 LI in breast
cancer. Two pathologists performed global subjective
impression assessment of Ki67 positivity by rapidly scan-
ning/estimating the percentage of Ki67-positive nuclear
profiles. Secondly, accurate subjective counts were per-
formed by first identifying hot-spots of Ki67 expression
on a whole section at low magnification; in the hot-spot
with the subjectively highest Ki67 expression, the Ki67
LI was assessed by two pathologists independently. The
third method involved computerized interactive mor-
phometric (CIM) assessment to overcome selection bias.
Finally, the DIA was performed on 2 to 10 square areas
with the subjectively estimated highest Ki67 LI. The
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authors concluded that Ki67 LI by DIA, but not subject-
ive counts, was reproducible and prognostically strong.
The CIM was also highly reproducible between the two
pathologists, but no direct (image-based) comparison of
the CIM and DIA was stated in this report.
We concur with the notions that validation of DIA

tools is a multi-step process to consider all potential
sources of variation. Presuming that pre- and analytical
IHC variation needs to be dealt with by routine quality
assurance processes, the DIA methods add unique pro-
cesses of slide scanning, region of interest selection, object
segmentation, characterization, enumeration and evalu-
ation. Yet, it is hardly possible to properly address all as-
pects in one study. With the aim to develop a sound DIA
validation and calibration methodology, we designed our
experiment to test and improve the accuracy of Ki67 LI
estimation by automated DIA on preselected tissue micro-
array (TMA) Ki67 IHC images, with the ground truth ob-
tained by counting tumour cell profiles using a stereology
test grid of systematically sampled frames. We therefore
minimized the impact of the tissue heterogeneity and IHC
variability, aspects to be addressed separately. In addition,
we evaluated the accuracy of visual assessment (impres-
sion) of five pathologists on the same images, to simulate
the widely used practices to test DIA results against visual
estimates or their averaged values.

Materials and methods
Population
This study was performed on TMA images from 164 fe-
male patients with an invasive ductal carcinoma of the
breast, treated at the Oncology Institute of Vilnius Univer-
sity and investigated at the National Center of Pathology,
during the period of 2007 to 2009. The study was approved
by the Lithuanian Bioethics Committee. The patients’ con-
sent to participate in the study was obtained.

Tissue preparation
The TMAs were constructed, stained and scanned as de-
scribed previously [13]. Briefly, one millimetre-diameter
cores were punched from tumour areas randomly se-
lected by the pathologist and paraffin sections were cut
at 3 μm-thickness.

Immunohistochemistry (IHC)
IHC for Ki67 was performed with a multimer-technology
based detection system, ultraView Universal DAB (Ventana,
Tucson, AZ, USA). The Ki67 antibody (clone MIB-1;
DAKO, Glostrup, DK) was applied at a 1:200 dilution for
32 minutes, followed by the Ventana BenchMark XT auto-
mated immunostainer (Ventana) standard Cell Conditioner
1 (CC1, a proprietary buffer) at 95°C for 64 minutes.
Finally, the sections were developed in DAB at 37°C
for eight minutes, counterstained with Mayer’s hematoxylin
and mounted.

Image acquisition
Digital images were captured using the Aperio Scan-
Scope XT Slide Scanner (Aperio Technologies, Vista,
CA, USA) under 20x objective magnification (0.5 μm
resolution). One TMA spot image per patient was used
for the study.

Quantification with stereology test grid
RV were obtained by marking Ki67-positive and negative
tumour cell profiles, using a stereological method for 2D
object enumeration [14,15] implemented by the Stereol-
ogy module (ADCIS, Caen, France) with a test grid of
systematically sampled frames (frame size - 125 pixels,
spacing of frames - 250 pixels) overlaid on a spot image
in ImageScope (Aperio Technologies, USA), Figure 1.
The percentage of Ki67 positive tumour cell profiles estab-
lished by the test grid estimation (Ki67-Count) was calcu-
lated as 100*Ki67-positive nuclear profiles/(Ki67-positive
nuclear profiles + Ki67-negative nuclear profiles). To test
the degree of uncertainty of the RV, inter-observer vari-
ation was estimated based on Ki67-Count values produced
by three observers (Ki67-Count-1, 2 and 3) independently
in a subset (n = 30) of the TMA images. Since the inter-
observer variability was found to be negligible (see Results),
the RV in the whole series (n = 164) were established
by one-observer marking (Ki67-Count), splitting the
job among four observers in approximately equal pro-
portions. Estimated time to produce cell marks on the
frame grid was 30 minutes per one TMA spot image
on average but varied due to variable cellularity of the
tumour tissue. Also, the uncertainty of the RV was es-
timated through Coefficient Error (CE) computation,
according to the sampling theory [16]: this uncertainty
originates from the fact that the frame count is per-
formed on the subsampled tissue and is calculated as
CE = t.sqrt(Cg.(m/n2)) [17] with n being the number of
frames inside the tumour, m being the number of the
external sides of the set of frames in the tumour. For
the test grid (Figure 2) with a frame size of 125 pixels
and a frame spacing of 250 pixels, the value of the grid
factor Cg is 0.049. Otherwise, the value of the Student
factor t is 2 for a confidence of 95% and for an event
number greater than 30.

