
Lifting matroid divisors on tropical 
curves
Dustin Cartwright*

1 � Background
The specialization inequality in tropical geometry gives an upper bound for the rank of 
a divisor on a curve in terms of a combinatorial quantity known as the rank of the spe-
cialization of the divisor on the dual graph of the special fiber of a degeneration [6]. This 
bound can be sharpened by incorporating additional information about the components 
of the special fiber, giving augmented graphs [2] or metrized complexes [1]. All of these 
inequalities can be strict because there may be many algebraic curves and divisors with 
the same specialization. Thus, the natural question is whether, for a given graph and 
divisor on that graph, the inequality is sharp for some algebraic curve and divisor. If R is 
the discrete valuation ring over which the degeneration of the curve is defined, we will 
refer to such a curve and divisor as a lifting of the graph with its divisor over R. In this 
paper, we show that the existence of a lifting can depend strongly on the characteristic of 
the field:

Theorem 1.1  Let P be any finite set of prime numbers. Then there exist graphs Ŵ and Ŵ′ with 
rank 2 divisors D on Ŵ and  D′on  Ŵ′with the following property : For any infinite field  k, Ŵ 
and D lift over k[[t]] if and only if the characteristic of k is in P, and Ŵ′ and D′ lift over 
k[[t]] if and only if the characteristic of k is not in P.

We also show that the existence of a lift depends on the field even beyond 
characteristic:
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Theorem 1.2  Let k ′ be any number field. Then there exists a graph Ŵ with a rank 2 divi-
sor D such that for any field k of characteristic 0, Ŵ  and D lift over  k[[t]] if and only if k 
contains  k ′.

Both Theorem 1.1 and 1.2 are immediate consequences of the following:

Theorem 1.3   Let X be a scheme of finite type over SpecZ. Then there exists a graph Ŵ 
with a rank 2 divisor D such that, for any infinite field k, Ŵ and  D lift overk[[t]] if and only 
if X has a k-point.

Theorems  1.1, 1.2, and  1.3 all apply equally well to divisors on weighted graphs  [2] 
because the construction of a degeneration in Theorem  1.3 uses curves of genus  0 in 
the special fiber and for such components, the theory of weighted graphs agrees with 
unweighted graphs.

Moreover, these theorems also apply to the metrized complexes introduced in  [1], 
which record the isomorphism types of the curves in the special fiber. Again, for rational 
components, the rank of the metrized complex will be the same as the rank for the 
underlying graph. For metrized complexes, there is a more refined notion of a limit  grd, 
which involves additionally specifying vector spaces of rational functions at each vertex. 
Not every divisor of degree d and rank r on a metrized complex lifts to a limit grd, but the 
examples from the above theorems do:

Proposition 1.4  Let Ŵ and  D be a graph and divisor constructed as in Theorem   1.3. 
Then for any lift of Ŵ to a metrized complex with rational components, there also exists a 
lift of D to a limit  g2d.

If we were to consider divisors of rank  1 rather than rank  2, [3] provides a general 
theory for lifting. They prove that if a rank 1 divisor can be lifted to a tame harmonic 
morphism with target a genus 0 metrized complex, then it lifts to a rank 1 divisor an 
algebraic curve. Moreover, the converse is true except for possibly some cases of wild 
ramification in positive characteristic. Using this, they give examples of rank 1 divisors 
which do not lift over any discrete valuation ring  [3, Sec. 5]. While the existence of a 
tame harmonic morphism depends on the characteristic, the dependence is only when 
the characteristic is at most the degree of the divisor  [3, Rmk. 3.9]. In contrast, lifting 
rank 2 divisors can depend on the characteristic even when the characteristic is bigger 
than the degree:

Theorem  1.5  If P = {p} where p ≥ 443   is prime, then the divisors D and D′ in 
Theorem 1.1 can be taken to have degree less than p.

For simplicity, we have stated Theorems 1.1, 1.2, and 1.3 in terms of liftings over rings 
of formal power series, but some of our results also apply to other discrete valuation 
rings. In particular, these theorems apply verbatim with k[[t]] replaced by any DVR 
which contains its residue field k. For other, possibly even mixed characteristic DVRs, we 
have separate necessary and sufficient conditions in Theorems 3.4 and 3.5, respectively.
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The proof of Theorem 1.3 and its consequences use Mnëv’s universality theorem for 
matroids  [20]. Matroids are combinatorial abstractions of vector configurations in lin-
ear algebra. However, not all matroids come from vector configurations and those that 
do are called realizable. Mnëv proved that realizability problems for rank  3 matroids 
in characteristic  0 can encode arbitrary systems of integral polynomial equations and 
Lafforgue extended this to arbitrary characteristic  [17, Thm.  1.14]. Thus, Theorem 1.3 
follows from universality for matroids together with a connection between matroid real-
izability and lifting problems, which is done in Theorems  3.4 and  3.5. We also give a 
proof of universality in arbitrary characteristic with explicit bounds on the size of the 
matroid to establish Theorem 1.5.

Matroids have appeared before in tropical geometry and especially as obstructions for 
lifting. For example, matroids yield examples of matrices whose Kapranov rank exceeds 
their tropical rank, showing that the minors do not form a tropical basis [11, Sec. 7]. In 
addition, Ardila and Klivans defined the tropical linear space for any simple matroid, 
which generalizes the tropicalization of a linear space [5]. The tropical linear spaces are 
realizable as the tropicalization of an algebraic variety if and only if the matroid is realiz-
able [16, Cor. 1.5]. This paper is only concerned with rank 3 matroids, which correspond 
to two-dimensional fans and the graphs for which we construct lifting obstructions 
are the links of the fine subdivision of the tropical linear space (the fine subdivision is 
defined in [5, Sec. 3]).

Moreover, the matroid divisors from this paper have found applications to other ques-
tions regarding the divisor theory of graphs. David Jensen has shown that the matroid 
divisor of the Fano matroid gives an example of a 2-connected graph which is not Brill–
Noether general for any metric parameters [14]. In addition to the Baker–Norine rank 
of a divisor used in this paper, Caporaso has given a definition of the algebraic rank of 
a divisor, which involves quantifying over all curves over a given field [9]. Yoav Len has 
shown that in contrast to the results in Sect. 2, the algebraic rank of a matroid divisor 
detects realizability of the matroid, and he has used this to show that the algebraic rank 
can depend on the field [19].

Since rank 3 matroids give obstructions to lifting rank 2 divisors on graphs, it is natu-
ral to wonder if higher rank matroids give similar examples for lifting higher rank divi-
sors. While we certainly expect there to be results similar to Theorems 1.1, 1.2, and 1.5 
for divisors on graphs which have ranks greater than 2, it is not clear that higher rank 
matroids would provide such examples, or even what the right encoding of the matroid 
in a graph would be. From a combinatorial perspective, our graphs are just order com-
plexes of the lattice of flats, but for higher rank matroids, the order complex is a simpli-
cial complex but not a graph.

This paper is organized as follows. In Sect. 2, we introduce the matroid divisors which 
are our key class of examples and show that as combinatorial objects they behave as if 
they should have rank 2. In Sect. 3, we relate the lifting of matroid divisors to the realiz-
ability of the matroid. Section 4 looks at the applicability of our matroid to the question 
of lifting tropically Brill–Noether general divisors and shows that, with a few exceptions, 
matroid divisors are not Brill–Noether general. Finally, Sect. 5 provides a quantitative 
proof of Mnëv universality as the basis for Theorem 1.5.
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2 � Matroid divisors
In this section, we construct the divisors and graphs that are used in Theorem 1.3. As 
in [6] and [7], we will refer to a finite formal sum of the vertices of a graph as a divisor on 
that graph. Divisors are related by so-called “chip-firing moves” in which the weight at 
one vertex is decreased by its degree and those of its neighbors are correspondingly each 
increased by 1. A reverse chip-firing move is the inverse operation.

