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Abstract

Background: The goal of haplotype assembly is to infer haplotypes of an individual from a mixture of sequenced
chromosome fragments. Limited lengths of paired-end sequencing reads and inserts render haplotype assembly
computationally challenging; in fact, most of the problem formulations are known to be NP-hard. Dimensions (and,
therefore, difficulty) of the haplotype assembly problems keep increasing as the sequencing technology advances
and the length of reads and inserts grow. The computational challenges are even more pronounced in the case of
polyploid haplotypes, whose assembly is considerably more difficult than in the case of diploids. Fast, accurate, and
scalable methods for haplotype assembly of diploid and polyploid organisms are needed.

Results: We develop a novel framework for diploid/polyploid haplotype assembly from high-throughput sequencing
data. The method formulates the haplotype assembly problem as a semi-definite program and exploits its special
structure – namely, the low rank of the underlying solution – to solve it rapidly and with high accuracy. The developed
framework is applicable to both diploid and polyploid species. The code for SDhaP is freely available at https://
sourceforge.net/projects/sdhap.

Conclusion: Extensive benchmarking tests on both real and simulated data show that the proposed algorithms
outperform several well-known haplotype assembly methods in terms of either accuracy or speed or both. Useful
recommendations for coverages needed to achieve near-optimal solutions are also provided.

Keywords: Haplotype assembly, Semi-definite programming, Diploid, Polyploid

Background
Humans are diploid organisms with two sets of chromo-
somes – 22 pairs of autosomes and one pair of sex chro-
mosomes. The two chromosomes in a pair of autosomes
are homologous, i.e., they have similar DNA sequences
and essentially carry the same type of information but
are not identical. The most common type of variation
between chromosomes in a homologous pair are single
nucleotide polymorphisms (SNPs), where a single base
differs between the two DNA sequences (i.e., the cor-
responding alleles on the homologous chromosomes are
different and hence the individual is heterozygous at that
specific locus). SNP calling is concerned with determin-
ing locations and the type of polymorphisms. Once such
single variant sites are determined, genotype calling asso-
ciates a genotype with the individual whose genome is
being analyzed. Genotypes, however, provide only the list
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of unordered pairs of alleles, i.e., genotyping does not
associate alleles with specific chromosomes. The com-
plete information about DNA variations in an individual
genome is provided by haplotypes, the list of alleles at
contiguous sites in a region of a single chromosome. Hap-
lotype information is of fundamental importance for a
wide range of applications. For instance, when the cor-
responding genes on homologous chromosomes contain
multiple variants, they often exhibit different gene expres-
sion patterns. This may affect an individual’s suscepti-
bility to diseases and response to therapeutic drugs, and
hence suggests directions for medical and pharmaceutical
research [1]. Haplotypes also reveal patterns of variation
that are present in certain regions of a genome. This
enables focusing whole genome association studies on tag
SNPs (as in HapMap project [2]), representative SNPs in
a region of the genome characterized by strong corre-
lation between alleles (i.e., high linkage disequilibrium).
Finally, since each chromosome in a homologous pair is
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inherited from one of the parents, knowledge of haplo-
type structure can be used to advance understanding of
recombination patterns and identification of genes under
positive selection [3].
Haplotypes of an individual whose genome is sequenced

can be assembled using short reads obtained by high-
throughput sequencing platforms. Each read provides
information about the order of nucleotides in a fragment
of one chromosome of the individual. Recent advances
in high-throughput sequencing allow single individual
haplotyping on the whole chromosome level. Previously,
the comparatively shorter reads as well as short insert
lengths limited the size of connected components. Now,
the unprecedented amounts of reads and increasingly
longer inserts make haplotyping of an entire chromosome
as a single connected block a distinct possibility. In par-
ticular, paired-end reads that may be separated by several
thousands of bases allow us to link haplotype information
over long distances and thus enable their reliable recon-
struction. In the absence of any read errors (and errors in
alignment and genotyping, i.e., the steps performed prior
to haplotyping), haplotype assembly for diploid species is
trivial. However, due to the errors in the data processing
pipeline steps that precede haplotyping, the assembly is
computationally challenging.
Various formulations of the haplotype assembly prob-

lem have been proposed [4]. In this paper, we focus on
the minimum error correction (MEC) formulation, which
attempts to find the smallest number of nucleotides in
reads whose flipping to a different value would resolve
conflicts among the fragments from the same chromo-
some. Finding the optimal solution to the MEC formula-
tion of the haplotype assembly problem is known to be
NP-hard for the diploid case [4].

Prior work
Haplotype assembly, also referred to as single individ-
ual haplotyping, was first considered in [4] where three
related formulations of the problem were described. It
has been shown that the problem is computationally hard
under various objective functions [4,5]. Levy, 2007 [6]
proposed a greedy algorithm for the haplotype assembly
of a diploid individual genome. Bansal, 2008 [7] (Hap-
CUT) used a greedymax-cut formulation of the haplotype
assembly problem to significantly improve on the perfor-
mance of [6]. Bansal, 2008 [8] (HASH) and [9] relied on
MCMC and Gibbs sampling schemes to tackle the same
problem. Wang, 2005 [10] and [11] used computationally
intensive branch-and-bound and dynamic programming
schemes, respectively, in search for near-optimal solu-
tions to the MEC formulation of the problem. Recently,
[12] reformulated the haplotype assembly problem as
an integer linear program that was then solved using
IBM’s CPLEX. RefHap [13], also relying on a greedy cut

approach, was recently introduced and applied to reads
sequenced using fosmid libraries while HapCompass [14]
relied on a graphical approach to develop a scheme which
resolves conflicts arising from incorrect haplotype phas-
ing.
In recent years, genome sequences of polyploid spe-

cies – characterized by havingmore than two homologous
sets of chromosomes – have been extensively researched.
Examples of such organisms include potato (which is
tetraploid) and wheat (hexaploid). As in the case of diploid
organisms, complete information about genetic variations
in polyploid species is provided by their haplotypes. Hap-
lotype assembly for polyploids, however, is significantly
more challenging than that for diploid species. Unlike
the diploid case, there exist considerably fewer methods
for the assembly of polyploid haplotypes. Authors of the
first one, [15], addressed the polyploid haplotype assem-
bly by extending the ideas of their HapCompass diploid
assembly framework.More recently, [16] (HapTree) inves-
tigated the polyploid setup using a branch-and-bound
scheme.