Visual evaluation (VE)
A global subjective impression for the Ki67 LI on the same
images was performed by five pathologists independently
and provided semi-quantitative values (Ki67-VE-1, 2, 3, 4
and 5) expressed as the percentage of Ki67-positive
tumour cell profiles. Counting was not included in the
procedure.



Figure 1 Test grid of frames from the stereology module overlaid on the TMA spot image. The left and bottom lines of a frame are
“forbidden” - nuclear profiles intersecting them are not marked. The short line marks (orange for Ki67-positive, green for Ki67-negative tumour cell
nuclear profiles) are produced manually by an observer. Total numbers and Ki67 LI are computed by the software at the end of the procedure.
TMA, tissue microarray.
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Digital Image Analysis
DIA was performed with Aperio Genie and Nuclear v9
algorithms enabling automated selection of the tumour
tissue (the Genie Classifier was trained to recognize
tumour tissue, stroma and background (glass), then
combined with the Nuclear algorithm). Several calibra-
tion cycles of the DIA (named DIA-0, 1 and 2, resulting
Figure 2 Tumour area (grey) and test grid of systematically
sampled frames (orange) (a = 250 pixels, b = 125 pixels). For this
example, the number of frames is n = 6 and the number of external
segments is m = 14.
in the percentage of Ki67-positive tumour cells - Ki67-
DIA-0, 1 and 2, respectively) were performed to improve
the accuracy of the tool by adjusting the settings of the
Nuclear algorithm (Table 1). Ki67-DIA-0 was obtained
by the default Aperio settings for the Nuclear algorithm,
Ki67-DIA-1 - by “subjective” visual assessment of the
quality of the DIA results on the computer monitor;
Ki67-DIA-2 was fine-tuned based on the quantitative
bias established by statistical analyses comparing the
Ki67-DIA-1 to RV (Ki67-Count). Highly automated cali-
bration cycles were achieved by developing software to in-
tegrate the DIA outputs and statistical analysis procedures.

Statistical analysis
Accuracy of the DIA and VE with regard to the RV was es-
timated by one-way ANOVA (Duncan multiple range test
was used for pairwise comparisons), Pearson correlation,
single and multiple linear regression analyses, as well as or-
thogonal linear regression based on principal component
analysis. Agreement between individual measurements was
also estimated based on 95% confidence intervals calcu-
lated from the RV CE and visualized by Bland and Altman
plots [18]. Dependence of RV (n = 30) and VE (n = 164)
inter-observer variation on the magnitude of measurement
was visualized by plots of corresponding standard devia-
tions against the mean values of the measurements. A vari-
able degree of right asymmetry (skewness from 0.5 to 1.6)
of the parameter distribution was noted; where appropri-
ate, statistical significance of the findings was verified,
using log-transformed data. Statistical significance level
was set at P <0.05. Statistical analyses were performed with



Table 1 Nuclear algorithm settings for the DIA calibration
after the Genie classifier

Algorithm setting DIA-0 DIA-1 DIA-2

Averaging radius (μ) 1 1 1

Curvature threshold 2.5 2.5 2.5

Segmentation type Cytoplasm
rejection

Cytoplasm
rejection

Cytoplasm
rejection

Threshold type Edge threshold Edge threshold Edge threshold

Lower intensity
threshold

0 0 0

Upper intensity
threshold

220 230 230

Min. nuclear
size (μ2)

20 45 40

Max. nuclear
size (μ2)

1,000,000 1,000 1,000

Min, roundness 0.1 0.1 0.1

Min. compactness 0 0 0.2

Min. elongation 0.1 0.1 0.2

Remove light
objects

removes
no nuclei

removes
no nuclei

removes
no nuclei

Weak (1+)
threshold

210 210 229

Moderate (2+)
threshold

188 188 188

Strong (3+)
threshold

162 162 162

Black threshold 0 0 0

Edge trimming Weighted Weighted Weighted

DIA-0 (default), DIA-1 (subjective) and DIA-2 (based on quantified bias). Modified
settings are highlighted in bold.