As explained in the Sect. 1, the starting point in our construction is a rank 3 simple 
matroid. A matroid is a combinatorial model for an arrangement of vectors, called ele-
ments, in a vector space. A rank 3 simple matroid corresponds to such an arrangement 
in a three-dimensional vector space, for which no two vectors are multiples of each 
other. There are many equivalent descriptions of a matroid, but we will work with the 
flats, which correspond to vector spaces spanned by subsets of the arrangement, and are 
identified with the set of vectors that they contain. For a rank 3 simple matroid, there is 
only one rank 0 and one rank 3 flat, and the rank 1 flats correspond to the elements of 
the matroid, so our primary interest will be in rank 2 flats. Throughout this paper, flat 
will always refer to a rank 2 flat.

We refer the reader to  [21] for a thorough reference on matroid theory, or  [15] for 
an introduction aimed at algebraic geometers. However, in the case of interest for this 
paper, we can give the following axiomatization:

Definition 2.1  A rank 3 simple matroid M consists of a finite set E of elements and 
a collection  F of subsets of  E, called the flats of  M, such that any pair of elements is 
contained in exactly one flat, and such that there are at least two flats. A basis of such a 
matroid is a triple of elements which are not all contained in a single flat.

By projectivizing the vector configurations above, a configuration of distinct k-points 
in the projective plane P2

k determines a matroid. The elements of this matroid are the 
points of the configuration and the flats correspond to lines in P2

k, identified with the 
points contained in them. A matroid coming from a point configuration in this way is 
called realizable over k and in Sect. 3, we will use the fact that matroid realizability can 
depend on the field.

Given a rank 3 simple matroid M with elements E and flats F, we let ŴM be the bipar-
tite graph with vertex set E ∐ F , and an edge between e ∈ E and f ∈ F  when e is con-
tained in  f. The graph ŴM is sometimes called the Levi graph of M. We let DM be the 
divisor on the graph ŴM consisting of the sum of all vertices corresponding to elements 
of the ground set E.

Proposition 2.2  The divisor DM has rank 2.

Proof  To prove the proposition, we first need to show that for any degree 2 effective 
divisor E, the difference DM − E is linearly equivalent to an effective divisor. We build up 
a “toolkit” of divisors linearly equivalent to DM. First, for any flat f, we can reverse fire f. 
This moves a chip from each element contained in f to f itself. Thus, the result is an effec-
tive divisor whose multiplicity at f is the cardinality of f, which is at least 2. Our second 
chip-firing move is to reverse fire a vertex e as well as all flats containing e. The net effect 
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will be no change at e but each neighbor f of e will end with |f | − 1 ≥ 1 chips. Third, we 
will use the second chip-firing move, after which all the flats which contain  e have at 
least one chip, after which it is possible to reverse fire e again.

Now let E be any effective degree 2 divisor on ŴM. Thus, E is the sum of two verti-
ces of ŴM. We consider the various combinations which are possible for these vertices. 
First, if E = [e] + [e′] for distinct elements e and e′, then ŴM − E is effective. Second, if 
E = [e] + [f ], then we have two subcases. If e is in f, then we reverse fire e and all flats 
containing it. If e is not in  f, then we can reverse fire just f. Third, if E = [f ] + [f ′] for 
distinct flats f and  f ′, then there are again two subcases. If f and f ′ have no elements 
in common, then we can reverse fire f and  f ′. If f and  f ′ have a common element, say e, 
then we reverse fire e together with the flats which contain it. Fourth, if E = 2[e], then 
we use the third chip-firing move, which will move one chip onto e for each flat contain-
ing e, of which there are at least 2. Fifth, if E = 2[f ], then we reverse fire f.

Finally, to show that the rank is at most 2, we give an effective degree 3 divisor E such 
that DM − E is not linearly equivalent to any effective divisor. For this, let e1, e2, and e3 
form a basis for M and let fij be the unique flat containing ei and ej for 1 ≤ i < j ≤ 3. We 
set E = [f12] + [f13] + [f23] and claim that DM − E is not linearly equivalent to any effec-
tive divisor. We reverse fire e1 together with all flats containing it to get the following 
divisor linearly equivalent to DM − E:

which is effective except at f23.
We wish to show the divisor in  (1) is not linearly equivalent to any effective divisor, 

which we will do by showing that it is f23-reduced using Dhar’s burning algorithm [12]. 
We first claim that for any element e other than e1, there is a path from f23 to e which 
does not encounter any chips. If e is in f23, then there is a direct edge between these 
vertices. If not, then we first let f denote the unique flat containing both e and e1. Since 
e1 , e2, and e3 form a basis, they cannot all be contained in f. Without loss of generality, we 
can assume that e2 is not in f, and so e, e1, and e2 form a basis. Thus, if f ′ is the unique flat 
containing e2 and e, then f ′ does not contain e1. Therefore, the path from f23 to e2 to f ′ to 
e does not cross any chips.

By the claim in the previous paragraph, the burning algorithm will lead to |f12| − 1 
independent “fires” arriving at f12, one for each element in f12\e1. Thus, these remove 
the |f12| − 2 chips on f12 and one path continues on to remove the single chip from e1. 
Likewise, |f13| − 1 independent “fires” arrive at |f13| − 2, and one continues on and passes 
through e1 to arrive at all the flats containing e1. Therefore, for every flat f that contains 
e1, other than f12 and f13, which have already been handled, there is a “fire” arriving 
from every element of f, which exceeds the |f | − 1 chips on this vertex. The paths used 
to cover ŴM are summarized schematically in Fig. 1. Since the burning algorithm covers 
the graph ŴM, we conclude that the divisor DM − E is f23-reduced and so not linearly 
equivalent to an effective divisor. � �

(1)
[e1] +

(
|f12| − 2

)
[f12] +

(
|f13| − 2

)
[f13] − [f23] +

∑

fk∋e1
fk �=f12,f13

(
|fk | − 1

)
[fk ],
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Proposition 2.2 also shows that if ŴM is made into a weighted graph by giving all ver-
tices genus 0, then DM has rank 2 on the weighted graph. The rank is, again, unchanged 
for any lifting of the weighted graph to a metrized complex. To show that DM is also a 
limit g2d as in Proposition 1.4, we also need to choose three-dimensional vector spaces of 
rational functions on the variety attached to each vertex.

Proof of Proposition  1.4  We recall from  [1] that a lift of ŴM to a metrized complex 
means associating a P1

k for each vertex v of the graph, which we denote Cv, and a point 
on Cv for each edge incident to v. A lift of the divisor DM is a choice of a point on Ce for 
each element e of M.

The data of a limit g2d is a three-dimensional vector space Hv of rational functions on 
each Cv [1, Sec. 5], which we choose as follows. For each flat f, we arbitrarily choose two 
elements from it and let pf ,1 and  pf ,2 be the points on Cf  corresponding to the edges 
from f to each of the chosen elements. Our vector space Hf  consists of the rational func-
tions which have at worst simple poles at pf ,1 and pf ,2. For each element e, we choose an 
arbitrary flat containing e and let qe be the point on Ce corresponding to the edge to e. 
Our vector space He consists of the rational functions which have at worst poles at qe 
and at the point of the lift of DM.

Now to check that these vector spaces form a limit g2d, we need to show that the refined 
rank is 2. For this, we use the same “toolkit” functions as in the proof of Proposition 2.2, 
but we augment them with rational functions from the prescribed vector spaces on the 
algebraic curves. The first item from our toolkit was reverse firing a flat f to produce at 
least two points on Cf . We can use rational functions with poles at pf ,1 and pf ,2 to pro-
duce any degree two effective divisor on Cf . For each Ce such that e is an element of  f, 
we need to use a rational function with a zero at the edge to f and a pole at the lift of the 
divisor DM.

The second item we needed in our toolkit was reverse firing an element  e together 
with all of the flats which contain it. Here, for each element e′ other than e, we use the 
rational function with a pole at the divisor and a zero at the point corresponding to the 
edge to the unique flat containing both e′ and e. At each flat f containing e, we can use 
any function with a pole at pf ,i, where i ∈ {1, 2} can be chosen to not be the edge leading 
to e. This produces a divisor at an arbitrary point of Ce.