Main contributions
In this work, haplotype assembly is cast as a correlation
clustering problem and efficiently solved using a novel
algorithm that exploits structural features of the under-
lying optimization. Correlation clustering, originally pro-
posed by [17] and analyzed in [18-20], is a method for
clustering objects that are indirectly described by means
of their mutual relationships. In the context of haplo-
type assembly, the relationships between reads may con-
veniently be represented by a graph and an associated
weighted adjacency matrix, and the problem of assigning
reads to haplotypes leads to correlation clustering on this
graph. For diploids, that can in principle be done using an
algorithm for MAXCUT such as [21], while for polyploids
one could use an algorithm for MAX-k-CUT [22]. Both of
these algorithms solve semi-definite programming (SDP)
relaxations of the original integer programming objectives
that arise in MAXCUT and MAX-k-CUT a. The com-
plexity of solving the SDPs, however, is impractical for
large-scale haplotype assembly problems. To this end, we
develop a novel algorithm for finding low-rank approxi-
mate solutions to the aforementioned SDP problems with
complexity that is only linear in the number of reads.
The results on both simulated and real data sets demon-
strate that the proposed algorithm, named SDhaP, has
higher accuracy and is significantly faster than the exist-
ing haplotype assembly schemes. The proposed method
is scalable and needs only minutes to accurately assem-
ble haplotypes of complex genomes on a standard desktop
computer. In addition to the developed software, we also
provide an in-depth analysis of the coverage required to
achieve near-optimal haplotype assembly – a result with
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many practical implications and useful guidelines for the
choice of parameters of sequencing experiments.

Methods
Haplotype assembly is preceded by the mapping of the
reads obtained from a sequencing platform to the refer-
ence genome and genotyping. Since homozygous sites do
not contribute useful information nor cause any ambigui-
ties in the haplotype assembly, they are omitted from the
haplotype and read representations. We represent haplo-
types by K strings, (h1, h2, . . . hK ), each of length n, where
K denotes the ploidy and n is the haplotype length (for
diploids, K = 2). For convenience, each read is repre-
sented as a string of length n with entries {A,C,G,T ,−}
(denoted by A), where ‘−’ indicates SNP positions on the
chromosome that are not covered by the read. The reads
are arranged into an m × n matrix R according to their
positions along the chromosome, where m denotes the
number of reads and the ith row of R, Ri, corresponds to
the ith read. Since the reads are relatively short compared
to the length of the haplotype sequence, matrix R is sparse,
i.e., a large fraction of its entries are −. The start and the
end of the ith read are the first and the last position in Ri
that are not −. The length of a read starting at position i
and ending at position j is equal to j−i+1 andmay include
gaps. The goal of haplotyping is to infer (h1, h2, . . . hK )

from the observed reads.
Following genotyping, we identify alleles at each SNP

location. Using the genotype calls, one can reduce the
underlying alphabet to a ternary one having elements
{1, 2,−} in the diploid case, and quaternary alphabet
{1, 2, 3,−} in the triploid case. For higher ploidy, there
is no further reduction in the alphabet size. In the case
where two or more haplotypes share the same nucleotide
at a given SNP location (which is not applicable to the
diploid setting but can occur for higher ploidy), further
reduction is possible by treating all nucleotides that are
not a part of the genotype as errors and neglecting them.

Preprocessing
Before the actual assembly, disconnected haplotype com-
ponents need to be separated, i.e., we need to identify
haplotype blocks that are not connected by any reads.
From R, we can generate an adjacency matrix and a graph
having vertices that correspond to the SNP positions (i.e.,
to the columns of R). An edge is present between two ver-
tices if a read covers the corresponding SNP positions, i.e.,
if the components of a read at those columns in the matrix
are not −. Reads that cover only one SNP position do
not provide information that can be used to reconstruct
a haplotype and are thus discarded from R. Similarly, any
SNP position not covered by at least one read is removed.
After forming the adjacency matrix, disconnected sub-
graphs or partitions need to be identified. This is done by

implementing a simple queue. Starting with the first ver-
tex, all vertices connected to it are inserted in the queue.
These vertices are labeled by k = 1 to indicate the first
subgraph. Then in a first-in first-out manner, all vertices
connected to the vertices in the queue are inserted into
the queue provided they have not been previously labeled.
Once the queue is empty, a new unlabeled vertex is chosen
and labeled as k = 2, and the process is repeated until all
vertices are labeled. This procedure leads to partitioning
of the matrix into smaller disconnected matrices (if such
disconnected components exist).

Problem definition
Let us define a measure of distance d between two sym-
bols a and b from the alphabet A used to represent the
SNP fragment matrix R as

d(a, b) =
{
1 if a �= −and b �= −and a �= b,
0, otherwise.

Denote the Hamming distance between read Ri and
haplotype hl as hd(Ri, hl) = ∑n

j=1 d(Ri,j, hlj). Then the
minimum error criterion (MEC) formulation of the hap-
lotype assembly problem is concerned with minimizing Z
over hl, where the objective function

Z =
m∑
i=1

min
(
hd

(
Ri, h1

)
, hd

(
Ri, h2

)
, . . .hd

(
Ri, hK

))
, (1)

andm denotes the total number of reads.

The all-heterozygous and heterozygous/homozygous case
Ideally, the SNP matrix R should only contain true het-
erozygous sites determined in the genotyping step. How-
ever, in practice, false positives from the genotyping
procedure lead to the presence of columns in R that cor-
respond to both homozygous sites as well as heterozygous
ones. Our method can detect the potential presence of
genotyping errors and enable correction of a large fraction
of incorrectly called heterozygous sites, hence improv-
ing the MEC score of the final solution to the haplotype
assembly problem.

Problem reformulation
Sequencing reads that are used in haplotype assembly
projects may be the short reads generated by Illumina
platforms, the long reads obtained from Pacific Bio-
sciences instruments, or the long reads from jumping
libraries in [13], to name a few. Consequently, the SNP
fragment matrix may be either a fat matrix (with more
columns than rows) or a tall one (with more rows than
columns), depending on the technology used. While short
Illumina paired-end reads generally lead to limited lengths
of connected haplotype blocks, technologies that pro-
vide long reads and/or large insert sizes enable very long
blocks. In the latter scenario, the APX hardnessb result
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essentially implies that exact inference, being of exponen-
tial complexity, is no longer feasible. Therefore, compu-
tationally efficient approximate inference methods that
enable fast yet accurate haplotype assembly are needed.
To quantify the relationships between the reads, we

evaluate ameasure of similarity for each pair of rows of the
SNP fragment matrix as described next. Define a graph
G = (V , E ,W ) where V denotes the set of vertices cor-
responding to the rows of the SNP fragment matrix, E
is the set of the edges connecting the vertices in V , and
W denotes the set of weights associated with the edges.
For any two reads i and j that overlap in at least one
position, we define the weight of an edge between the
corresponding vertices vi and vj as

wij = ksim − kdissim
ksim + kdissim

.