Table 2 Summary statistics of the reference values
produced by observers, visual estimates and image
analyses (n = 30)

Variable Median Mean Std dev Std error Min Max

Ki67-Count-1 21.7 28.6 20.4 3.7 0.3 72.6

Ki67-Count-2 24 29.9 19.5 3.6 0.6 69.7

Ki67-Count-3 23 28.7 18.6 3.4 1.2 69.4

Ki67-Count-median 24 29.3 19.4 3.5 0.6 67.4

Ki67-Count-mean 23.4 29.1 19.4 3.5 0.7 66.8

Total profiles
Observer 1

331 425.7 273.7 50 85 1,098

Total profiles
Observer 2

509 590.7 385.4 70.4 143 1,863

Total profiles
Observer 3

471.5 547.2 331.9 60.6 146 1,544

Ki67-VE-1 10 18.3 15.3 2.8 5 70

Ki67-VE-2 30 40.2 29.4 5.4 2 95

Ki67-VE-3 37.5 41.4 27.7 5.1 1 90

Ki67-VE-4 20 30.2 23 4.2 4 80

Ki67-VE-5 22.5 31 24.1 4.4 1 90

Ki67-VE-median 22.5 32.5 25 4.6 2 90

Ki67-VE-mean 23.4 32.2 23.2 4.2 6.2 80

Ki67-DIA-0 16.1 19.9 12.5 2.3 2.1 50

Ki67-DIA-1 18.5 24.8 15.9 2.9 1.6 65.5

Ki67-DIA-2 22.8 29.1 15.7 2.9 9.1 68.4
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SAS 9.3 software, Microsoft Excel software (Microsoft,
Redmond, Washington, USA) and OpenOffice Calc soft-
ware (Oracle, Redwood City, California, USA).

Results
Characteristics and measurement uncertainty of the
reference value dataset
Summary statistics of the RV (n = 30) obtained by three
independent observers’ marking of the tumour cell pro-
files in the test grid are presented in Table 2, along with
the results of other measurements in this dataset for refer-
ence. No significant variance between the three Ki67-Counts
was revealed by one-way ANOVA (F = 0.08, P= 0.9217),
while strong pairwise correlation among the values was
found: r = 0.98, r = 0.98, r = 0.97 (P <0.0001). Similarly, the
total number of nuclear profiles marked did not differ signifi-
cantly, although Observer 1 tended to mark less; the total
number of nuclear profiles of Observer 1 correlated with
that of observers 2 and 3 at r = 0.94, while the latter two cor-
related at r = 0.98 (P <0.0001).
Uncertainty introduced by variance among the three

counts to produce Ki67-Count for each individual spot
was low: for the 30 spots, mean standard deviation and
mean standard error were 2.6% and 1.5%, respectively.
Of note, the five visual estimates (Ki67-VE), summarized
for the same individual 30 spots, revealed much higher
uncertainty - mean standard deviation and mean stand-
ard error were 10.9% and 4.9%, respectively. Interest-
ingly, a scatter plot of the five VE’ standard deviations
against their means (n = 164, Figure 3) uncovered non-
linear relationship reflecting higher variation in the mid-
dle of the means’ scale. Meanwhile, the positive linear
relationship between the standard deviations and the
means for the three observers of Ki67-Count was found
in the dataset available (n = 30, not shown).
Uncertainty caused by subsampling the tissue by the

test grid of frames was estimated by computation of CE
providing confidence intervals for each individual Ki67-
Count value. Overlap of the Ki67-Count confidence in-
tervals for all three and each pair of the three observers
was considered as agreement between the generated
Ki67 LI values (Figure 4). The agreement within the
same confidence interval among all three measurements
was 69%; whereas the pairwise agreement varied from
83 to 86%. The uncertainty of the RV generated was
therefore considered satisfactory. The RV for the whole
image dataset (n = 164) were based on a single observer



Figure 3 A scatter plot of the means and standard deviations of the five pathologists’ visual estimates (n = 164) with interpolation line.
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count per spot (Ki67-Count). Yet, the subsampling un-
certainty was further taken into account in the accuracy
estimates.