The third and final operation we used was the previous item followed by a reverse 
firing of e. Here, we use the same rational functions as before, but we can choose any 

e1

f12

f13

f e1

Fig. 1  Paths through the graph ŴM taken by the burning algorithm applied to show the divisor (1) is f23
-reduced. There is a path from f23 to any element other than e1, which are depicted on the left and right, and 
from these vertices, there are paths which eventually equal or exceed the number of chips at all vertices of 
the graph
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rational function on Ce which has poles at the point of the divisor and qe, thus giving us 
two arbitrary points on Ce. We conclude that rational functions can be found from the 
prescribed vector spaces to induce a linear equivalence between the lift of DM and any 
two points on the metrized complex.�  �

In the case of rank 1 divisors, lifts can be constructed using the theory of harmonic 
maps of metrized complexes, which gives a complete theory for divisors defining tamely 
ramified maps to P1 [3]. A sufficient condition for lifting a rank 1 divisor is for it to be 
the underlying graph of a metrized complex which has a tame harmonic morphism to 
a tree (see [4, Sec. 2] for precise definitions). These definitions are limited to the rank 1 
case, but for rank 2 divisors we can subtract points to obtain a divisor of rank at least 1. 
In particular, if DM lifts, then for any element e, DM − [e] will be the specialization of a 
rank 1 effective divisor. However, the lifting criterion of [3] is satisfied for these subtrac-
tions, independent of the liftability of DM.

Proposition 2.3  Let M be any rank 3 simple matroid and e any element of  M . Also, let 
k be an algebraically closed field of characteristic not 2. Then, ŴM has a tropical modifica-
tion Ŵ̃M such that Ŵ̃M can be lifted to a totally degenerate metrized complex over k with 
a tame harmonic morphism to a genus 0 metrized complex, such that one fiber is a lift of 
the divisor DM − [e].

Proof  We first construct a modification Ŵ̃M of ŴM which has a finite harmonic mor-
phism from Ŵ̃M to a tree T. The tree T will be a star tree with a central vertex w, together 
with an unbounded edge, denoted rf , for each flat f which does not contain e, and a sin-
gle unbounded edge re corresponding to e. Our modification of ŴM consists of adding 
the following unbounded edges: at e, we add one unbounded edge se,f  for each flat f con-
taining e. At each element e′ other than e, we add one unbounded edge se′,f  for each flat f 
which contains neither e nor e′. At a flat f, we add unbounded edges sf ,i where i ranges 
from 1 to |f | if e /∈ f  and from 1 to |f | − 2 if e ∈ f .

We now construct a finite harmonic morphism φ from Ŵ̃M to T. Each element other 
than e maps to the central vertex w of T. Each flat f not containing e maps to a point one 
unit of distance along the corresponding ray rf  of T. Then the rays se′,f  and sf ,i also map 
to the ray rf , starting at w and φ(f ), respectively.

We map the vertex e to its unbounded ray re, at a distance of 2 from w, which leaves 
all of the flats containing e along the same ray at a distance of 1. The rays se,f  and sf ,i, for 
flats f containing e also map to re, starting distances of 2 and 1 from w, respectively. The 
map φ is depicted in Fig. 2.

To check that φ is harmonic, we need to verify that locally, around each vertex v of Ŵ̃M , 
the same number of edges map to each of the edges incident to φ(v), and this number 
is the degree of φ at v [8, Sec. 2]. First, suppose that the vertex v corresponds to an ele-
ment e′ other than e and we have defined φ(e′) to be the central vertex w. In this case, 
for each ray rf  of T, there is exactly one edge incident to e′ mapping to rf , either the edge 
between e′ and f if f contains e, or the unbounded edge se′,f  if not. There is also exactly 
one edge mapping to re, which is the edge between e′ and the unique flat containing both 
e and e′. Therefore, φ is harmonic at the vertex e′ with local degree equal to 1.
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Second, at the vertex e, which maps along the edge re, there is one edge mapping to 
the bounded side of re for each flat f containing e and also for each such flat, one infinite 
ray se,f  mapping to the unbounded side of re. Thus, φ is also harmonic at e, and has local 
degree equal to the number of flats containing e.

Finally, we check that φ is harmonic at a vertex corresponding to a flat f. If f does not 
contain e, then there are |f | rays mapping to the unbounded side of rf  and the same num-
ber of edges mapping to the bounded side, connecting f to the elements it contains. 
Thus, at such a vertex, φ is harmonic and its local degree is |f |. If f does contain e, then 
there are |f | − 2 rays mapping to the unbounded side of re together with the edge con-
necting f to e. On the bounded side of re, there are also |f | − 1 edges, connecting f to the 
elements f \{e}, and so here φ is harmonic with local degree |f | − 1.

To lift φ to a harmonic morphism of totally degenerate metrized complexes, we need 
to choose a map φv : P1 → P1 for each vertex v of Ŵ̃M and an identification of the outgo-
ing directions with points on P1. Having assumed characteristic not 2, we can choose 
a tame homomorphism of degree equal to the degree of φ at  v as φv. We identify the 
edges incident to v with points of P1 at which φv is unramified, since these edges all have 
expansion factor equal to 1. Then, the preimage of a k-point of the curve at w consists of 
one point in each P1 corresponding to the elements e′ not equal to e, because the local 
degrees at these vertices are equal to 1. Thus, this preimage is a lift of DM\[e] and we 
have our desired morphism of metrized complexes. � �

3 � Lifting matroid divisors
In this section, we characterize the existence of lifts of matroid divisors in terms of real-
izability of the corresponding matroids. Recall from [6], that if R is a discrete valuation 
ring with algebraically closed residue field, then a regular semistable family X of curves 
over  R gives homomorphism ρ from the group of divisors on the general fiber to the 
group of divisors on the dual graph Ŵ of the special fiber. This dual graph is defined to 
have a vertex v for each irreducible component of the special fiber and an edge for each 
point of intersection between two components. Then, for any divisor D̃ on the general 
fiber of X, ρ(D̃) is defined to be the formal sum of the vertices of Ŵ with the coefficient 

re

rf

w

e
e

f

Fig. 2  Modification of ŴM which has a finite, effective harmonic morphism to the tree to a tree, such that the 
fiber over the central vertex of the tree is DM − [e]. In this figure, f is a flat which does not contain e and e′ is an 
element of f
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of a vertex v equal to the degree of the intersection of D with Cv, where D is the closure 
of D̃ in X and Cv is the irreducible component corresponding to v [6, Sec. 2A]. With this 
definition, we have an inequality r(D̃) ≤ r(ρ(D̃)) between the algebraic and graph-theo-
retic ranks [6, Lem. 2.8].

We now consider the semistable family X over a discrete valuation ring R, where we 
drop the assumption that the residue field of R is algebraically closed. In this case, we 
apply the definitions from the previous paragraph by first base changing to a discretely 
valued extension R′ ⊃ R, such that the residue field of R′ is algebraically closed and such 
that a uniformizer of R is also a uniformizer of R′. In particular, the dual graph has one 
vertex for each geometric irreducible component of the special fiber and it is independ-
ent of the choice of R′. Also, the definition of ρ(D̃) is independent of R′ because it can 
be computed by taking the closure of D̃ in X and recording the degree of the pullback 
of this Cartier divisor to each of the geometric irreducible components of the special 
fiber. Moreover, for any family X, there is a finite étale extension R′ of R such that, after 
base changing to R′, the irreducible components of the special fiber are geometrically 
irreducible. Therefore, after this base change, the computation of the dual graph and the 
specialization map can be carried out directly on the resulting family over R′. Since the 
dimension of a linear system is invariant under base change, we also have a specializa-
tion inequality r(D̃) ≤ r(ρ(D̃)) on X.