Here ksim denotes the number of overlapping positions
where the reads have an identical base and kdissim is the
number of positions where they are different. Then G =
(V , E ,W ) is a correlation graph where the edges con-
necting vertices associated with similar reads (i.e., the
reads that belong to the same haplotype) should have
positive weights, while the edges connecting vertices asso-
ciated with dissimilar reads should have negative weights.
In the absence of sequencing errors, that is indeed the
case and thus separating the reads into K different clus-
ters corresponding to K distinct haplotypes is trivial. In
the presence of errors, however, a positive weight no
longer unambiguously implies that two reads belong to
the same chromosome nor a negative one means that they
belong to different chromosomes, hence making the sep-
aration problem difficult. We formalize it as follows: given
a weighted graph G = (V , E ,W ), find K − 1 cuts such
that the sum of intra-partition edge weights is maximized
and inter-partition edge weights is minimized. This effec-
tively translates to performing ‘correlation clustering’ in
machine learning/algorithms parlance.

Haplotype assembly via correlation clustering
Problem formulation for diploid species
In the case of diploid organisms, correlation clustering
interpretation of the haplotype assembly problem leads to
maximization of the cut norm of the adjacency matrixW,

maximize
x

∑
i<j

wijxixj

subject to xi ∈ {+1,−1} i = 1 . . .m.

Defining x =[ x1 x2 . . . xm]T where (·)T denotes the
transpose, the above optimization can be restated as

maximize
x

xTWx

subject to x2i = 1 i = 1 . . .m.
(2)

Introduce a rank-1 matrix variable X = xxT . It is
straightforward to show that X is positive semidefinite.
Thus the maximization (2) can be written as

maximize
X

Tr(WX)

subject to Diag(X) = e
rank(X) = 1
X � 0,

(3)

where e denotes anm×1 all-ones vector. Note that 2 and 3
are equivalent (We omit the details for this). This problem
is hard to solve because of the rank constraint. Relaxing
the rank constraint leads to the following semi-definite
program (SDP),

maximize
X

Tr(WX)

subject to Diag(X) = e
X � 0.

(4)

This SDP can efficiently be solved in polynomial-time
(in the case of haplotype assembly, O(m3.5) where m is
the number of reads), and provides an upper bound on
the objective of the quadratic program (2). The Goemans-
Williamson randomized algorithm may then be used to
find an approximate integer solution to the problem [21].
We omit the arguments behind the randomized algorithm
for brevity and summarize the procedure below.
Goemans-Williamson algorithm for solving the MAX-

CUT problem:

1. Solve the SDP relaxation and denote the optimal
solution by X∗.

2. Compute the factorization X∗ = VVT . Let Vi denote
the normalized ith column of V.

3. Rounding Procedure: set S = {}.
3.1. Uniformly generate a random vector η on the

unit n-sphere.
3.2. For i = 1 . . .m, if xi = VT

i η > 0 assign vertex
i to S (i.e., set xi = 1); otherwise, assign vertex
i to S̄ (i.e., set xi = −1).

3.3. Find the value of the obtained cut xTWx.

4. Repeat the rounding procedure and output the
assignment with best cut value.

Problem formulation for polyploid species
In the case of polyploid species, haplotype assembly can
be cast as the correlation clustering problem where the
goal is to partition the set of reads into as many subsets as
there are haplotypes. Let the ploidy of an organism beK >

2, e.g., K = 3 for triploids, K = 4 for tetraploids, and so
on. Given the clustering graph G = (V , E ,W ) represent-
ing the reads, we would like to partition the vertex set V
into K partitions such that the sum of intra-partition edge
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weights is maximized and inter-partition edge weights is
minimized.
To this end, we first need a suitable way of defining vari-

ables that can take one of K possible values [22]. Let yj
be one of the K vectors {a1, a2, . . . , aK } that are defined
as follows: take an equilateral simplex

∑
K in RK with

vertices {b1, b2, . . . , bK }. Let cK = b1+b2+···+bK
K be the cen-

troid of
∑

K and let ai = bi − cK , for 1 ≤ i ≤ K . Assume
that

∑
K is scaled so that ‖ai‖ = 1 for 1 ≤ i ≤ K . Note

that this definition of the variables yi implies

yTi yj ≥ − 1
K − 1

i < j i, j = 1 . . .m

yTi yi = 1 i = 1 . . .m.

To see why this is true, note that for any K, the entries of
yi are− 1

K except for one of the components which is equal
to 1− 1

K . This object is then normalized by its 2-norm and
thus (after normalization) ‖yi‖2 = 1. When we multiply 2
such normalized vectors, it is straightforward to see that
the resulting inner product yiyj = − 1

K−1 (i �= j). Finally,
this equality is relaxed to an inequality to turn the problem
into a convex problem.
Now we can state the correlation clustering formulation

of the haplotype assembly problem for theK-ploid species
as the optimization

maximize
y

∑
i<j

wijyTi yj

subject to ‖yi‖ = 1 i = 1 . . .m

yTi yj ≥ − 1
K − 1

i, j = 1 . . .m, j < i.

(5)

Define matrix Ŷ whose ith row is yTi and introduce Y =
Ŷ Ŷ T . The optimization (5) is a vector program which we
relax to a semi-definite program of the form

maximize
Y

Tr(WY )

subject to Diag(Y ) = e

Yij ≥ − 1
K − 1

i, j = 1 . . .m

Y � 0

(6)

and solve using interior-point methods; here we relaxed
the rank of Y fromK−1 tom. As in the diploid case, a ran-
domized rounding algorithm may then be used to find an
approximate integer solution (details of the rounding pro-
cedure are omitted for brevity). Note, however, that there
are m2 constraints which make the complexity of solving
the SDP very high, approximately O(m7).

For long haplotype blocks, directly solving the semi-
definite programming formulation of the assembly prob-
lem in either diploid or polyploid setting is computa-
tionally infeasible. It is therefore of interest to explore
underlying structural features of the assembly problem
and derive fast SDP methods tailored for finding the solu-
tion to problems with such features. In the following two
sections, we exploit sparsity of the underlying graphical
representation of the haplotype assembly problem and the
prior knowledge that the solution is low-rank to develop
fast yet highly accurate algorithms for solving the SDPs (3)
and (6).

Low-rank SDP solutions for haplotype assembly of diploid
species
Barvinok, 1995 [23] and [24] independently studied the
scenario where the optimal solution to an SDP has low
rank. In particular, they considered the rank-r optimal
solutions X∗ to an SDP such that r(r+1)

2 ≤ m where m
denotes the number of constraints of the SDP. The exis-
tence of X∗ � 0 implies the existence of some Vo ∈ R

m×r

such that X∗ = VoVT
o . If the optimization over X = VVT

is replaced by an equivalent optimization overV, the num-
ber of variables can be greatly reduced and hence the
optimal solution can be found with potentially significant
computational savings.
The graph G = (V , E ,W ) representing the haplotype

assembly problem is inherently sparse, and hence we can
rewrite (4) as

maximize
V

∑
i<j

wijVT
i Vj

subject to ‖Vi‖ = 1 i = 1 . . .m,
(7)

where Vi denotes the ith row of V. Note that by expressing
the objective function in terms of V rather than X, we no
longer need to explicitly impose the positive semidefinite
constraint on X. If the graph is very sparse, most wij’s are
0 and the computation of the objective function is fast.
Moreover, it is convenient to convert (7) into the following
unconstrained program,

maximize
V

∑
wij

VT
i Vj

‖Vi‖‖Vj‖ . (8)

Denote the objective in (8) by M. This optimization is
no longer convex; however, for r > r∗ (r∗ being the rank
of the optimal solution), the stationary point of the non-
convex problem (8) does in fact coincide with the optimal
solution of the convex program (4).

