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Abstract

Background: Weighted and un-weighted protein residue networks can predict key functional residues in proteins
based on the closeness centrality C and betweenness centrality B values for each residue. A static snapshot of the
protein structure, and a cutoff distance, are used to define edges between the network nodes. In this work we apply
the weighted network approach to study the β-Lactamase Inhibitory Protein (BLIP). Joint recurrences extracted from
molecular dynamics MD trajectory positions of the protein residue carbon alpha atoms are used to define edge weights
between nodes, and no cutoff distance is used. The results for B and C from our approach are compared with those
extracted from an un-weighted network, and a weighted network that uses interatomic contacts to define edge
weights between nodes, respectively.

Results: The joint recurrence weighted network approach performs well in pointing out key protein residues. Furthermore,
it seems to emphasize residues with medium to high relative solvent accessibility that lie in loop regions between
secondary structure elements of the protein.

Conclusions: Protein residue networks that use joint recurrences extracted from molecular dynamics simulations of a
solvated protein perform well in pointing to hotspot residues and hotspot clusters. This approach uses no distance
cutoff threshold, and does not exclude any interactions between the residues, including water-mediated interactions.

Keywords: Joint Recurrence, Protein Residue Networks, Solvent Dynamics, Molecular Dynamics
Background
The network paradigm has been used extensively to in-
vestigate protein structure and function [1-6]. The nodes
in the network represent the protein residues. The edges
between the nodes represent the strength of the residue
interactions. The importance of a node can be predicted
by calculating two parameters. The first is the closeness
centrality C which is defined as

Cn ¼ j−1X

i≠n

sd i; nð Þ ð1Þ

where sd (i, n) is the shortest path between nodes i and
n, and j is the number of nodes in the network. A node
with a high C plays a principal part in the transmission
of information to all other residues in the network [7].
The second is the betweenness centrality B which ranks
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the nodes according to the number of shortest paths
passing through them between all the node pairs in the
network. A node with a large B value controls the flow
of information in a network [8]. Nodes with large B and
C values have been shown to lie in critical regions in
proteins, and are usually binding free energy hotspots,
or are located in the vicinity of hotspots [9, 2, 10]. Pro-
tein hotspot residues play a key role in protein-protein
interactions. They can be detected experimentally using
alanine mutagenesis [11].
Weighted and un-weighted protein residue interaction

networks are based mostly on a static protein structure.
The network nodes represent either the carbon alpha or
beta atoms. In un-weighted networks, an edge of weight
1 is defined between nodes that are less than a cutoff
distance apart. This distance is usually taken between 4
and 8.5 Å. In weighted networks, edge weights are based
on inter-residue interaction strengths, which in turn de-
pend on cutoff threshold distance. A typical example is a
graph spectral method which was used to find central
residues in proteins [5, 12, 13]. Edge weights were set
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equal to the reciprocal of the inter-node distance, given
that the two residues satisfied a minimum interaction
strength threshold subject to a distance cutoff threshold.
To improve predictions, edge weights were also based on
snapshots of the protein structure provided by calculation
intensive molecular dynamics MD simulations. For ex-
ample, two residues within a certain cutoff distance from
each other in a certain percentage of MD trajectory frames
were considered to be connected. Linear and nonlinear
correlation coefficients between residues within a certain
threshold cutoff distance, were also used to define edge
weights [14, 15]. Average values of non-bonded energy in-
teractions between residues incorporated the chemical na-
ture of residue interactions [16]. However, these methods
ignored any long range residue-residue interactions, espe-
cially those by the surrounding water solvent [17]. This
crucial coupling, facilitated by the forming and breaking
of hydrogen bonds in the hydrogen bond network at the
interface between the protein and the solvent, plays an im-
portant part in the dynamics of proteins [18-26]. It was
taken into consideration by Bhattacharyya et al. who used
an implicit solvent model to account for the effect of
water on non-covalent energy interactions between two
residues in a weighted protein residue interaction network
[27]. This approach was successfully used to probe the
allosteric mechanism in Pyrrolysyl-tRNA Synthetase. As a
further refinement, we propose a method whereby edge
weights can be defined in a way that includes all interac-
tions, regardless of their nature, range, or value.
We have recently used the method of correlation of