We will say that a lifting over R of an effective divisor D of rank r on a graph Ŵ is a regu-
lar semistable family X over R with dual graph Ŵ, together with an effective divisor D̃ on 
the general fiber of X such that ρ(D̃) = D and D̃ has rank r. Here, and throughout this 
section, a regular semistable family X includes the hypothesis that X is semistable after 
passing to an extension with algebraically closed residue field. The relationship between 
liftings of a matroid divisor DM and its matroid depends on the following, slightly weaker 
variant of realizability for M:

Definition 3.1  Let k be a field. We say that a matroid M has a Galois-invariant realiza-
tion over an extension of k if there exists a finite scheme in P2

k which becomes a union of 
distinct points over k , and these points realize M.

Equivalently, a Galois-invariant realization is a realization over a finite Galois exten-
sion k ′ of k such that the Galois group Gal(k ′/k) permutes the points of the realization. 
Thus, the distinction between a realization and a Galois-invariant realization is only rel-
evant for matroids which have non-trivial symmetries. Moreover, Lemma 3.10 will show 
that any matroid can be extended to one where these symmetries can be broken, without 
affecting realizability over infinite fields.

Example 3.2  Let M be the matroid determined by all 21 points of P2
F4

. Then M is not 
realizable over P2

F2
 because it contains more than 7 elements, and there are only 7 points 

in P2
F2

. However, M is clearly realizable over F4 and the Galois group Gal(F4/F2) ∼= Z/2 
acts on these points by swapping pairs. Thus, M has a Galois-invariant realization over 
an extension of F2.
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Example 3.3  Let M be the Hesse matroid of 9  elements and 12 flats. Then M is not 
realizable over R by the Sylvester–Gallai theorem. However, the flex points of any elliptic 
curve are a realization of M over C. If the elliptic curve is defined over R, then the set of 
all flexes points is also defined over R, so M has a Galois-invariant realization over an 
extension of R.

Theorem 3.4  Let ŴM and DM  be the graph and divisor obtained from a rank 3 simple 
matroid M as in Sect. 2. Also, let R be any discrete valuation ring with residue field k. If 
DM  lifts over R , then the matroid M  has a Galois-invariant realization over an exten-
sion of k.

By projective duality, a point in P2 is equivalent to a line in the dual projective space P2 . 
Thus, the collection of points realizing a matroid is equivalent to a collection of lines, in 
which the flats correspond to the points of common intersection. It is this dual represen-
tation that we will construct from the lifting.

Proof of Theorem 3.4  Let X be the semistable family over R and D̃ a rank 2 divisor on 
the general fiber of X with ρ(D̃) = DM. First, we make the simplifying assumption that 
the components of the special fiber are geometrically irreducible, so that we can com-
pute specializations in X, without needing to take further field extensions. Let D denote 
the closure in X of  D̃. By assumption, H0(X,O(D)) is isomorphic to the free R-mod-
ule R3. By restricting a basis of these sections to the special fiber X0, we have a rank 2 
linear series on the reducible curve X0.

If D intersected a node of X0, then it would intersect both components of X0 con-
taining that node, so ρ(D) would have positive multiplicity on two adjacent vertices. 
However, ŴM is bipartite and the divisor DM is supported on one of these parts, corre-
sponding to the elements of the matroid, so D cannot intersect any of the nodes of X0 . 
Thus, the base locus of our linear series consists of a finite number of smooth points 
of X0. Since the base locus consists of smooth points, we can subtract the base points to 
get a regular, non-degenerate morphism φ : X0 → P

2
k.

By the assumption that D̃ specializes to DM, we have an upper bound on the degree of 
φ restricted to each component of X0. For a flat f of M, the corresponding component Cf  
has degree 0 under φ, so φ(Cf ) consists of a single point. For an element e, the corre-
sponding component Ce has either degree 1 or 0 depending on whether the intersection 
of D with Ce is contained in the base locus. If the intersection is in the base locus, then 
Ce again maps to a point, and if not, Ce maps isomorphically to a line in P2

k. Thus, the 
image φ(X0) is a union of lines in P2

k, which we will show to be a dual realization of the 
matroid M. Let f be a flat of M. Since the component of X0 corresponding to f maps to a 
point, the images of the components corresponding to the elements in f all have a com-
mon point of intersection.

Now let e1 be an element of M and suppose that the component Ce1 maps to a point 
φ(Ce1). Since every other element e′ is in a flat with e1, that means that φ(Ce′), the image 
of the corresponding component must contain the point φ(Ce1). Since φ is non-degener-
ate, there must be at least one component Ce2 which maps to a line. Let e3 be an element 
of  M which completes {e1, e2} to a basis. Thus, the flat containing e2 and e1 is distinct 
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from the flat containing e2 and e3. Since φ maps Ce2 isomorphically onto its image, this 
means that φ(Ce3) must meet φ(Ce2) at a point distinct from the point φ(Ce1). Thus, 
φ(Ce3) must be equal to φ(Ce2). Any other element e′′ in  M forms a basis with e1 and 
either e2 or e3 (or both). In either case, the same argument again shows that Ce′′ must 
map to the same line as Ce2 and Ce3. Thus, this line would be the entire image of φ, which 
again contradicts the assume non-degeneracy. Therefore, we conclude that φ maps each 
component Ce corresponding to an element e isomorphically onto a line in P2

k. We have 
already shown that for any set of elements in a flat, the corresponding lines intersect 
at the same point. Moreover, because each component Ce maps isomorphically onto its 
image, distinct flats must correspond to distinct points in P2

k. Thus, φ(X0) is a dual reali-
zation of the matroid M.

If the components of the special fiber are not geometrically irreducible, then we can 
find a finite étale extension R′ of R over which they are. In our construction of a real-
ization of  M over the residue field of R′, we can assume that we have chosen a basis 
of H0(X×R R′,O) that is defined over R. Then, the matroid realization will be the base 
extension of a map of k-schemes X0 → P

2
k. We let k ′ be the Galois closure of the residue 

field of R′. Then Gal(k ′/k) acts on the realization of M over k ′, but the total collection 
of lines is defined over k, and thus invariant. Thus, M has a Galois-invariant realization 
over an extension of k as desired. �

For the converse of Theorem  3.4, we need to consider realizations of matroids over 
discrete valuations ring R, by which we mean R-points in P2 whose images in both the 
residue field and the fraction field realize M. For example, if R contains a field over which 
M is realizable, then M is realizable over R. We say that M has a Galois-invariant reali-
zation over an extension of R if there exists a finite, flat scheme in P2

R whose special and 
general fibers are Galois-invariant realizations of M over extensions of the residue field 
and fraction field of R, respectively.

In the following theorem, a complete flag refers to the pair of an element e and a flat f 
such that e is contained in f.

Theorem 3.5  Let R be a discrete valuation ring with residue field  k. Let M be a simple 
rank 3 matroid with a Galois-invariant realization over an extension of R . Assume that 
|k| > m− 2n+ 1 , where n is the number of elements of  M and m is the number of com-
plete flags. Then ŴM and DM  lift over R.

Note that Theorem 3.5 does not make any completeness or other assumptions on the 
DVR beyond the cardinality of the residue field. In contrast, ignoring DM and its rank, a 
semistable model X  is only known to exist for an arbitrary graph when the valuation ring 
is complete [6, Thm. B.2].

We construct the semistable family in Theorem  3.5 using a blow-up of projective 
space. We begin with a computation of the Euler characteristic for this blow-up.

Lemma 3.6  Let S be the blow-up of P2
K  at the points of intersection of an arrangement 

of n lines. If A is the union of the strict transforms of the lines and the exceptional divisors, 
then the dimension of  H0(S,O(A)) is at least 2n+ 1.
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Proof  We first use Riemann–Roch to compute that χ(O(A)) is 2n+ 1. Let m be the 
number of complete flags of M, the matroid of the line arrangement A. We let H denote 
the pullback of the class of a line on P2 and Cf  to denote the exceptional lines. Then, we 
have the following linear equivalences

Now, Riemann–Roch for surfaces tells us that

We can think of the summation 
∑

f |f |(|f | − 1) as an enumeration of all triples of a flat 
and two distinct elements of the flat. Since two distinct elements uniquely determine a 
flat, we have the identity that 

∑
f |f |2 = n(n− 1), so (2) simplifies to χ(O(A)) = 2n+ 1.