Adaptive rank update
To solve (8), we rely on adaptive rank scheme where
we initialize V as an m × 2 matrix. In the subsequent
steps of the algorithm, the number of columns of V is
increased until V becomes rank deficient (i.e., the rank of
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V drops below the number of columns of V ). Each step of
our proposed scheme requires computation of the objec-
tive function (8) and its gradients, which has complexity
O(|E |r). Clearly, we also need to find the rank of V as the
algorithm progresses. This is done by computing a sin-
gular value decomposition (SVD) of V (which requires
O(mr2) operations) and declaring that the rank of V is
equal to the number of singular values that are larger than
a predefined threshold εth (e.g., εth = 0.1).

Gradient Computation
We compute the gradient of the objective function in (8)
with respect to Vi,

∂M
∂Vi

=
∑
k∈Ei

wi,k
‖Vi‖2Vk − (Vi · Vk)Vi

‖Vk‖‖Vi‖3 .

From the computed gradient, we arrive at the following
simple update rules for fast iterative solution of the SDP
relaxation (8),

Vi ←
∑
k∈Ei

(wik)Vk

Vi ← Vi
‖Vi‖ .

Convergence and stopping criterion
We keep track of how the ratio of the gradient to the
objective function changes through the iterations. When
this ratio becomes smaller than a predefined tolerance
value εtol, we terminate the algorithm. Since the gradient
descent scheme ensures that the objective of the opti-
mization problem is non-decreasing, convergence of the
algorithm is guaranteed.

Randomized projections and greedy refinement
The result of the previously described optimization proce-
dure V̂ is of rank r̂. In order to obtain a rank 1 solution, we
project V̂ onto a random vector of size r̂ and take the sign
of the projection. We generate multiple projections and
choose the one among them leading to the largest value of
the objective function in (7) as the solution. The number
of projections needed for the expected value of the objec-
tive function to meet certain performance guarantees is
≈ O(log(m)) [25].
In the scenario where there are no genotyping errors,

the previously described procedure provides the haplo-
type pair (h1, h2). This solution is further refined by greed-
ily exploring whether sequential alterations of the bases
along the haplotype sequences might lead to even lower
MEC scores. In the scenario where genotyping errors are
present, we use the previously described procedure to
partition the reads into 2 clusters. In order to assem-
ble the haplotypes from the partitions, we employ the
following strategy: for every SNP location and for each

partition, we rely on majority voting to decide on the cor-
responding haplotype position. This may result in both
heterozygous and homozygous sites. Finally, the assem-
bled haplotypes are further greedily refined by testing if
sequential alterations of the bases lead to any improve-
ment of the MEC scores, which has complexity O(2n).
We formalize the proposed scheme as Algorithm 1 given
below.

Algorithm 1: Haplotype assembly for diploids
Input: W, εth, εtol, r = 2, k = 1, V (an m × 2 matrix).
Output: Haplotypes h1, h2.
Initialization: V ← random matrix with normalized
rows.
η ← anm × 1 vector with random entries
while ∇V

V ≥ εtol and k �= r do
for i = 1 to m do

Vi ← ∑
j∈Ei wijVj

Vi ← Vi‖Vi‖
end
k= the # of singular values of V that are greater
than or equal to εth
if (k=r) then

r ← r + 1
V=[V 0.01η]
V ← row normalized V

end
end
for i = 1 to O(log(m)) do

ξ ← an r × 1 vector with random entries
P=Random projection of V on ξ

xi(1 . . . m) ← sign(P)
Mi = ∑

wijxi(j)xi(k)
end
x∗(1 . . .m) = argmax

xi
Mi

Obtain h1, h2 from x∗(1 . . .m) using majority voting
Perform greedy refinement of (h1, h2)
Return(h1, h2)

Fast Lagrangian relaxation for haplotype assembly of
polyploid species
In the previous section, we described a fast and accu-
rate method for haplotype assembly of diploid species
that relies on solving low-rank SDP relaxation of the
problem. For the polyploid setting, we need to solve
a constrained SDP (6). To this end, we employ a fast,
low-rank Lagrangian scheme followed by randomized
projections and a greedy refinement of the K-ploid hapl-
otypes.
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Following factorization Y = VVT , we can re-phrase the
SDP formulation (6) of the haplotype assembly problem
for K-ploids (5) as the optimization

maximize
∑
i<j

wij
(
VT
i Vj

)

subject to ‖Vi‖ = 1 i = 1 . . .m

VT
i Vj ≥ − 1

K − 1
i, j = 1 . . .m, i < j, wij �= 0.

(9)

Unlike the unconstrained optimization (8) that arises
in the diploid setting, the above optimization prob-
lem is constrained (with conic constraints). In order to
solve it with practically feasible and scalable complex-
ity, we consider its Lagrangian relaxation and solve the
dual problem using a minorization-maximization tech-
nique.
In particular, our scheme iteratively finds

inf
λij≤0

sup
V

L(V , λ),

where L(V , λ) is the Lagrangian of (9) and λ = {λij} is an
m × m matrix collecting all Lagrange multipliers associ-
ated with inequality constraints (the equality constraints
need not be explicitly incorporated in L(V , λ) since they
are readily enforced by the projection step explained
later in this section). Therefore, the Lagrangian is given
by

L(V , λ) =
∑

wij
(
VT
i Vj

)
+

∑
λij

(
VT
i Vj + 1

K − 1

)
.

The minorize-maximize iterative procedure consists of
an inner and an outer loop. In the inner loop (minorize),
we find sup

V
L(V , λ) by keeping λ fixed. For this, we rely on

the same idea of cyclic coordinate descent with adaptive
rank update as described in the diploid section. Specif-
ically, we make the following updates of the ith row of
V,

Vi ←
∑
j∈Ei

(
wij + λij

)
Vj,

Vi ← Vi
‖Vi‖ .

In the outer loop (maximize) we keep V fixed and
update λ.
The subgradient for λij is VT

i Vj + 1
K−1 . A simple updat-

ing rule for λij is of the form

λij ← λij + α

(
VT
i Vj + 1

K − 1

)
,

where α is a pre-defined step size. Since λij are constrained
to be less than or equal to zero, the above update rule is
modified as

λij ← min
(

λij + α

(
VT
i Vj + 1

K − 1

)
, 0

)
.