Accuracy of the image analysis and visual estimates with
regard to the reference values
Summary statistics of the RV, DIA and VE variables
(n = 164) are presented in Table 3. One-way ANOVA
revealed significant variance explained by the measure-
ment method overall (Figure 5, P <0.0001). Pairwise
Figure 4 The ellipses computed from the limits of the confidence inte
Observer ellipses are almost superimposed: Ki67-Count-1 limit is the blue e
tilt = 45.36°); Ki67-Count-2 limit is the orange ellipse (centre x = 27%, y
is the green ellipse (centre x = 29%, y = 29%; major axis = 70%; minor axis = 6%
comparisons (Table 4) revealed no significant bias among
the Ki67-Count and Ki67-VE-2 and Ki67-VE-3 estimates
(Duncan grouping A) or Ki67-VE-5, Ki67-VE-median and
Ki67-DIA-2 (Duncan grouping B). Meanwhile, Ki67-
DIA-0, Ki67-DIA-1, Ki67-VE-1 and Ki67-VE-4 pro-
duced significantly lower values.
Pairwise correlations (Table 5) were highly significant

(P <0.0001). Remarkably, correlation between Ki67-Count
and Ki67-DIA-0, 1 and 2 improved which each calibration
cycle from r = 0.928 to r = 0.949. Notably, Ki67-Count
rval (CI 95%) for the three independent Ki67 counts (n = 30).
llipse (centre x = 29%, y = 29%; major axis = 76%; minor axis = 6%;
= 29%; major axis = 68%; minor axis = 8%; tilt = 46.38°); Ki67-Count-3 limit
; tilt = 45.37°).



Table 3 Summary statistics of the reference values
produced by three observers with the corresponding data
of visual estimates and digital image analysis, n = 164

Variable Median Mean Std dev Std error Min Max

Ki67-Count 35.0 40.2 25.3 2.0 0.6 98.1

Ki67-DIA-2 30.1 36.5 20.2 1.6 6.4 93.0

Ki67-DIA-1 24.1 31.1 21.1 1.6 1.5 90.5

Ki67-DIA-0 20.4 25.9 18.1 1.4 2.1 85.7

Visual median 30 37.2 27.4 2.1 2 95

Visual mean 28.4 36.2 25.6 2.0 2.2 96.4

Ki67-VE-1 15 24.3 23.6 1.8 5 95

Ki67-VE-2 40 43.4 29.6 2.3 2 98

Ki67-VE-3 37.5 44.1 30.0 2.3 1 99

Ki67-VE-4 22 31.6 24.3 1.9 1 95

Ki67-VE-5 30 37.7 27.7 2.2 1 100

Total profiles
observer*

2,372 2,658.7 1,390.4 108.6 464 7,452

Total profiles
DIA-2

2,150.5 2,293.2 796.8 62.2 752 4,302

Total profiles
DIA-1

1,920.5 2,022.7 670.1 52.3 1,012 3,788

Total profiles
DIA-0

4,203.5 4,385.0 1,420.2 110.9 1,640 7,939

*Total nuclear profiles observer counts are multiplied by four in this table to
be comparable to the DIA total profile numbers (the box grid used for the
observer count covers ne-fourth of the image area). DIA, digital image analysis;
VE, visual estimate.

Figure 5 One-way ANOVA box and whisker plot of the distribution o
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correlated with the Ki67-VE-median strongest (r = 0.930),
in comparison to the correlations with the individual VE
measurements.
Single linear regression analyses for the DIA and VE

results as dependent variables and the RV as explanatory
variables produced highly significant (P <0.0001) models
in all cases (Table 6). Remarkably, determination coeffi-
cients (R-square) improved with each calibration cycle of
the Ki67-DIA-0, 1, and 2 from 0.86 to 0.89 and 0.90.
Notably, R-square for the VE-median (0.86) was the
highest amongst the individual VE but reached only that
of the Ki67-DIA-0.
The correspondence between the Ki67-DIA-2 and the RV

was also tested, taking into account the uncertainty of the
RV related to the subsampling of the tissue by the test grid.
The confidence interval for the RV was calculated and the
Ki67-DIA-2 values were tested for fitting the confidence
interval (Figure 4). The R-square of the model was 0.90, the
accuracy factor was 0.82. Interpretation of the plot and the
slope tilt from the ellipse axis revealed a bias: underestima-
tion of the Ki67-Count by the Ki67-DIA-2 observed at the
higher end of the RV scale as well as overestimation at the
low end. Similarly, Bland and Altman plots (not shown)
reflected the same bidirectional bias dependent on the mag-
nitude of the measurement. Orthogonal linear regression
analysis for the DIA and RV was used to refine the accuracy
value reducing the intercept factor. In this case, the ratio of
the tilt of the regression line and the tilt of the ellipse axis
defining the accuracy factor was 0.92 (Figure 6).
Outliers of the Ki67-DIA-2 versus RV analyses were

inspected to explore potential reasons of the underesti-
mation. In general, the tumour tissue was highly cellular
f Ki67 labelling index by the method of measurement (n = 164).