It now suffices to prove that H2(S,O(A)) is zero, which is equivalent, by Serre dual-
ity, to showing that KS − A is not linearly equivalent to an effective divisor. The push-
forward of KS − A to P2 is −(n+ 3)H, which is not linearly equivalent to an effective 
divisor, and thus H2(S,O(A)) must be zero. Therefore,

which together with the computation above yields the desired inequality.�  �

Proof of Theorem 3.5  We first assume that M is realizable over R, and then at the end, 
we will handle Galois-invariant realizations over extensions. Thus, we can fix a dual real-
ization of M as a set of lines in P2

R, and let S be the blow-up of P2
R at all the points of 

intersections of the lines. We let the divisor A ⊂ S be the sum of the strict transforms 
of the lines and the exceptional divisors. Note that A is a simple normal crossing divisor 
whose dual complex is ŴM. As in the proof of Theorem 3.4, we denote the components 
of A as Cf  and Ce corresponding to a flat f and an element e of M, respectively.

We claim that A is a base-point-free divisor on S. Any two lines of the matroid config-
uration are linearly equivalent in P2

R. The preimage of a linear equivalence between lines 
corresponding to elements e and e′ is the divisor:

Thus, we have a linear equivalence between A and a divisor which does not contain Ce , 
nor Cf  for any of the flats containing e but not e′. By varying e and e′, we get linearly 
equivalent divisors whose common intersection is empty.

We now look for a function  g ∈ H0(S,O(A))⊗R k which does not vanish at the 
nodes of A. For each of the m nodes, the condition of vanishing at that node amounts 

A ∼ nH −
∑

f

(|f | − 1)Cf

KS ∼ −3H +
∑

f

Cf

(2)
χ(O(A)) =

A2 − A · KS

2
+ 1 =

n2 −
∑

f (|f | − 1)2 + 3n−
∑

f (|f | − 1)

2
+ 1

=
n2 + 3n−

∑
f |f |(|f | − 1)

2
+ 1.

χ(O(A)) = H0(S,O(A))−H1(S,O(A)) ≤ H0(S,O(A)),

[Ce′ ] − [Ce] +
∑

f :e′∈f ,e �∈f
[Cf ] −

∑

f :e∈f ,e′ �∈f
[Cf ].
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to one linear condition on H0(S,O(A))⊗R k. Since A is base-point free, this is a non-
trivial linear condition, defining a hyperplane. Moreover, because of the degrees of the 
intersection of A with its components, the only functions vanishing on all of the nodes 
are multiples of the defining equation of  A. If the residue field is sufficiently large, 
then we can find an element g ∈ H0(S,O(A))⊗R k avoiding these hyperplanes, and 
|k| > m− 2n+ 1 is sufficient by Lemmas 3.6 and 3.7. Now we lift g to g̃ ∈ H0(S,O(A)), 
and set X to be the scheme defined by h+ π g̃ , where h is the defining equation of A and 
π is a uniformizer of R. It is clear that X is a flat family of curves over R whose special 
fiber is A and thus has dual graph ŴM. It remains to check that X is regular and for this it 
is sufficient to check the nodes of Ak. In the local ring of a node, h is in the square of the 
maximal ideal, but by construction π g̃  is not, and thus, at this point X is regular.

Finally, we can take D to be the preimage of any line in P2
R which misses the points 

of intersection. Again, by Lemma  3.7 below, it is sufficient that |k| > ℓ− 2, where ℓ 
is the number of flats. We claim that m− 2n+ 1 ≥ ℓ− 2, and we have assumed that 
|k| > m− 2n+ 1. This claimed inequality can be proved using induction similar to the 
proof of Theorem 4.1, but it also follows from Riemann–Roch for graphs [7, Thm. 1.12]. 
Since ŴM has genus m− ℓ− n+ 1, then the Riemann–Roch inequality tells us that

which is equivalent to the claimed inequality.
Now, we assume that M may only have a Galois-invariant realization over an exten-

sion of R. We can construct the blow-up S in the same way, since the singular locus of 
the line configuration is defined over R. Again, the divisor A is base-point free, because 
we have already checked that it is base point free after passing to an extension where the 
lines are defined. Finally, we need to choose the function g and the line which pulls back 
to D by avoiding certain linear conditions defined over an extension of k. However, when 
restricted to k, these remain linear conditions, possibly of higher codimension, so we can 
again avoid them under our hypothesis on |k|.

Lemma 3.7  Let H1, . . . ,Hm be hyperplanes in the vector space  kN , where k is a field. 
Let c denote the codimension of the intersection H1 ∩ · · · ∩Hm. If k is infinite or if k is the 
finite field with  q elements and q > m− c + 1, then there exists a point in kN not con-
tained in any hyperplane.

Proof  If k is infinite, the statement is clear, so we assume that k is finite with q elements. 
We first quotient out by the intersection H1 ∩ · · · ∩Hm, so we are working in a vector 
space of dimension c and we know that no non-zero vector is contained in all hyper-
planes. This means that the vectors defining the hyperplanes span the dual vector space, 
so we can choose a subset as a basis. Thus, we assume that the first c hyperplanes are the 
coordinate hyperplanes. The complement of these consists of all vectors with non-zero 
coordinates, of which there are (q − 1)c. Each of the remaining m− c hyperplanes con-
tains at most (q − 1)c−1 of these. Our assumption is that q − 1 > m− c, so there must be 
at least one point not contained in any of the hyperplanes. � �

We illustrate Theorems 3.4 and 3.5 and highlight the difference between their condi-
tions with the following two examples.

2 = r(DM) ≥ n− (m− ℓ− n+ 1) = ℓ−m+ 2n− 1,



Page 14 of 24Cartwright ﻿Mathematical Sciences  (2015) 2:23 

Example 3.8  Let M be the Fano matroid, which whose realization in P2
F2

 consists of all 
7 F2-points. Then M is realizable over a field if and only if the field has equicharacteris-
tic 2. Thus, by Theorem 3.4, a necessary condition for ŴM and DM to lift over a valuation 
ring R is that the residue field of R has characteristic 2. On the other hand, M has 7 ele-
ments and 21 complete flags, so Theorem 3.5 says that if R has equicharacteristic 2 and 
the residue field of R has more than 8 elements, then ŴM and DM lift over R. We do not 
know if there exists a lift of ŴM and DM over any valuation ring of mixed characteristic 2.

Example 3.9  One the other hand, let M be the non-Fano matroid, which is realizable 
over k if and only k has characteristic not equal to 2. Moreover, M is realizable over any 
valuation ring R in which 2 is invertible. Thus, ŴM and DM lift over a valuation ring R, 
only if the residue field of R has characteristic different than 2 by Theorem 3.4. The con-
verse is true, so long as the residue field has more than 11 elements by Theorem 3.5.

Since Theorems 3.4 and 3.5 refer to Galois-invariant realizations, we will need the fol-
lowing lemma to relate such realizations with ordinary matroid realizations.

Lemma 3.10  Let M be a matroid of rank 3. Then there exists a matroid M′ such that for 
any infinite field k , the following are equivalent:

1.	 M has a realization over k.
2.	 M′ has a realization over k.
3.	 M′  has a Galois-invariant realization over an extension of k.

Proof  We use the following construction of an extension of a matroid. Suppose that M 
is a rank 3 matroid and f is a flat of M. We construct a matroid M′′ which contains the 
elements of M, together with an additional element x. The flats of M′′ are those of M, 
except that f is replaced by f ∪ {x}, and two-element flats for x and every element not 
in f. By repeating this construction, we can construct a matroid M′ such every flat which 
comes from one of the flats of M has a different number of elements.

