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Abstract

In this paper, we report a two-dimensional (2D) simulation for InGaAs/InAlAs separate absorption, grading, charge,
and multiplication avalanche photodiodes (SAGCM APDs) and study the effect of the charge layer and multiplication
layer on the operating voltage ranges of APD. We find that with the increase of the thicknesses as well as the doping
concentrations of the charge layer and the multiplication layer, the punchthrough voltage increases; with the increase
of the doping concentrations of two layers and the thickness of the charge layer, the breakdown voltage decreases;
with the increase of the thickness of the multiplication layer, the breakdown voltage first rapidly declines and then
slightly rises.
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Background
Focal plane array (FPA) based on In0.53Ga0.47As (referred
as InGaAs hereafter) has a huge market and wide appli-
cation prospect, and it is widely used in military field
[1]. For narrow band gap materials like InGaAs, high
tunneling current limits their usefulness. Separating the
absorption and multiplication layer can overcome this
disadvantage [2]. InGaAs is often used to absorb light at
a wavelength of 1.55 μm, while for the multiplication
layer, In0.52Al0.48As (referred as InAlAs hereafter) is a
good multiplication layer material [3]. InAlAs has been
demonstrated to be a good electron multiplication ma-
terial for InGaAs separate absorption and multiplication
avalanche photodiodes (SAM APDs) because of its low
electron impact ionization threshold energy of 1.9–
2.2 eV, high ionization coefficient ratio of electron to
hole than that of hole to electron in InP, and small ex-
cess noise factor [4, 5].
For separate absorption, grading, charge, and multi-

plication avalanche photodiodes (SAGCM APDs), the
key issue is to adjust the electric field distribution in
the device by changing the thickness and doping con-
centration of the charge layer and the multiplication
layer. Provided that the electric field is sufficiently large

in the multiplication region, the carriers will undergo
avalanche multiplication, and the device behaves as an
avalanche photodetectors (APD) as desired [6]. The
SAGCM structure allows independent control of the
parameters of the charge layer and the multiplication
layer (thickness and the doping concentration). In this
paper, we study the effect of the charge layer and multi-
plication layer on the operating voltage ranges of APD
and analyze the results theoretically from the internal
electric field distribution.

Methods
Figure 1 shows the schematic cross-section of a top-
illuminated SAGCM InGaAs/InAlAs APD with 400 μm2

mesa structure. From the top to the bottom, these layers
are sequentially named as contact layer, window layer,
absorption layer, grading layer, charge layer, multiplica-
tion layer, InAlAs buffer layer, InP buffer layer, and InP
substrate. The device structure in our simulation is the
same as the experimental device reported in Ref. [7].
The steady-state two-dimensional (2D) numerical sim-

ulations are performed for the top-illuminated SAGCM
InGaAs/InAlAs APD by using Silvaco TCAD [8]. The
Shockley–Read–Hall (SRH), auger, band-to-band tunnel-
ing, and trap-assisted tunneling models are used in our
simulation. The generation rate Gbbt of band-to-band
tunnel is described in Eqs. (1) and (2) [8].
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The A and B are the characterization parameters; E is
the magnitude of electric field, and Eg is the band gap
energy level. The generation rate Rtat in trap-assisted
tunneling process is given in Eqs. (3)–(5) [8–11].
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where τn (τp) is the electron (hole) lifetime due to the
SRH recombination. Et is the trap level, and Nt is the
trap concentration. Ei is the intrinsic Fermi level, and ni
is the intrinsic carrier concentration. Γn (Γp) is the en-
hancement factor and includes the effects of field-
assisted tunneling on the emission of electrons (holes)
from a trap, ΔEn (ΔEp) is the energy range where tunnel-
ing can occur for electrons (holes), u is the integration

variable, and mtrap is the effective mass used for carrier
tunneling. The effect of carrier avalanche is accounted
for by the impact ionization model, which has the fol-
lowing forms:

Gava ¼ αnnvn þ αppvp ð6Þ
Where αn,p are the electron and hole ionization coeffi-
cients, respectively, [8, 12, 13]

αn;p Fð Þ ¼ γan;pe
−γbn;p

F ð7Þ

The parameters above are listed in Table 1.

Results and Discussion
Figure 2 presents the simulated and experimental
current–voltage (I–V) characteristics for the top-
illuminated SAGCM InGaAs/InAlAs APD. The simulated
results are in good agreement with the experimental data
reported in Ref. [7].
The simulated I–V characteristics at different doping

concentrations of the multiplication layer are shown in
Fig. 3, the punchthrough voltage (at the unity gain
point: the bias where the responsivity of APD reaches
~0.6 A/W) increases monotonically with the increasing
of doping concentration (4 × 1016 ~ 1.5 × 1016 cm−3), [14]
while the breakdown voltage (dark current ~ 1 × 10−5 A)
decreases monotonically. With the change of the doping
concentration, the electric field in the multiplication layer
changes obviously. We analyze the results theoretically
following assumptions and simplifications [15]:

1. P+–N is an abrupt junction
2. The doping concentrations in the multiplication,

charge, grading and absorption layers are uniform
3. If the absorption layer is completely depleted

at breakdown voltage, xs will be the thickness
of the absorption layer

Fig. 1 Structure of InAlAs/InGaAs APD

Table 1 Material parameters used for InGaAs/InAlAs APD
simulation [6, 8, 16, 17]