Table 4 Pairwise comparisons for the means of reference
values, visual estimates and digital image analysis
results, n = 164

Duncan grouping* Mean Measurement

A 44.1 Ki67-VE-3

A 43.4 Ki67-VE-2

B A 40.2 Ki67-Count

B 37.7 Ki67-VE-5

B C 37.2 Ki67-VE-mean

B C D 36.5 Ki67-DIA-2

C D 31.6 Ki67-VE-4

E D 31.1 Ki67-DIA-1

F E 25.9 Ki67-DIA-0

F 24.3 Ki67-VE-1

*Means with the same letter are not significantly different at P <0.05. DIA,
digital image analysis; VE, visual estimate.
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in many cases resulting in overlapping nuclei and their
confluence and/or rejection by maximum size limit at
the DIA. Also, in some cases, tissue artefacts, an admix-
ture of stroma with lymphocytes and large ducts could
impact the DIA results. Further fine-tuning of the Nu-
clear algorithm settings was attempted without notable
success.

Prediction of the reference values by inverse regression
and measurement error correction
Ki67-DIA-2 enabled fair accuracy and outperformed the
5 VE measurements, both individual and the median.
Yet, the measurement bias for the Ki67-DIA-2 was
established and enabled a measurement error correction
procedure to be used to predict the ground truth in real
life with maximum accuracy. Inverse regression analyses
were performed to retrieve the correction criteria
(Table 7). To avoid the potential impact of some non-
linearity noted and to derive the most useful inverse re-
gression model for accurate prediction of the ground
Table 5 Pairwise correlations between the reference values, v
(Pearson’s coefficients, P <0.0001, n = 164)

Measurement Ki67-count Ki67-DIA-2 Ki67-DIA-1 Ki67-DIA-0

Ki67-DIA-2 0.949

Ki67-DIA-1 0.945 0.989

Ki67-DIA-0 0.928 0.974 0.976

Ki67-VE-median 0.930 0.940 0.946 0.927

Ki67-VE-1 0.861 0.917 0.921 0.925

Ki67-VE-2 0.905 0.905 0.915 0.886

Ki67-VE-3 0.921 0.921 0.931 0.900

Ki67-VE-4 0.887 0.894 0.895 0.884

Ki67-VE-5 0.842 0.869 0.872 0.860

DIA, digital image analysis; VE, visual estimate.
truth in the interval of clinical importance, a regression
model Ki67-DIA-2 < 40 was produced, based on the ob-
servations with Ki67-Count values less than 40% (n = 92).
In addition to the single regression models, multiple

regression models with inclusion of both Ki67-DIA-2
and Ki67-VE-Median gave slightly higher R-square value
(0.91) than the Ki67-DIA-2 alone (0.90). Therefore, the
DIA approach with calibration of the algorithm settings
based quantified bias enabled most accurate measure-
ment of the Ki67 LI, while VE of five pathologists were
consistent but gave little added value in terms of accur-
acy, compared to the automated DIA measurement.

Effect of the prediction and measurement error
correction on Ki67 dichotomisation accuracy
The effect of VE and DIA inverse regression models to
predict the RV on accuracy of patient dichotomisation at
RV cutoffs of clinical importance (>10, 15 and 20%) was
tested (Table 8). The cutoffs used for these simulations
were the ones most commonly considered as clinically
relevant to test potential clinical impact of the measure-
ment methods involved in our study. While Ki67-VE-
median tended to underestimate the Ki67-Count-based
class at all cutoffs, especially at 20%, the Ki67-DIA-2
prediction overestimated the classes, especially at the
lower end (>10%) of the scale. Total misclassification
rate at different cutoffs varied from 11 to 18% for the
VE-based and 5 to 9% for the DIA-based prediction,
respectively.
The effect of measurement error correction for the

Ki67-DIA-2-based prediction of the RV was tested
with the values obtained by the inverse regression formula
Ki67-DIA-2-corrected = 1.1878*Ki67-DIA-2-3.1183 and,
to minimize potential non-linearity impact for the predic-
tion accuracy, by the formula Ki67-DIA-2-corrected <40 =
1.1472*Ki67-DIA-2 -4.3913 (Tables 7 and 8). The error
correction for both prediction models (especially, the
Ki67-DIA-2-corrected <40 model) decreased the DIA
isual estimates and digital image analysis results