Now we prove that the conditions in the lemma statement are equivalent for this 
choice of M′. First, assume that M has a realization over an infinite field k. We can induc-
tively extend this to a realization of M′. At each step, when adding an element x as above, 
it is sufficient to place x at a point along the line corresponding to f such that it does not 
coincide with any of the other points, and it is not contained in any of the lines spanned 
by two points not in f. We can choose such a point for x since k is infinite. Second, if M′ 
has a realization over k, then by definition, it has a Galois-invariant realization over an 
extension of k.

Finally, we suppose that M′ has a Galois-invariant realization over an extension of k 
and we want to show that M has a realization over k. Suppose we have a realization over 
a Galois extension k ′ of k. Since all the flats from the original matroid contain different 
numbers of points, the Galois group does not permute the corresponding lines in the 
realization. Therefore, the lines and thus also the points from the original matroid  M 
must be defined over k. Therefore, the restriction of this realization gives a realization 
of M over k, which completes the proof of the lemma.�  �
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Proof of Theorem 1.3  As in the statement of the theorem, let X be a scheme of finite 
type over Z. We choose an affine open cover of X and let X̃ be the disjoint union of these 
affine schemes. By the scheme-theoretic version of Mnëv’s universality theorem, either 
Theorem 1.14 in [17] or our Theorem 5.3, there is a matroid M of rank 3 whose realiza-
tion space is isomorphic to an open subset U of X̃ × AN and U maps surjectively onto X. 
Now let M′ be the matroid as in Lemma 3.10 and we claim that ŴM′ and DM′ have the 
desired properties for the theorem.

Let k be any infinite field, and then X clearly has a k-point if and only if X̃ has a k-point. 
Likewise, since k is infinite, any non-empty subset of AN

k  has a k-point, so U also has a 
k-point if and only if X has a k-point. By Lemma 3.10, these conditions are equivalent to 
M′ having a Galois-invariant realization over an extension of k. Supposing that X has a 
k-point and thus M′ has a realization over k, then ŴM′ and DM′ have a lifting over k[[t]] by 
Theorem 3.5. Conversely, if DM′ has a lifting over k[[t]], then M′ has a Galois-invariant 
realization over an extension of k by Theorem 3.4, and thus M has a realization over k by 
Lemma 3.10, so X has a k-point.�  �

4 � Brill–Noether theory
In this section, we take a detour and look at connections to Brill–Noether theory and 
the analogy between limit linear series and tropical divisors. In the theory of limit linear 
series, a key technique is the observation that if the moduli space of limit linear series 
on the degenerate curve has the expected dimension then it lifts to a linear series [13, 
Thm. 3.4]. Here, the expected dimension of limit linear series of degree d and rank r on 
a curve of genus  g is ρ(g , r, d) = g − (r + 1)(g + r − d). It is natural to ask if a tropi-
cal analog of this result is true: if the dimension of the moduli space of divisor classes 
on a tropical curve of degree d and rank at least r has (local) dimension ρ(g , r, d), then 
does every such divisor lift? See [10] for further discussion and one case with an affirma-
tive answer. The main result of this section is that the matroid divisors and graphs con-
structed in this paper do not provide a negative answer to the above question.

We begin with the following classification:

Theorem  4.1  Let M be a rank  3 simple matroid, with g and   d equal to the genus 
of ŴM and degree of DM, respectively. If ρ = ρ(g , 2, d) ≥ 0 , then M is one of the following 
matroids:

1.	 The one-element extension of the uniform matroid U2,n−1, with ρ = n− 2.
2.	 The uniform matroid U3,4, with ρ = 0.
3.	 The matroid defined by the vectors: (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), (0, 1, 0), with 

ρ = 1.
4.	 The matroid in the previous example together with (1, 0, �) for any element � of the 

field other than 1 and 0, with ρ = 0.

5.	 The matroid consisting of the point of intersection between any pair in a collection of 4 
generic lines, for which we can take the coordinates to be the vectors from (3) together 
with (1, 1, 1), with ρ = 0.

The last three cases of Theorem 4.1 are illustrated in Fig. 3.
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Proof  We first compute the invariants for the graph ŴD and divisor DM constructed in 
Sect. 2. As before, we let n be the number of elements of M, ℓ the number of flats, and 
m the number of complete flags. Since ŴD consists of m edges and n+ ℓ vertices, it has 
genus m− n− ℓ+ 1. It is also immediate from its definition that DM has degree n. Thus, 
the expected dimension of rank 2 divisors is

Now, assume that ρ is non-negative for M and we consider what happens to ρ when we 
remove a single element e from a matroid, where e is not contained in all bases. For every 
flat containing e, we decrease the number of complete flags by 1 if that flat contains at 
least 3 elements, and if it contains 2 elements, then we decrease the number of flags by 
2 and the number of flats by 1. Thus, by (3), ρ drops by 5− 2s, where s is the number of 
flats in M which contain e. Since e must be contained in at least 2 flats, either M\e, the 
matroid formed by removing e has positive ρ or e is contained in exactly 2 flats.

We first consider the latter case, in which e is contained in exactly two flats, which we 
assume to have cardinality a+ 1 and b+ 1, respectively. The integers a and b completely 
determine the matroid because all the other flats consist of a pair of elements, one from 
each of these sets. Thus, there are ab+ 2 flats and 2ab+ a+ b+ 2 complete flags. Using 
(3), we get

One can check that, up to swapping a and b, the only non-negative values of this expres-
sion are when a = 1 and b is arbitrary or a = 2 and b is 2 or 3. These correspond to cases 
(1), (3), and (4), respectively, from the theorem statement.

Now we consider the case that e contained in more than two flats, in which case M\e 
satisfies ρ > 0. By induction on the number of elements, we can assume that M\e is on 
our list, in which case the possibilities with ρ > 0 are (1) and case  (3). For the former 
matroid, if e is contained in a flat of M\e, then M is a matroid of the type from the pre-
vious paragraph, with a equal to 1 or 2. On the other hand, if e contained only in 2-ele-
ment flats, then e is contained in n− 1 flats, so

The only possibility is n = 4, for which we get (2), the uniform matroid. Finally, if M\e is 
the matroid in case (3), then the only relevant possibilities are those for which e is con-
tained in at most 3 flats, for which the possible matroids are (4) or (5). � �

(3)ρ = m− n− ℓ+ 1− 3((m− n− ℓ+ 1)+ 2− n) = 5n+ 2ℓ− 2m− 8

ρ = 5(a+ b+ 1)+ 2(ab+ 2)− 2(2ab+ a+ b+ 2)− 8 = −2ab+ 3a+ 3b− 3.

ρ(M) = ρ(M\e)+ 5− 2(n− 1) = (n− 3)+ 7− 2n = 4 − n.

(3) (4) (5)
Fig. 3  Matroids from Theorem 4.1
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Proposition 4.2  If R is a DVR and M is one of the matroids in Theorem 4.1 , then M has 
a Galois-invariant realization over an extension of R.

Proof  The matroids (2), (3) and (5) are regular matroids, i.e., realizable over Z, so they 
are a fortiori realizable over any DVR. Moreover, the other matroids in case (1) and (4) 
are realizable over R so long as the residue field has at least n− 2 and 3 elements, respec-
tively. We will show that if the residue field is finite, then the one-element extension of 
U2,n−1 has a Galois-invariant realization over R. The other case is similar.

Let M be the one-element extension of U2,n−1 and suppose the residue field  k is 
finite. We choose a polynomial with coefficients of degree  n− 1 in  R whose reduc-
tion to  k is square free. Adjoining the roots of this polynomial defines an unrami-
fied extension R′ of  R, and we write a1, . . . , an−1 for its roots in  R. Then, the vectors 
(1, a1, 0), . . . , (1, an−1, 0), (0, 0, 1) give a Galois-invariant realization of M over R′, which 
is what we wanted to show. � �

5 � Quantitative Mnëv universality
In this section, we prove a quantitative version of Mnëv universality over SpecZ with 
Theorem 1.5 as our desired application. We follow the strategy of [17, Thm. 1.14], but 
use the more efficient building blocks used in, for example, [18]. We pay close attention 
to the number of points used in our construction to get effective bounds on the degree 
of the corresponding matroid divisor. These bounds are expressed in terms of the follow-
ing representation.