To accelerate the convergance, let us introduce εg ≥ 0
that defines a guard interval. If λij < −εg , we make a
further modification and update λij as

λij ← λij2
−μ

(
VT
i Vj+ 1

K−1

)
,

where μ ≥ 0 is a damping parameter that can be tuned
according to the accuracy requirement of the final solu-
tion [26]. This exponentiation in the Lagrange multiplier
update improves the speed of convergence of the pro-
posed scheme.

Convergence and stopping criterion
Detecting convergence is slightly more complicated in the
polyploid case as the objective does not increase mono-
tonically. We use a short window of 50 latest iterations to
smoothen the value of the objective function and use the
obtained value to test the convergence (details omitted for
brevity).

Randomized projections and greedy refinement
The solution V̂ to the fast Lagrangian scheme described in
this section has rank r̂. To obtain K partitions sought after
in the K-ploid haplotype assembly problem, we project V̂
onto an r × K matrix Q with random entries and assign
the ith read to the jth partition if the (i, j) entry of P = V̂Q
is the largest component of the ith row of P. We gener-
ate multiple projections and choose the one among them
leading to the largest value of the objective function in (9)
as the solution.
For the no-genotyping-errors setting, the previous

scheme provides h1, . . . hK . A few rounds of greedy iter-
ations that explore if local alterations of the bases along
the K haplotype sequences may improve the MEC score
are conducted. For the case where genotyping errors are
present, we use the previously described procedure to par-
tion the reads into K clusters. To assemble the haplotypes
from the partitions, we use the majority voting scheme
as described in the diploid section. Finally, the assem-
bled haplotypes are further greedily refined by testing if
sequential alterations of the bases lead to any improve-
ment of the MEC scores, which has complexity O(Kn).
We formalize the proposed scheme as Algorithm 2 given
below.
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Algorithm 2: Haplotype assembly for polyploids
Input: W, εth, εtol, εg , r=K, k=K−1, V (an m × K

matrix).
Output: Haplotypes (h1, h2 . . . hK )
Initialization: V ← random matrix with normalized
rows.
η ← anm × 1 vector with random entries
repeat

Inner Loop
for i=1 to m do

Vi ← ∑
j∈Ei(wij + λij)Vj

Vi ← Vi‖Vi‖
end
Inner loop end
Outer loop
for i =1 to m do

for j=1 to m do
if (λij ≥ −εg ) and (λij �= 0) then

λij ← min(λij + α(VT
i Vj + 1

K−1 ), 0)
end
else

λij ← λij2−μ(VT
i Vj+ 1

K−1 )

end
end

end
Outer loop end
k= the # of singular values of V that are greater
than or equal to εth
if (k= r) then

r ← r + 1
V=[V 0.01η]
V ← row normalized V

end
until convergence criterion is met;
for i = 1 to O(log(m)) do

Q ← an r × K matrix with random entries
P=Projections of V onQ
xi(1 . . . m) ← argmax(P) (row-wise)
Mi = ∑

wij(1{xi(j)=xi(k)} − 1{xi(j) �=xi(k)})
end
x∗(1 . . .m) = argmax

xi
Mi

Obtain h1, h2 . . . hK from x∗(1 . . .m) using majority
voting
Perform greedy refinement of (h1, h2 . . . hK )
Return(h1, h2 . . . hK )

Results and discussion
We tested performance of SDhaP using both simulated
and experimental data, as described next. Our codes are
written in C and the benchmarking tests are conducted

on a single core Intel Xeon machine with 2.93GHz and
12GB RAM. We compared SDhaP with CPLEX [12] (an
optimal assembly scheme for solving integer programs),
HapCUT [7] (a widely used method characterized by
a good speed/accuracy trade-off ), RefHap [13] (a more
recent scheme that is capable of detecting and correct-
ing homozygous positions) and HapTree [16] (a recent
method capable of performing haplotype assembly for
both diploid and polyploid species).

Performance on real datasets
HuRef Data
We first tested SDhaP on the HuRef dataset [6] which con-
tains single and mated reads sequenced using a dideoxy
Sanger sequencing technology with an average cover-
age of ≈ 8X. Table 1 compares the accuracy (in terms
of the MEC scores) and runtimes of SDhaP with those
of aforementioned existing techniques. As can be seen
from the table, the MEC scores obtained with SDhaP
are significantly better than those of the competing algo-
rithms except for CPLEX. The complexity of CPLEX,
however, scales exponentially with the haplotype length
whichmakes it impractical for very long haplotype blocks.
As evident from the table, our SDhaP is faster than any of
the other considered schemes(except CPLEX). We should
point out that unlike SDhaP and RefHap neither HapCUT
nor HapTree make homozygous calls, which adversely
affects their performance both in terms of MEC and
(as shown in the simulation sections) switch error rate
(SWER).

Fosmid data
To investigate how SDhaP performs when employed for
the assembly of very long haplotype blocks, we tested it
on the fosmid dataset analyzed in [13]. Table 2 shows
the accuracy and runtime comparison of SDhaP with sev-
eral competing schemes. As can be seen from the table,
the MEC scores of SDhaP are better than those of Hap-
CUT, HapTree and RefHap; its runtimes are comparable
to those of RefHap, while HapCUT and HapTree are very
slow when the coverage is low and read lengths long (as is
the case with the fosmid dataset). Overall, SDhaP seems to
be robust with respect to the nature of the dataset, e.g., it
is fast, compared to other techniques, regardless whether
being applied to HuRef or fosmid datasets.

Performance of the algorithm on simulated data
Diploid
To characterize how the accuracy of SDhaP depends upon
coverage and haplotype block lengths, we perform tests
on simulated data sets. In particular, we generate data sets
containing paired-end reads with long inserts that emu-
late the scenario where long connected haplotype blocks
need to be assembled. The SNP rate between two human
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Table 1 Comparison of MEC and runtimes for different schemes applied to HuRef data

chr #

Huref

CPLEX SDhaP HAPCUT RefHap HapTree

MEC t(in secs) MEC t(in secs) MEC t(in secs) MEC t(in secs) MEC t(in secs)