probability of recurrence CPR to find linear and nonlin-
ear correlation coefficients between protein residue car-
bon alpha atoms [28]. This technique is based on the
recurrence plot RP method [29]. Recurrence plots were
introduced to visualize high dimensional phase space
trajectories of dynamical systems using a 2-D map of the
system’s recurrences. The phase space trajectory of a
given dynamical system is reconstructed using the
method of time delays [30, 31]. Consequently, the recur-
rence plot locates recurring patterns in the dynamics of
a system without making any previous assumptions
about the nature of the dynamics. This technique can be
especially useful when dealing with a-periodic and non-
stationary systems, such as complex biological systems.
To avoid the human bias inherent in studying graphical
maps, the RP method was later developed to give quanti-
tative results, and became known as recurrence quantifi-
cation analysis RQA [32]. It has been used in many fields,
including protein structure and dynamics [33]. The simul-
taneous recurrences by two or more systems, can also be
detected using a multivariate version of the recurrence
plot [34]. This joint recurrence plot JRP method can be
used to quantify synchronization between two or more
coupled dynamical systems. We hypothesize that if two
residue carbon alpha atoms recur to their corresponding
previous states at the same time instant, then they are
interacting at that time instant. There is no need to know
the nature of the interaction. By summing the total num-
ber of simultaneous recurrences over a given time period,
an edge weight can be defined between the two atoms. A
residue pair with a large number of joint recurrences is as-
sumed to interact strongly. No threshold cutoff distance is
needed to define the range of the interaction. However,
each edge weight is divided by the geometric distance be-
tween the two residues [5]. This is justified because geo-
metrically close residues with a given number of joint
recurrences are expected to interact stronger than two
residues that are far apart with the same number of joint
recurrences. All interaction mechanisms, including those
mediated by the solvent, are thus included.
The protein system we study in this work is the 165

residue β-Lactamase Inhibitory Protein BLIP. It is se-
creted by the soil bacterium Streptomyces clavuligerus. It
inhibits β-lactam enzymes, which hydrolyze β-lactam an-
tibiotics and nullify their effect [35-37]. It has been in-
vestigated extensively as a model system to understand
the principles of affinity and specificity in protein-
protein interactions [38]. It has a large (2636 Å2), con-
cave, solvent exposed interaction interface consisting of
an eight-stranded β-sheet. Numerous mutagenesis stud-
ies have pinpointed the hotspot residues that dominate
its binding free energy with a number of β-Lactamase
enzymes. These key residues are now known to be lo-
cated in six independent hotspot clusters: C1:49;
C2:74,142,143; C3:148,150,160; C4: 112,162; C5:36, 41,
50, 53; C6: 71,113 [39-45]. Most notably, residues Asp
49(C1) and Phe 142(C2) play a critical role in the bind-
ing process [37, 39]. Residue 49(C1) also plays a domin-
ant role in information flow between some of the
hotspot clusters [46]. An ammonium ion binding site
lies at residues 6 and 7 of BLIP. The sulfate ion binding
site is at residues 12, 13, 14, and 70. This protein is suit-
able for our work on solvent-protein coupled dynamics
due to the expected role the solvent pslay at such a
large, extensively hydrated, interaction surface [47, 48].
In this work, a weighted network will be prepared for

the BLIP protein. The residue carbon alpha atoms will
be the nodes. Edge weights will be given by the cumula-
tive number of joint recurrences of a residue pair over a
time period of 10 ns, divided by the distance between
the two carbon atoms. The closeness and betweenness
centrality values for each node will be calculated. For
comparison, the BLIP protein will also be represented as
an un-weighted network with a cutoff threshold distance
of 7 Å, and a weighted network with edge weights based
on inter-atomic contacts, calculated by the CSU pro-
gram [49]. The results from these three networks will be
compared.