Definition 5.1  Let Sn denote the polynomial ring Z[y1, . . . , yn]. In the extension Sn[t] , 
we also introduce the coordinates xi defined by x0 = t and xi = yi + t for 1 ≤ i ≤ n. In 
addition, for n < i ≤ m, suppose we have elements xi ∈ Sn[t] such that:

1.	 Each xi is defined as one of xi = xj + xk, xi = xjxk, or xi = xj + 1, where j, k < i.
2.	 Each xi is monic as a polynomial in t with coefficients in Sn.

The coordinates xi for 1 ≤ i ≤ n will be called free variables and the three operations 
for defining new variables in (1) will be called addition, multiplication, and increment-
ing, respectively.

Moreover, we suppose we have finite sets of equalities E and inequalities I consisting of 
pairs (i, j) such that xi − xj is in Sn ⊂ Sn[t]. We then say that the algebra:

has an elementary monic representation consisting of the above data, namely, the inte-
gers n and m, the expression of each xi as an addition, multiplication, or increment for 
n < i ≤ m, and the sets of equalities and inequalities.

The inequalities I in Definition  5.1 are not strictly necessary because an inverse to 
xi − xj can always be introduced as a new variable, but the direct use of inequalities may 
be more efficient, such as in the proof of Theorem 1.5.

Sn[(xi′ − xj′)
−1](i′,j′)∈I/�xi − xj | (i, j) ∈ E�
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Proposition 5.2  There exists an elementary monic representation of any finitely gener-
ated Z-algebra.

Proof  We begin by presenting the Z-algebra R as

where each polynomial  fk and  gk has positive integral coefficients. Then fk and  gk can 
be constructed by a sequence of multiplication and addition operations applied to the 
variables yi and the constant 1. Obviously, we can assume that our multiplication never 
involves the constant 1. To get an elementary monic representation, we first replace the 
variables yi with xi = yi + t in the constructions of fk and  gk, with some adjustments, 
as follows. Since Definition 5.1 does not allow addition of 1 with itself, we replace such 
operations by first introducing a new variable xi = x0 + 1 = t + 1 and then adding 1 to 
xi. Similarly, to satisfy the second condition of Definition 5.1, when adding two variables 
xi and xj which are both monic of the same degree d in t, we first compute an intermedi-
ate xi′ = td+1 + xi and then the sum xi′ + xj = td+1 + xi + xj. In this way, we ensure that 
all of the xi variables are monic in  t. Moreover, xi and xj agree with fk and  gk, respec-
tively, modulo t, but to be able to have an equality xi = xj in an elementary monic repre-
sentation, the difference xi − xj have to not involve t.

Therefore, we want to replace xi and xj by polynomials x′i and x′j which agree with xi 
and xj modulo t, but such that the difference x′i − x′j does not involve t. We do this by 
double induction, first, on the maximum total degree in the y variables of the terms of 
xi − xj that involve t, and second, on the number of terms of that degree.

Thus, we suppose that ctsya11 · · · yann  is a term of xi − xj whose total degree in the y 
variables is maximal among terms with s > 0. By swapping i and  j if necessary, we can 
assume that c is positive. We then use multiplication operations to construct:

where the final ellipsis denotes omitted terms with lower degree in the y variables. First 
suppose that xj and xℓ have different degrees in the t variable. Then, we can use c addi-
tion operations to construct xj′ = xj + cxℓ, and we set i′ = i. On the other hand, if xj and 
xℓ have the same degree in t, then let d be an integer larger than the t-degree of xi, xj, 
and xℓ, and we use additions to construct xj′ = xj + cxℓ + td and xi′ = xi + td. In either 
case, xi′ and xj′ equal xi and xj, respectively, modulo t. Moreover, the term ctsya11 · · · yamm  
has been eliminated from xi′ − xj′, while only introducing new terms which have lower 
degree in the y variables. Thus, by induction, we can eliminate all terms of xi − xj which 
involve t and have maximal total degree in the y variables among such terms, and by the 
second level of induction, we can eliminate such terms in all degrees. We, therefore, have 
constructions of variables xi′′ and yj′′ such that xi′′ − xj′′ = fk − gk. Setting these equal for 
k = 1, . . . ,m gives us the elementary monic representation of R.�  �

Given a matroid M, its possible realizations form a scheme, called the realization space 
of the matroid [15, Sec. 9.5]. Explicitly, given a rank 3 matroid with n elements, each flat 
of the matroid defines a closed, determinantal condition in (P2

Z
)n and each triple of ele-

ments which is not in any flat defines an open condition by not being collinear. The reali-
zation space is the quotient by PGL3(Z) of the scheme-theoretic intersection of these 

R = Z[y1, . . . , yn]/�f1 − g1, . . . , fm − gm�,

xℓ = tsx
a1
1 · · · xann = ts(t + y1)

a1 · · · (t + yn)
an = tsy

a1
1 · · · yamm + · · · ,
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conditions. We will only consider the case when this action is free, in which case the 
quotient will be an affine scheme over SpecZ.

Theorem 5.3  (Mnëv universality) For any finite-type  Z-algebra R, there exists a rank 3 
matroid M whose realization space is an open subset U ⊂ AN × SpecR such that U pro-
jects surjectively onto SpecR.

Moreover, if R has an elementary monic representation with n  free variables, a addi-
tions, m multiplications, o increments, e equalities, and i inequalities, then M has

elements, and

Proof  By Proposition 5.2, we can assume that R has an elementary monic representa-
tion. Both the matroid and its potential realization will be built up from the elementary 
monic representation, beginning with the free variables and then applying the addition, 
multiplication, and increment operations. We describe the constructions of both the 
matroid and the realization in parallel for ease of explaining their relationship.

We begin with the free variables. For x0 = t and for each free variable xi of the repre-
sentation, we have a line, realized generically, passing through a common fixed point. In 
the figures below, we will draw these horizontally so that the common point is at infinity. 
On each of these lines we have 3 additional points, whose positions along the line are 
generic. Our convention will always be that points whose relative position is not speci-
fied are generic. In other words, unless otherwise specified to lie on a line, each pair of 
points correspond to a 2-element flat.

From each set of 4 points on one of these free variable lines, we can take the cross-
ratio, which is invariant under the action of PGL3(Z). Therefore, by taking the cross-
ratio on each line as the value for the corresponding coordinate xi = t + yi or x0 = t , 
we define a morphism from the realization space of the matroid defined thus far to 
An+1 = SpecSn[t], where Sn = Z[y1, . . . , yn] as in Definition  5.1. Our goal with the 
remainder of the construction is to constrain the realization such that the projection to 
SpecSn is surjective onto SpecR ⊂ SpecSn.

Concretely, the cross-ratio is the position of one point on the line in coordinates where 
the other points are at 0, 1, and ∞. For us, the point common to all variable lines will be 
at ∞, so we will refer to the other points along the line as the “0” point, the “1” point, 
and the variable point. We will next embed the operations of addition, multiplication, 
and incrementing from the elementary monic representation. The result of each of these 
operations will be encoded as the cross-ratio of 4 points on a generic horizontal line, in 
the same way as with the free variables.