1 16853 1.72 × 105 17192 190 19777 251 18739 8354 21112 8499

2 12618 1260 12713 220 14698 185 13762 3576 15720 8210

3 9296 960 9444 153 10714 257 10096 4866 11424 12183

4 9958 1140 10106 115 11567 274 10936 5399 12479 9534

5 9195 1080 9333 141 10590 196 10045 4398 11391 8972

6 8637 900 8696 105 9922 247 9318 4225 10912 8462

7 9782 1020 9954 102 11279 152 10540 7030 12196 6876

8 8480 3960 8604 90 9832 226 9352 4640 10552 9162

9 8051 780 8134 88 9290 111 8850 3898 9905 5515

10 8550 1200 8680 87 9877 209 9323 5203 10598 8782

11 7027 840 7186 92 8210 156 7744 4514 8856 7093

12 7136 720 7256 100 8240 152 7725 2669 9003 5494

13 5090 600 5142 62 5844 125 5511 3363 6285 7680

14 5086 480 5173 52 5861 72 5537 2313 6273 3533

15 8088 1.67 × 105 8216 71 9364 108 9031 2014 10218 4018

16 7176 1500 7231 51 8287 138 7830 1896 8769 4589

17 5739 480 5819 47 6570 86 6238 2362 7106 5626

18 4403 540 4467 56 5041 108 4814 1542 5500 3544

19 4628 480 4670 32 5335 65 5052 1132 5660 2804

20 3243 300 3316 37 3753 63 3458 1472 4068 3602

21 3360 2400 3369 31 3914 63 3752 739 4154 1692

22 3908 7.16 × 105 3973 32 4539 43 4384 1786 4780 1683

MEC and running times for CPLEX, SDhaP, HAPCUT, RefHap and HapTree algorithms applied to HuRef data. SDhaP is more accurate than all schemes except for CPLEX
(which is the only one that requires proprietary software). However, for longer blocks, the complexity of the CPLEX schememay become very high as evident from
chromosomes 1, 15 and 22.

haploid chromosomes is estimated at 1 in 300 [2].We gen-
erate SNPs by randomly choosing the distance between
each pair of adjacent SNPs based on a geometric random
variable with parameter psnp (the SNP rate). To simulate a
sequencing process capable of facilitating reconstruction
of long haplotype blocks, we randomly generate paired-
end reads of length 500 with average insert length of
10,000 bp and standard deviation of 10%; sequencing
errors are inserted using realistic error profiles [27] and
genotyping is performed using a Bayesian approach [28].
At such read and insert lengths, the generated haplotype
blocks are nearly fully connected (99.9%).
Accuracy of haplotype assembly is naturally expressed

in terms of switch errors – the number of switches
(recombination events in the inferred phased haplo-
types) that are required to obtain the true haplotype
phase. This can be expressed as a rate: the number of
switches required divided by the number of opportuni-
ties for switch error. While our tests of the performance
of SDhaP on real datasets are expressed only in terms

of the MEC scores, for the simulated datasets we know
the ground truth and therefore characterize the perfor-
mance of SDhaP in terms of both MEC and switch error
rate (SWER). Table 3 compares the MEC, SWER and
running times of SDhaP with those of HapCUT, Hap-
Tree and RefHap. We make these comparisons for hap-
lotype block lengths of 103 and 104 at coverages of 10,
20 and 30. SDhaP’s MEC score is lower and its SWER is
nearly half that of the competing schemes. The running
times of SDhaP are at least 10 times lower for haplo-
type block lengths of 104 (although for block lengths of
103 the difference in running times is not as appreciable).
Overall, SDhaP clearly outperforms the other considered
methods.
Since CPLEX is originally designed to find an optimal

solution to the haplotype assembly problem, we com-
pared SDhaP with both the original CPLEX as well as
its heuristic variant proposed by [12] for different hap-
lotype block lengths, coverages and error rates. We set a
time limit of 24 hours for the optimal scheme to complete
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Table 2 Comparison of MEC and runtimes for different schemes applied to Fosmid data

chr #

Fosmid

CPLEX SDhaP RefHap HAPCUT HapTree

MEC t(in secs) MEC t(in secs) MEC t(in secs) MEC t(in secs) MEC t(in secs)

1 6889 480 7297 8.07 8051 2.61 9550 600 9676 6501

2 6700 451 7214 7.84 7910 2.65 9661 660 9802 7196

3 5122 420 5588 6.49 6111 2.969 7557 360 7705 4847

4 4072 360 4510 5.41 4880 1.81 6265 540 6500 8392

5 4637 762 5029 6.2 5558 2.15 6919 480 7094 5670

6 5248 471 5674 7.26 6341 2.093 7958 2700 – –

7 4174 464 4509 5.02 4961 2.07 6062 480 6169 5589

8 4301 347 4785 5.09 5092 2.0 6255 615 6379 8316

9 3974 191 4200 4.7 4591 1.76 5463 376 5513 4465

10 4508 270 4765 5.04 5357 2.52 6445 454 6553 4838

11 3903 150 4165 4.63 4620 2.23 5558 457 5625 5183

12 3907 159 4174 5 4686 2.18 5654 360 5770 5654

13 2669 137 2946 3.0 3155 1.1 3967 291 4029 5367

14 2814 413 2971 3.35 3244 1.89 3978 302 4038 4103

15 2903 138 3029 3.09 3341 1.54 4007 250 4116 3357

16 3844 221 4022 4.84 4438 1.66 5086 570 5142 9683

17 3448 295 3586 3.41 4159 1.86 4743 251 4806 3003

18 2337 288 2555 2.69 2801 1.39 3445 240 3493 2303

19 2707 70 2857 2.78 3406 1.35 3898 180 3953 1984

20 2783 305 2943 3.08 3295 1.72 3810 203 3886 1529

21 1367 72 1452 1.44 1601 1.05 1951 134 1979 1410

22 2422 175 2508 3.21 2876 1.69 3260 118 3307 1351

MEC and running times for CPLEX, SDhaP, HAPCUT, RefHap and HapTree haplotype assembly strategies applied to Fosmid data. SDhaP is more accurate than the
other schemes except CPLEX and significantly faster than HapCUT or HapTree. For chromosome 6, HapTree did not complete its run within 48 hours and hence the
corresponding entry is missing.

the assembly task and, if the optimal scheme did not suc-
ceed, ran the heuristic method allowing another 24 hours
for the completion of the assembly task. Table 4 and
Table 5 show the MEC scores, SWER and runtimes for
the considered methods. As can be seen from the tables,

CPLEX did not complete the task for block lengths of 105
and most of the block length of 104. For block lengths of
103 and error rates 1%, CPLEX achieves the best MEC
scores and SWER but its runtimes are significantly slower
than those of SDhaP. For very long blocks and high error

Table 3 Comparison of SWER, MEC and runtimes for different schemes on simulated diploid data