Karain and Qaraeen BMC Bioinformatics  (2015) 16:173 Page 3 of 11
Results and discussion
We start by examining the solvent accessibility for residues
with significant B and C values from the three networks
for BLIP. Fig 1 shows a scatter plot of the C z-score values
versus the corresponding residue relative solvent accessi-
bility RSA values. A significance z-score value of 1 is
chosen arbitrarily to give a representative sample for each
network. The average RSA values are 0.17, 0.17, and 0.37,
for the un-weighted, CSU-weighted, and JRP-weighted net-
works, respectively. Similarly, Fig. 2 shows a scatter plot of
the B z-score values larger than 1 versus the corresponding
residue RSA values for the three networks. The average
RSA values are 0.15, 0.18, and 0.40, for the un-weighted,
CSU-weighted, and JRP-weighted networks, respectively.
The significant residues extracted from the JRP-weighted
network have mostly medium and high RSA values. Amitai
et al. [9] reported that the optimal parameters for protein
active site prediction for a set consisting of 178 protein
chains of enzymes with a total of 567 active sites were C
values ≥ 1.1, and RSA values of 4.5–40 %. However, they
also reported a general tendency for residues with high C
to be unexposed. Del Sol et al. [50] considered only resi-
dues with RSA < 20 % in their work to identify key resi-
dues. To see if this is justified in the case of BLIP, a
histogram of the RSA values for the experimentally deter-
mined BLIP hotspot residues is shown in Fig. 3. The ma-
jority of these residues has RSA values larger than 20 %,
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Fig. 1 The closeness centrality C versus the relative solvent accessibility RSA.
their RSA values for the un-weighted network with a 7 Å cutoff threshold (◊),
and can thus be regarded as being at least partially ex-
posed [9]. In fact, the average RSA value for these hotspot
residues is 31 %, ranging from 3 to 86 %. Thus, even
though the conventional wisdom is to narrow the search
for key residues among buried or partially exposed resi-
dues, one should not generalize this approach. Solvent ex-
posed residues should be expected to play an important
part in the control and flow of information inside the pro-
tein network.
Figures 4 and 5 show the standardized B and C values,

respectively, for the residues represented as nodes in each
of the three networks. The results are summarized in
Tables 1, 2, and 3, for the un-weighted, CSU-weighted,
and JRP-weighted networks, respectively. A z-score cutoff
threshold of 2 is chosen arbitrarily for the B values, and
1.5 for the C values, respectively, to get a representative
significant sample. Each table lists the significant nodes,
and points out which ones are experimentally determined
hotspots or ion binding sites. It also lists the first degree
neighbors for each node, and points out if they are hot-
spot residues or ion binding sites as well.
Table 1 lists residues with significant B and C values

detected by the un-weighted network. This list contains
five experimentally determined hotspot residues: 53(C5),
71(C6), 74(C2), 112(C4), and 113(C6). The RSA values
for these hotspots range from 0.13 to 0.28. Five hotspot
clusters, as well as the sulfate ion and the ammonium
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This figure shows the C z-scores larger than 1 for the BLIP residues versus
the CSU weighted network (+), and the JRP weighted network (●)
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Fig. 2 The betweenness centrality B versus RSA. This figure shows the B z-scores larger than 1 for the BLIP residues versus their RSA values for the
un-weighted network with a 7 Å cutoff threshold (◊), the CSU weighted network (+), and the JRP weighted network (●)
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Fig. 3 The relative solvent accessibility RSA histogram for the BLIP hotspot residues. This figure shows the RSA value distribution for the experimentally
determined hotspot residues in BLIP
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Fig. 4 The standardized betweenness centrality B values for BLIP residues. This figure shows the standardized B values for the BLIP residues calculated
from (a) un-weighted network, (b) CSU weighted network, and (c) JRP weighted network
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Fig. 5 The standardized closeness centrality C values for BLIP residues. This figure shows the standardized C values for BLIP residues calculated
from (a) un-weighted network, (b) CSU weighted network, and (c) JRP weighted network

Karain and Qaraeen BMC Bioinformatics  (2015) 16:173 Page 5 of 11



Table 1 Betweenness centrality and closeness centrality results for significant nodes in the un-weighted network

Centrality Residue # RSA Significant neighbors

Betweenness 53(C5) 0.22 41(C5), 112(C4)

- 68 0.10 Sulfate ion binding site

- 72 0.02 53(C5), 71(C6), 74(C2),112(C4)

- 76 0.03 Ammonium ion binding site, 74(C2)

- 78 0.09 -

- 108 0.00 -

- 112(C4) 0.28 53(C5), 71(C6), 148(C3)

- 128 0.10 112(C4), 150(C3)

- 130 0.07 112(C4), 148(C3)

- 132 0.01 -

Closeness 53(C5) 0.22 41(C5), 112(C4)

- 55 0.20 36(C5), 41(C5), 53(C5),71(C6), Sulfate ion binding site

- 70 (Sulfate ion binding site) 0.04 Sulfate ion binding site

- 71(C6) 0.21 53(C5), Sulfate ion binding site, 112(C4), 113(C6)