First, multiplication of distinct variables xi = xjxk is constructed as in Fig. 4, where the 
xj and xk lines refer to the lines previously constructed for those variables and the other 
points are new. We can choose the horizontal line for xi as well as the additional points 
generically so that there none are collinear with previously constructed points. Then, 
one can check that the cross-ratio of the solid points on the central line is the product of 
the cross-ratios on the other two lines. Set-theoretically, this claim follows from the fact 

3n+ 7a+ 7o+ 6m+ 5e + 6i + 6

N = 3(n+ a+ o+m+ e + i)+ 1
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that projections between parallel lines preserve ratios of distances, and so measuring 
from the leftmost point of the xi line, the top projection ensures that the ratio between 
the distances to the empty circle and the rightmost circle is xj. Likewise, the lower pro-
jection ensures that the ratio of the distances to the center solid circle and the empty 
circle is xk and so xi = xjxk appears as the product of the ratios. If j equals k, the diagram 
may be altered by moving the corresponding lines so that they coincide. In either case, 
the construction uses 6 additional points.

Second, the addition of variables xi = xj + xk can be constructed as in Fig.  5. As in 
the case of multiplication, the motivation for this construction can be understood from 
the fact that projections scale distances. In particular, the top projection means that the 
empty circle and the outer points on the xi line encode the variable xj, and since the two 
lower projections are both from points on the same horizontal line, the ratio of the dis-
tance between the inner points on the xi line to the distance between the outer points 
equals the value of xk. Therefore, the intervals on either side of the empty circle encode 
the values of xj and xk and their concatenation computes xi = xj + xk.

In the configuration from Fig. 5, there will be an additional coincidence if xj = xk in 
that the empty circle on the xi line, the middle point on the xk line and a point on the 
bottom line will be collinear. However, since xj + xk, xj, and xk are all monic polynomi-
als in the variable t, xj − xk is also monic in  t and so a sufficiently generic choice of t 
will ensure that xj − xk is non-zero. Similarly if xj = −1, then the empty point on the xi 
line, the rightmost point on the xk line and a marked point on the bottom line will be 

xk

xi = xjxk

xj

Fig. 4  Configuration for computing multiplication. The cross-ratios of the solid circles, together with the hori‑
zontal point at infinity define the variables. On each line, the solid circlesare, from left to right, the “0” point, the 
variable point, and the “1” point of the cross-ratio defining the variable. The empty circles are auxiliary points

xk

xi = xj + xk

xj

Fig. 5  Configuration for computing addition. The solid and empty circles represent the variables and auxiliary 
points, respectively, as in Fig. 4
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collinear, but this can again be avoided by adjusting  t. For the addition operation, we 
have used 7 additional points.

Third, for incrementing a single variable, xi = xj + 1, we specialize the configuration in 
Fig. 5 so that xk = 1, giving Fig. 6. The line labeled with 1 can be chosen once and used in 
common for all increment operations, since it functions as a representative of the con-
stant 1. We have used 7 additional points for each increment operation, together with 2 
points common to all such operations.

At this point, the realization space still surjects onto SpecSn, and so we still need to 
impose the equalities and inequalities. Each inequality xi �= xj can be imposed using the 
diagram in Fig. 7, which works by projecting the two variable points to the same line and 
getting different points. By replacing the projections of the two variables to the central 
line with the same point, we can use a similar figure to assert equality xi = xj. These use 
6 and 5 additional points, respectively.

To summarize, we have agglomerated the configurations in Figs. 4, 5, 6, and 7 to give 
a matroid whose realization space projects to SpecR ⊂ SpecSn. The realization of this 
matroid is determined by the values of the yi, together with a number of parameters, 
such as the height of the horizontal lines, which are allowed to be generic, and thus the 
realization space is an open subset of AN × SpecR.

To show that the projection to SpecR is surjective, we take any point of SpecR, which 
we can assume to be defined over an infinite field. Our construction of the realization 
required us to avoid certain coincidences, such as any xi being 0 or  1 or an equality 

1

xi = xj + 1

xj

Fig. 6  Configuration for incrementing. The solid and empty circles represent the variables and the auxiliary 
points, respectively, as in Fig. 4, with the exception that, on the xi line, the variable point is the rightmost solid 
point (since xi > 1)

xj

xi = xj

xi

Fig. 7  Configuration for imposing inequality. The solid and empty circles represent the variables and auxiliary 
points, respectively, as in Fig. 4
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xj = xk in any addition step. Each such coincidence only occurs for a finite number of 
possible values for t we choose t outside the union of all coincidences, and we can con-
struct a realization of the matroid.

Finally, we justify the quantitative parts of the theorem statement. The number of ele-
ments of M is computed by summing the number of elements for each of the building 
blocks together with 1 element for the common point on the horizontal lines, 3 elements 
for the variable x0 = t, and 2 elements for the horizontal line representing 1 in Fig. 6. 
For the computation of N, we can assume that the coordinates on P2 are such that the 
common point of the horizontal lines is (1:0:0), the points representing 1 are (0:0:1) and 
(1:0:1), and the “0” and “1” points of the x0 = t line are (0:1:0) and (0:1:1), respectively. 
These fix the automorphisms of P2. Then, one can check that each additional free vari-
able and each of the building blocks adds 3 additional generic parameters. Finally, the 
value of t is one more free parameter, which gives the expression for N. � �

Proof of Theorem 1.5  By Theorems 3.4, 3.5, and 5.3, it will be enough to construct suf-
ficiently parsimonious elementary monic representations of the algebras Z/p and Z[p−1] 
and thus matroids M and M′, respectively, representing these equations. Let ℓ be the 
largest integer less than √p. The elementary monic representations for both M and M′ 
use the equations shown in Fig. 8. Then, Z/p can be represented by adding an equality 
between xℓ+5 and xℓ+p−ℓ2+8 and Z[p−1] can be represented by an inequality between the 
same pair of variables.

x0 = t

x1 = x0x0 = t2

x2 = x0x1 = t3

x3 = x0 + 1 = t+ 1

...

x +2 = x +1 + 1 = t+

x +3 = x1 + x +1 = t2 + t+

x +4 = x +3 + x +1 = t2 + 2t+ 2

x +5 = x0x +4 = t3 + 2t2 + 2

x +6 = x +2x +2 = t2 + 2 + 2

x +7 = x +6 + 1 = t2 + 2 + 2 + 1

...

x +p− 2+6 = x +p− 2+5 + 1 = t2 + 2 + p

x +p− 2+7 = x2 + x +p− 2+6 = t3 + t2 + 2 + p

x +p− 2+8 = x1 + x +p− 2+7 = t3 + 2t2 + 2 + p

Fig. 8  System of equations used in the elementary monic representations of Z/p and Z[p−1], where p is a 
prime and ℓ denotes the largest integer less than 

√
p
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In either case, this representation uses no free variables, ℓ+ p− ℓ2 increments, 4 addi-
tions, and 4 multiplications. Thus, by Theorem 5.3, M and M′ have 7(ℓ+ p− ℓ2)+ 64 
and 7(ℓ+ p− ℓ2)+ 63 elements, respectively. We will bound the former since it is 
larger. We first rewrite the number of elements as

To show that (4) is smaller than p, we note that since p ≥ 443, then ℓ ≥ 21. We now 
have two cases. First, if ℓ = 21, then the largest prime number less than 222 is 479, so 
p− n2 ≤ 38. Using this, we can bound (4) as

On the other hand, if ℓ ≥ 22, then the choice of ℓ means that p < (ℓ+ 1)2, so 
p− ℓ2 ≤ 2ℓ . Therefore, we can bound (4) as follows:

Thus, the number of elements of M and M′ is less than p.
We take the graphs Ŵ and Ŵ′ and the divisors D and D′ for the theorem statement to be 

the matroid divisors of M and M′, respectively. Since M and M′ have fewer than p ele-
ments, D and D′ have degree less than p. Moreover, since k is an infinite field, by Theo-
rems 3.4 and 3.5, Ŵ and D lift over k[[t]] if and only if M is representable over k, which 
means that the characteristic of k equals p. Similarly, Ŵ′ and D′ lift if and only if the char-
acteristic of k is not p.

Remark 5.4  The threshold for p in Theorem 1.5 is not optimal. For example, using a dif-
ferent construction when p is closer to a larger square number than to a smaller square, 
it is possible to reduce the bound to 331.� �
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