Data

Simulated data

SDhaP RefHap HAPCUT HapTree

MEC SWER time MEC SWER time MEC SWER time MEC SWER time

l 103, c 10 86 0.002 4 123 0.009 8 123 0.009 6 123 0.009 31

l 103, c 20 212 0.001 5 293 0.010 169 303 0.011 8 305 0.006 14

l 103, c 30 300 0.001 7 378 0.007 567 377 0.002 7 378 0.001 14

l 104, c 10 1112 0.003 28 1257 0.008 2341 1354 0.011 282 1354 0.010 34905

l 104, c 20 2088 0.003 36 2659 0.008 36392 2774 0.009 680 2774 0.009 35443

l 104, c 30 3482 0.004 81 4164 0.009 39184 4277 0.010 604 4283 0.009 17002

MEC, SWER and running times (in seconds) for SDhaP, RefHap, HAPCUT and HapTree algorithms for simulated data of different lengths (l) and with different coverages
(c). The data contains a fixed 1% fraction of genotyping errors. SDhaP is more accurate in terms of MEC and SWER and faster by almost an order of magnitude
compared to other schemes for longer blocks.
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Table 4 Comparison of SWER, MEC and runtimes for SDhaP and CPLEX on simulated diploid data with 1% error rate

Data

Simulated data

SDhaP CPLEX(optimal) CPLEX(heuristic)

MEC SWER time MEC SWER time MEC SWER time

l 103, c 10 100 0.001 1 100 0.001 192 100 0.001 57

l 103, c 20 215 0.001 4 215 0.001 1320 215 0.001 373

l 103, c 30 291 0.001 6 291 0.001 1241 291 0.001 910

l 104, c 10 978 0.008 14 - - - 972 0.008 4505

l 104, c 20 2039 0.004 33 - - - 2039 0.004 89811

l 104, c 30 2988 0.004 68 - - - - - -

l 105, c 10 10356 0.008 324 - - - - - -

l 105, c 20 19975 0.007 713 - - - - - -

l 105, c 30 29967 0.005 1810 - - - - - -

MEC, SWER and running times (in seconds) for SDhaP, RefHap, HAPCUT and HapTree algorithms for simulated data of different lengths (l) and with different coverages
(c). The data contains a fixed 1% fraction of genotyping errors. SDhaP is more accurate in terms of MEC and SWER and faster by almost an order of magnitude
compared to other schemes for longer blocks.

rates, neither the optimal CPLEXmethod nor its heuristic
variant provided a solution except in one instance where
SDhaP actually performed better (in particular, for the
block length 104, error rate 5%, and coverage 10).
Figure 1 shows the switch error rate of SDhaP as a func-

tion of sequencing coverage for various block lengths and
error rates. The considered haplotype block lengths are
103, 104 and 105. The data for the haplotype blocks is gen-
erated with embedded error rates of ≈ 1% and ≈ 5%. The
coverages used were 10X, 20X and 30X. As can be seen in
the figure, when the error rate is 1%, the SWER of SDhaP
for coverages greater than 20X is very small for all block
lengths. When the error rate is 5%, we observe that higher
coverage is needed to ensure low SWER.
Figure 2 show the runtimes of SDhaP as a function of the

coverages for various block lengths and error rates. The

runtimes (in minutes) are plotted on the logarithmic scale
and show that the complexity of SDhaP scales approxi-
mately linearly with block lengths and coverage. Notably,
a block of length 105 (which is of the same order as the
length of the haplotype associated with the longest human
chromosome, chromosome 1) with a coverage of 30X
requires only 20 minutes. Note that there is no significant
difference in the runtimes for different error rates.

Polyploid
To test the performance of SDhaP for the assembly of
polyploid haplotypes, we generate data in the same way
as described in the previous section (notably, the reads
and inserts are of the same lengths as those in the diploid
simulations). We study the performance of SDhaP when
applied to the assembly of haplotypes with ploidy K = 3,

Table 5 Comparison of SWER, MEC and runtimes for SDhaP and CPLEX on simulated diploid data with 5% error rate

Data

Simulated data

SDhaP CPLEX(optimal) CPLEX(heuristic)

MEC SWER time MEC SWER time MEC SWER time

l 103, c 10 535 0.04 1 518 0.036 811 - - -

l 103, c 20 1042 0.007 4 - - - 1041 0.007 11393

l 103, c 30 1583 0.003 4 - - - - - -

l 104, c 10 4971 0.099 14 4945 0.093 13800 7024 0.12 961

l 104, c 20 9839 0.0370 41 - - - - - -

l 104, c 30 15310 0.0150 85 - - - - - -

l 105, c 10 51342 0.210 375 - - - - - -

l 105, c 20 102234 0.120 772 - - - - - -

l 105, c 30 157234 0.030 1517 - - - - - -

MEC, SWER and running times (in seconds) for SDhaP, RefHap, HAPCUT and HapTree algorithms for simulated data of different lengths (l) and with different coverages
(c). The data contains a fixed 5% fraction of genotyping errors. SDhaP is more accurate in terms of MEC and SWER and faster by almost an order of magnitude
compared to other schemes for longer blocks.
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Figure 1 SWER for diploids. Switch error rates of SDhaP applied to
diploid data as a function of coverage for different block lengths and
error rates. To achieve the same SWER, higher coverages are needed
for longer blocks and higher error rates.

4 and 6. Figure 3 shows the SWER of SDhaP as a func-
tion of the coverage for various block lengths. As can be
seen there, the coverage required to obtain a chosen target
SWER increases with the ploidy. (For details on the defini-
tion of SWER for polyploids, please see [16]; we compute
SWER using a branch and bound scheme). The algorithm
is tested for coverages 5KX, 10KX and 5K2X, where K
denotes the ploidy. From the simulation results, it appears
that the required coverage increases approximately with
the square of the ploidy. For example, the coverage needed

Figure 2 Runtimes for diploids. Runtimes of SDhaP applied to
diploid data as a function of coverage for different block lengths and
error rates. The runtimes are nearly independent of error rates and
scale approximately linearly with block lengths.

Figure 3 SWER for polyploids. Switch error rates of SDhaP applied to
polyploid data as a function of coverage for different block lengths
and error rates. To achieve the same SWER, higher coverages are
needed for longer blocks and higher ploidy.

to achieve SWER below 1% for triploids (K = 3) is approx-
imately 45X, for tetraploids (K = 4) the required coverage
is around 80X, and for hexaploids (K = 6) the algorithm
requires coverage of≈ 180X. In Figure 4 we show the run-
times of SDhaP (in minutes and on a logarithmic scale) as
a function of the coverage for different ploidy.
Tables 6, 7 and 8 compare the MEC, SWER and run-

times of SDhaP when applied to the haplotype assembly
of triploids, tetraploids and hexaploids as a function of
coverage and block length with those of HapTree [16].