Visual median Ki67-VE-1 Ki67-VE-2 Ki67-VE-3 Ki67-VE-4

0.891

0.955 0.829

0.969 0.857 0.972

0.936 0.857 0.881 0.901

0.916 0.822 0.853 0.872 0.829



Table 6 Single linear regression models with reference values as explanatory variable (n = 164, P <0.0001 for all
models and slope estimates)

Variable R-square Intercept estimate Intercept P Slope estimate Slope standardized estimate

Ki67-DIA-2 0.90 5.9692 <0.0001 0.7588 0.9494

Ki67-DIA-1 0.89 -0.6389 0.5324 0.7892 0.9447

Ki67-DIA-0 0.86 -0.9576 0.3389 0.6667 0.9278

Ki67-VE-median 0.86 -3.3799 0.0242 1.0093 0.9316

Ki67-VE-1 0.74 -8.1114 <0.0001 0.8057 0.8514

Ki67-VE-2 0.82 0.6733 0.7180 1.0616 0.9049

Ki67-VE-3 0.85 0.1337 0.9382 1.0926 0.9210

Ki67-VE-4 0.79 -2.7516 0.0987 0.8545 0.8545

Ki67-VE-5 0.71 0.4763 0.8294 0.9245 0.8422

DIA, digital image analysis; VE, visual estimate.
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overestimation effect at the >10% cutoff. While total
misclassification rate at different cutoffs for Ki67-DIA-
2-corrected remained in the interval of 5 to 9%, the
Ki67-DIA-2-corrected <40-based prediction enabled
some improvement down to the misclassification rate
of 5 to 7%.
In summary, the DIA-based prediction of the RV en-

abled the classification error rate half of that of the VE-
based prediction, it was less than 10% at all cutoffs
tested, and could be further improved by the measure-
ment error correction attempts.

Discussion
Our experiment presents test validation, calibration and
measurement error correction methodology that can be
successfully applied to ensure and improve accuracy of
IHC Ki67 LI estimation by DIA. In essence, in our
Figure 6 Orthogonal linear regression analysis. Reference values as e
taking into account an ellipse of 95% confidence interval (orange) defin
line: y = 0.877x + 0.012). DIA, digital image analysis.
approach we sought to adopt the principles of analytic
test validation for IHC DIA-based enumeration of Ki67
LI with quantification of the measurement bias by com-
parison to the Ki67 LI obtained on the same images by
stereological test grid count as most direct criterion
standard. Our first step of the DIA calibration (DIA-0 to
DIA-1) was achieved by visual (intuitive) quality assess-
ment of the DIA results on the computer monitor of se-
lected images, while the second (DIA-1 to DIA-2) was
based on quantified bias from the criterion standard.
Our results show that only after the second (quantita-
tive) calibration step, global bias of the DIA became not
significant, while regression analyses revealed gradual
improvement of the prediction of the DIA outputs with
the calibration steps. Although the calibrated DIA-2 re-
vealed the best accuracy achieved, exceeding that of the
VE, nonlinearity was noted with some overestimation
xplanatory variable and the DIA-2 as dependent variable (yellow)
ed the sampling theory (n = 164 n = 164, P <0.0001, equation of the



Table 7 Single and multiple linear inverse regression models to predict reference values as dependent variable
(n = 164, P <0.0001 for all models and slope estimates)

Variable R-square Intercept estimate Intercept P Slope estimate Slope standardized estimate

Single regression models:

Ki67-DIA-2 0.90 -3.1183 0.0165 1.1878 0.9494

Ki67-DIA-2 < 40* 0.75 -4.3913 0.0085 1.1472 0.8688

Ki67-DIA-1 0.89 5.0453 <0.0001 1.1309 0.9447

Ki67-DIA-0 0.86 6.8232 <0.0001 1.2916 0.9278

Ki67-VE-median 0.86 8.3195 <0.0001 0.8572 0.9302

Multiple regression model 0.91 -0.3245 0.8096

Ki67-DIA-2 0.8068 0.6448

Ki67-VE-median 0.2985 0.3239

*Ki67-DIA-2 < 40 - represents a regression model for Ki67-DIA-2 with only Ki67-Count less than 40% cases included in the analysis (n = 92). DIA, digital image
analysis; VE, visual estimate.
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bias on the low and underestimation bias at the high
end of the scale. We subsequently applied measurement
error correction procedures by inverse regression to fur-
ther enhance the DIA test applicability. Finally, we tested
potential clinical impact of the accuracy achieved by ap-
plying DIA- and VE-based predictions of Ki67 LI to
dichotomize patients (images) by frequently used cut off
values at 10, 15 and 20% and found that DIA (after
quantitative calibration and measurement error correc-
tion) enabled the classification error rate 2x less than
that of the VE.
In our study we did not strictly follow the guidelines

for analytical test validation [19] since the nature of the
subject and the criterion standard (IHC image) used are
still different from the analytical test samples used in
Table 8 Effect of the inverse regression-based prediction and
accuracy at various reference value cutoffs (n = 164)