Parameters/InAlAs Units Electron Hole

SRH lifetime s 1 × 10−6 1 × 10−6

Radioactive coefficient cm3 s−1 1.2 × 10−10 1.2 × 10−10

BBT coefficient α 1 2 2

BBT coefficient A 1/V cm s 2.1 × 1011 2.2 × 106

BBT coefficient B V/cm 2.1 × 1011 2.2 × 106

Trap level Et ev 0.72

Trap concentrations Nt cm−3 1 × 10−12

mtrap m0 0.03

Impact coefficient a cm−1 1.3 × 107 3.3 × 107

Impact coefficient b V/cm 3.5 × 106 4.5 × 106
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The Vmesa is the punchthrough voltage, Vbi is the zero

bias voltage, and Vbr is the breakdown voltage; xm, xc,
and xg are the thickness of the multiplication, charge,
and grading layer, respectively; and σm, σc, σg, and σs are
the charge density in the multiplication, charge, grading,
and absorption layer, respectively, σ =N ⋅ x; and ε0, ε1, ε2,
and ε3 are the dielectric constant of vacuum, InAlAs,
InGaAs, InAlGaAs, respectively; Fbr is the electric field
in the multiplication layer at breakdown [13]. To get
smaller dark currents, larger breakdown voltage, and lar-
ger gain factor, the doping of absorption layer is rela-
tively higher [14]. From Eq. (9), when the absorption
layer is not completely depleted at breakdown voltage, xs
is the width of the depletion region of the InGaAs
absorption layer.
With the decreasing of doping concentration, the elec-

tric field between the absorption layer and the grading
layer increases, which makes the electron more easier to
punch through the absorption layer and the grading
layers, so the punchthrough voltage decreases, owing to
the wedge-shaped electric field profile with a high gradi-
ent [12]. From Fig. 3, we can see that the doping of the
multiplication layer has a great influence on the per-
formance of the device.
Figure 4 shows the simulated I–V characteristics with

different thicknesses of the multiplication layer (0.05 ~
0.25 μm). The punchthrough voltage increases with the
increasing thickness of multiplication layer, [13] and the
breakdown voltage first rapidly declines then slightly
rises (Fig. 5). We analyze the results theoretically from
Eqs. (8) and (9), and the following equations: [18]

Mn ¼ 1−1=k
exp −α 1−1=kð Þxm½ �−1=k ð10Þ

(Mn is the multiplication factor of electron in the
multiplication layer)
So, we can get:
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� �
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(Em is the max electric field intensity in the multiplica-
tion layer).
So,

Fig. 2 Simulated photocurrent (red solid line) and dark current (black
solid line) as a function of the reverse bias voltage, and experimental
photocurrent (red dotted circle) and dark current (black solid line) of
APD from Ref. [7]

Fig. 3 a Current–voltage characteristic of avalanche photodiode
with different multiplication layer doping. b Distribution of electric
field, biased at 15 V
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The above equations explain that when the multiplica-
tion layer thickness xm is smaller than the critical point

−α
∂α=∂xm

, the breakdown voltage declines. When xm is lar-

ger than that point, the breakdown voltage slightly rises.
The value of the critical point calculated from the Eqs.
(10)–(12) is ~ 0.2 μm, which is close to the simulated
result in Fig. 5.
From the electric field distribution, with the increasing

thickness of multiplication layer, the electric field in the
absorption layer and the grading layer decreases, making
the electrons more difficult to punch through the layers,
so the punchthrough voltage increases. From the simula-
tion results, in order to get a larger operating voltage
range, the doping and thickness of the multiplication
layer can be 4 × 1016 cm−3 and 0.05 μm, respectively.
The electric field in the multiplication layer is en-

hanced by the charge layer to ensure the multiplica-
tion effect occurs in the multiplication layer. The
thickness and the doping concentration of the charge
layer can control the electric field in the multiplication
layer. Figure 6 shows the dark and illuminated current
characteristics with different doping concentrations

Fig. 4 a Current–voltage characteristic of avalanche photodiode
with different multiplication layer thickenesses. b Distribution of
electric field, biased at 15 V

Fig. 5 Voltage thickness characteristic of avalanche photodiode

Fig. 6 a Current–voltage characteristic of avalanche photodiode
with different charge layer doping concentrations. b Distribution of
electric field, biased at 15 V
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(5 × 1017 ~ 8 × 1017 cm−3). With the increasing of dop-
ing concentration, the punchthrough voltage increases
and the breakdown voltage decreases. Figure 7 shows
the I–V characteristics with different thicknesses of
the charge layer, and we can observe that with the
increasing thickness, the punchthrough voltage increases
while the breakdown voltage decreases [19, 20]. With the
increasing thickness and the doping of charge layer, the
electric field in the absorption layer and the grading layer
decreases, and it makes the electron more difficult to
punch through the layers, so the punchthrough voltage
increases, but the electric field in multiplication layer
increases with the increased thickness and the doping
of charge layer. The thickness and doping concentra-
tion of the charge layer only affect the voltage distribu-
tion in the APD, so with the change of the parameters,
the punchthrough voltage and the breakdown voltage
change monotonously. Based on the simulation results,
to further increase the operating voltage range, the
doping and thickness of the charge layer can be 5 ×
1017 cm−3 and 0.065 μm, respectively.

Conclusions
In summary, we simulated and analyzed the punch-
through voltage and the breakdown voltage with the
change of the parameters of the charge layer and multi-
plication layer. We found that with the increase of the
thicknesses and the doping concentrations of the charge
layer and the multiplication layer, the punchthrough
voltage increases; with the increase of the doping con-
centrations of two layers and the thickness of the charge
layer, the breakdown voltage decreases; with the increase
of the thickness of the multiplication layer, the break-
down voltage first rapidly declines then slightly rises.
Results show that the range of the operating voltage
can be changed significantly by the charge layer and
multiplication layer.
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