Figure 4 Runtimes for polyploids. Runtimes of SDhaP applied to
polyploid data as a function of coverage for different block lengths
and error rates. The runtimes scale approximately linearly with block
lengths and quadratically with the ploidy.
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Table 6 Comparison of SWER, MEC and runtimes for different schemes on simulated biallelic triploid data

Dataset parameters Genotyping error rate
SDhaP HapTree

MEC SWER t(in secs) MEC SWER t(in secs)

length 103, cov 15 0.0348 170 0.0130 18 401 0.0430 1860

length 103, cov 30 0.0135 331 0.0027 90 582 0.0220 8

length 103, cov 45 0.0064 488 0.0013 183 614 0.0053 5

length 104, cov 15 0.0348 1848 0.0143 388 - - -

length 104, cov 30 0.0135 4091 0.0038 1289 4744 0.0191 680

length 104, cov 45 0.0064 6169 0.0025 2048 5492 0.0060 2424

MEC, SWER and running times for SDhaP andHapTree algorithms on biallelic triploid simulated data. For l= 104 and c= 15, HapTree did not complete the task in 48 hrs.

Table 7 Comparison of SWER, MEC and runtimes for different schemes on simulated biallelic tetraploid data

Dataset parameters genotyping error rate
SDhaP HapTree

MEC SWER t(in secs) MEC SWER t(in secs)

length 103, cov 20 0.0487 193 0.0105 40 626 0.0891 580

length 103, cov 40 0.0217 385 0.0050 124 974 0.0380 780

length 103, cov 80 0.0081 836 0.0015 560 2174 0.0290 15

length 104, cov 20 0.0487 4676 0.0233 383 - - -

length 104, cov 40 0.0217 6966 0.0096 2901 - - -

length 104, cov 80 0.0081 14146 0.0072 8784 - - -

MEC, SWER and running times for SDhaP and HapTree algorithms on biallelic tetraploid simulated data. For l= 104, HapTree did not complete the task in 48 hrs.

Table 8 SWER, MEC and runtimes of SDhaP for simulated hexaploid data

Dataset parameters Genotyping error rate
SDhaP

MEC SWER t(in secs)

length 103, cov 30 0.0480 1270 0.1338 278

length 103, cov 60 0.0283 1653 0.0215 943

length 103, cov 120 0.0177 2246 0.0170 1178

length 103, cov 180 0.0087 1767 0.0017 8341

length 104, cov 30 0.0480 14127 0.3370 1665

length 104, cov 60 0.0283 16014 0.1100 5240

length 104, cov 120 0.0177 21102 0.0353 19940

length 104, cov 180 0.0087 72203 0.0210 30911

MEC, SWER and running times of SDhaP for biallelic hexaploid simulated data. HapTree completed the task within 48 hrs in only one case, (l = 30, cov=60), where it
achieved MEC=2832, SWER=0.1114, and t = 3441 s, all inferior compared to the results of SDhaP in the table.
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Figure 5 Block lengths histogram for HuRef data. Histogram of block lengths for Huref data.

Note that HapTree, previously shown to outperform the
only other existing method for haplotype assembly of
polyploids [16], assumes exact knowledge of the under-
lying genotypes and that its performance deteriorates in
the presence of errors. Genotyping from next-generation
sequencing data, however, is typically erroneous [29] and
hence we compare the performance of SDhaP and Hap-
Tree in the presence of genotyping errors (the error rates,
reported in the tables, are typical of genotyping software
[29]). As can be seen from the tables, SDhaP outperforms
HapTree in terms of both SWER and MEC. The complex-
ity of SDhaP is roughly linear in the size of the haplotype
block while the complexity of HapTree grows significantly
with the size of the block. In fact, several of HapTree sim-
ulations could not be completed within 48hrs (hence the
data for such instances is missing).
Remark: SDhaP is designed to minimize the MEC score

which, as pointed out in [16], cannot distinguish between
identical pairs of SNPs on the haplotypes of a poly-
ploid. For example, when a triploid has pairs of SNPs

{AC,GT,GT} at the same positions of its haplotypes,
MEC cannot be used to distinguish between the two chro-
mosomes containing the SNP subsequence GT (and thus
phase the corresponding haplotypes). However, this does
not impede the ability of the MEC criterion to enable sep-
aration of polyploid haplotypes provided they are sampled
by paired-end reads sufficiently long to resolve segments
of identical SNPs – as demonstrated by the results pre-
sented in Tables 4, 5 and 6.

Connectivity
The lengths of sequencing reads, insert sizes and their
variations, and SNP rates are of fundamental importance
for the achievable performance of haplotype assembly and
connectivity of SNP positions. Figure 5 and Figure 6 show
the distributions of the haplotype block lengths for HuRef
and Fosmid data for all 22 chromosomes, respectively. As
can be seen there, majority of the blocks are shorter than
500 SNPs. While this has been a major issue with pre-
vious generations of sequencing technologies, with the

Figure 6 Block lengths histogram for fosmid data. Histogram of block lengths for Fosmid data.
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Figure 7 Histogram of homozygous positions. Histogram of the fraction of homozygous positions as a function of chromosome number for HuRef
data. On average, around 1% positions are falsely called heterozygous.

ability of sequencing longer reads and fosmid technolo-
gies that allow insert lengths as large as 100kB, one can
expect achieving complete connectivity in future. In our
simulation studies, we focused on long inserts that enable
near-complete connectivity of the haplotype blocks. For
a more detailed discussion, please see [30] and the refer-
ences therein.

Homozygous positions
Chen, 2013 [12] demonstrated presence of homozy-
gous sites in haplotype blocks assembled using high-
throughput sequencing data. In Figure 7, we show the
histogram of the fraction of homozygous positions in the
haplotypes assembled from HuRef data using SDhaP. As
seen there, approximately 1 − 1.5% of the positions are
homozygous. To address this issue, [14] suggested using
alternative measures of performance such as minimum
weighted edge removal (MWER). However, as our results
demonstrate, optimizing the MEC objective with the
added capability of calling homozygous positions results
in a very low SWER.

Conclusion
In this paper, we introduced a haplotype assembly scheme
for diploid (K = 2) and polyploid (K > 2) species
that relies on our novel technique for solving low-
rank semidefinite programming optimization problems.
Highly accurate and computationally efficient, the pro-
posed SDhaP algorithm also addresses the important issue
of having homozygous positions in the data – a problem
that is neglected by most existing haplotyping schemes.
The method is tested on real and simulated data for
both the diploid and polyploid scenarios, showing that it
outperforms several existing methods in terms of both
accuracy and speed.We also provide important guidelines

for the required coverage needed to achieve near-optimal
haplotype assembly. In future, we expect to extend the
developedmethod to jointly perform genotyping and hap-
lotyping.

Endnotes
aIn semidefinite programming, one minimizes a linear

function subject to the constraint that an affine
combination of symmetric matrices is positive
semidefinite. Such a constraint is nonlinear and
nonsmooth, but convex, so semidefinite programs are
convex optimization problems. Semidefinite
programming unifies several standard problems (e.g.
linear and quadratic programming) and finds many
applications in engineering and combinatorial
optimization [31].

bIn complexity theory, the class APX is the set of NP
optimization problems that allow polynomial-time
approximation algorithms with approximation ratio
bounded by a constant (or constant-factor approximation
algorithms for short).
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