Method Underestimated (%)

Ki-67 cutoff >10%

Ki67-VE-median 16/148 (11)

Ki67-DIA-2 0/148 (0)

Ki67-DIA-2 corrected 0/148 (0)

Ki67-DIA-2 corrected <40* 2/148 (1)

Ki-67 cutoff >15%

Ki67-VE-median 22/136 (16)

Ki67-DIA-2 2/136 (1)

Ki67-DIA-2 corrected 3/136 (2)

Ki67-DIA-2 corrected <40* 5/136 (4)

Ki-67 cutoff >20%

Ki67-VE-median 28/123 (23)

Ki67-DIA-2 2/123 (2)

Ki67-DIA-2 corrected 2/123 (2)

Ki67-DIA-2 corrected <40* 6/123 (5)

*Ki67-DIA-2 < 40 - represents a regression model for Ki67-DIA-2 with only Ki67-Coun
analysis; VE, visual estimate.
medicine. First, the uncertainty of our criterion standard
was tested by independent measurements by three ob-
servers on a subset (n = 30) of images and was consid-
ered as satisfactory to further rely on one observer
counts. Nevertheless, the inter-observer comparison was
image-based but not cell-based, and we realize that hu-
man judgment/error is still involved when deciding on
individual tumour/non-tumour and positive/negative
cells even in this stereologically-based approach. Al-
though some uncertainty of our criterion standard has
to be taken into account, our data show that it is more
reliable than that of the VE consensus of several pathol-
ogists and, therefore, should be used for DIA validation
needs. Secondly, we have not tested the repeatability of
the tests: it would be beyond reasonable effort to repeat
measurement error correction on Ki67 dichotomisation

Overestimated (%) Total misclassified (%)

2/16 (13) 18 (11)

12/16 (75) 12 (7)

9/16 (56) 9 (5)

6/16 (38) 8 (5)

1/28 (4) 23 (14)

13/28 (46) 15 (9)

11/28 (46) 14 (9)

6/28 (21) 11 (7)

1/41 (2) 29 (18)

9/41 (22) 11 (7)

12/41 (29) 14 (9)

6/41 (15) 12 (7)

t less than 40% cases included in the analysis (n = 92). DIA, digital image
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the stereological count manually and less important to
repeat (intra-observer) VE, since it was not our main
focus to investigate the VE accuracy and precision. The
repeatability of the DIA in strictly the same conditions is
expected to be perfect, the reproducibility of the DIA in-
volving all phases of the Ki67 LI test as well as its ro-
bustness to the IHC staining variation was beyond the
scope of this study. Third, we did not validate our DIA
prediction accuracy on an independent dataset, since it
requires another set of criterion standard data that is
planned as an output of our next experiment. Fourth,
the DIA validation tests in the present study are based
on summarized data per image (Ki67 LI), while more
rigid individual cell-based comparisons would provide
even more granular information on the performance of
the DIA tools.
Our approach uncovered a non-linear bias in the op-

posite directions depending on the magnitude of the
measurement of the Ki67-DIA-2, which could hardly be
documented by only the subjective assessment of the
DIA accuracy of selected images on a computer monitor.
To better understand why DIA-2 overestimated the Ki67
LI at the low and underestimated it at the high ends of
the scale, we compared absolute numbers of positive
and negative tumour cell profiles detected by the DIA-2
and box grid count (data not shown). We found that
with increasing both Ki67 LI and the total number of
cell profiles counted, DIA-2 tended to under-detect
tumour cells, while this effect was more notable for posi-
tive cells. To really explore the sources of the bidirec-
tional bias, one needs to design more sophisticated cell-
based quality assurance procedures which would also
allow testing the impact of cell density and other fea-
tures. From our data, we can speculate that increased
tumour cellularity with more cell profiles overlapping
may impact nuclear segmentation quality, while the im-
pact of the automated tumour tissue segmentation by
the Genie algorithm remains to be deciphered. In gen-
eral, this nonlinearity phenomenon seems to originate
from “subject-measurement” interaction, where the mea-
sured subject has variable characteristics (tumour cellu-
larity, density, texture, staining, section thickness and so
on) and a specific DIA algorithm may handle them with
variable success. This further highlights the complexity
of the automated DIA approaches and the need of ap-
propriate validation and quality assurance procedures.
Although the VE validation was not the main focus of

our study, we observed an interesting nonlinear depend-
ence of inter-observer variation on the magnitude of the
measurement: high standard deviations in the five VE
observers’ mean were noted in the middle of the Ki67 LI
scale. This finding is somewhat unexpected, but still
consistent with the observation that IHC biomarker dis-
tribution artefacts may be generated by subjective visual
scoring [20]. Without going into extended speculations
on the potential sources of this variation, we see it as
additional evidence that individual VE or “eyeballing”
cannot serve as reliable measurement when there is in-
creased clinical demand for quantification accuracy. The
“consensus” or median VE of five pathologists ensured
better accuracy than individual VE; however, it did not
reach that of the calibrated DIA. Furthermore, besides
being less accurate, precise and practical for clinical use,
multi-observer VE should not be used as a criterion
standard method for the DIA validation purposes, be-
cause of its greater uncertainty level compared to that of
DIA or count-based methods.
The deepening gap between the potential clinical util-

ity of the Ki67 LI and availability of robust measurement
methodologies is reflected by the St Gallen 2013 consen-
sus [21]: while the cut off <14% remains in the definition
of the Luminal A-like tumours, a majority voted for the
threshold of ≥20% to define “high” Ki67 status. Further-
more, a concern about the possible under-treatment of
patients with luminal disease who might benefit from
chemotherapy, justifies use of a lower (local laboratory
specific) cut-off to define Ki-67 “high” or use of multi-
gene-expression assay results. This approach would po-
tentially require validation studies with clinical outcomes
while the measurement methods remain not standard-
ized. In the situation where one laboratory may serve
different oncology units, this would become even less
realistic. In addition, it is worth noting that there is a
fundamental issue in defining and reproducing Ki67 LI
cut-offs with the distribution pattern when the great ma-
jority of the hormone-receptor positive breast tumours
fall into the Ki67 KI interval between 10 to 20%. There-
fore, it is intrinsically difficult to meet the clinical de-
mand for accuracy without measurement methods of
established and controlled accuracy, preferably indicat-
ing confidence intervals for the values. Even more, com-
binatorial or multiple IHC biomarker systems may be
needed to achieve robust prognostic and predictive indi-
cators [13,22,23].
While manual techniques, including VE and counting,

have been shown to be poorly reproducible, even at the
level of decision on individual cells [24], the only viable
alternative to extract most accurate Ki67 LI by IHC test
is further sophistication and standardization of DIA
methodologies. They enable greater capacity which also
involves counting more cell profiles in more tissue sam-
ples, which in turn may lead to better accuracy at the
low end of the Ki67 LI scale [25]. The success of the
DIA in IHC quantification may be variable and depend
both on the DIA tools used and a study design. For
breast cancer Ki67 LI measurement, DIA has been
shown to be comparable to the VE but of less prognostic
value by one study [26] or better than VE, comparable
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to CIM and of stronger prognostic accuracy by another
[12]. Even if it is tempting (and useful) to validate a DIA
tool to predict specific clinical outcomes, we argue that
sound DIA measurement methods should be developed
and maintained by meeting the “basic needs” first to
quantify the measurement bias from affordable and most
objectively established criterion standard. As put by
Bland and Altman [18], “some lack of agreement be-
tween different methods of measurement is inevitable,
what matters is the amount by which methods disagree”.
We, therefore, position our experiment as the first step
in DIA validation process to ensure accurate estimation
of Ki67 LI in a selected tissue sample, with subsequent
steps to use automated DIA to address tissue heterogen-
eity and sampling issues as well as prediction of clinical
outcomes.

Conclusions
In general, we suggest that proper quantitative validation
and calibration methodologies can and have to be
employed to establish and ensure accuracy of Ki67 LI
measurement by DIA and digital IHC. The measurement
accuracy can be further improved by measurement error
correction based on the quantified bias, which in our
study allowed to decrease patient misclassification rate
by the Ki67 LI cut offs of 10, 15 and 20% down to 5 to
7%, compared to that of the VE consensus of five pathol-
ogists at 11 to 18%. This basic validation step also opens
better perspectives to use high-throughput automated DIA
tools to investigate tissue heterogeneity and clinical utility
aspects of Ki67 and other IHC biomarker expression.
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