- 72 0.02 53(C5), 71(C6), 74(C2), 112(C4)

- 73 0.24 53(C5), 74(C2), 112(C4), 148(C3)

- 74(C2) 0.13 143(C2)

- 75 0.13 53(C5), 74(C2), Ammonium ion binding site

- 110 0.10 -

- 111 0.22 112(C4), Sulfate ion binding site

- 112(C4) 0.28 53(C5),71(C6),148(C3)

- 113(C6) 0.26 112(C4), 71(C6), Sulfate ion binding site

- 114 0.20 Sulfate ion binding site

- 127 0.11 150(C3)

- 128 0.10 112(C4), 150(C3)

- 129 0.01 112(C4), 148(C3)

- 130 0.07 112(C4), 143(C2), 148(C3)

This table lists residues with betweenness centrality z-score values larger than 2 and closeness centrality values larger than 1.5. It also gives the relative solvent
accessibility for each residue, and its first degree neighbors. The symbols between brackets denote hotspot clusters
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ion binding sites, are among the first neighbors for resi-
dues in this list. The only cluster missing is C1, which
consists of the key residue 49. Fig 6 shows the locations
of these residues inside BLIP. In general, they are situ-
ated in the middle of the concave shaped active site.
Table 2 lists significant residues detected by the CSU-

weighted network. This list contains eight experimen-
tally determined hotspot residues: 41(C5), 53(C5),
71(C6), 74(C2), 112(C4), 113(C6), 143(C2), and 148(C3).
The RSA values for these hotspot residues range be-
tween 0.03 and 0.28. Five hotspot clusters, as well as the
sulfate ion and the ammonium ion binding sites, are
among the first neighbors for the residues in this list.
Cluster C1 is again not detected. Fig 7 shows the loca-
tions of these residues in BLIP. They are situated at the
edge and the center of the active site.
Table 3 lists significant residues in the JRP-weighted net-

work. This list contains four experimentally determined
hotspot residues: 49(C1), 50(C5), 142(C2), and 162(C4).
The RSA values for these hotspot residues range from
0.25 to 0.86. Five hotspot clusters, including C1(49), as
well as the sulfate ion and the ammonium ion binding
sites, are among the first neighbors for the residues in this
list. Only cluster C6 (71,113) is not detected. Most not-
ably, the two “anchor” hotspot residues 49(C1) and
142(C2) are detected by the JRP-weighted network [51],
while the two other networks fail to detect these import-
ant residues. Fig 8 shows the locations of these residues in
BLIP. In clear contrast to the results in the un-weighted
and CSU-weighted networks, these residues are located at
the periphery of the protein interface surface.
Five BLIP residues are regarded as consensus hotspots

for binding with the TEM-1, SHV-1, SME-1, and Bla1
enzymes: 36, 41, 49, 53, and 150. The residues 148, 160,
and 162 are hotspots when BLIP binds all of the above
enzymes with the exception of SHV-1 [40, 41]. The



Table 2 Betweenness centrality and closeness centrality results for significant nodes in the CSU-weighted network

Centrality Residue RSA Significant neighbors

Betweenness 9 0.06 Ammonium and Sulfate ion binding site, 71(C6)

- 41(C5) 0.03 36(C5), 53(C5)

- 53(C5) 0.22 41(C5), 112(C4)

- 73 0.24 53(C5), 74(C2), 112(C4), 143(C2)

- 112(C4) 0.28 53(C5), 71(C6), 148(C3)

- 114 0.20 Sulfate ion binding site

- 148(C3) 0.15 112(C4), 143(C2), 150(C3), 160(C3), 162(C4)

Closeness 9 0.06 71(C6), Ammonium and Sulfate ion binding sites

- 53(C5) 0.22 41(C5), 112(C4)

- 70 (Sulfate ion binding site) 0.04 112(C4), 71(C6), Sulfate ion binding site

- 71(C6) 0.22 53(C5),112(C4), 113(C6), Sulfate ion binding site

- 72 0.02 53(C5), 71(C6), 74(C2), 112(C4)

- 73 0.24 53(C5), 74(C2), 112(C4), 148(C3)

- 74(C2) 0.13 143(C2)

- 111 0.22 112(C4), Sulfate ion binding site

- 112(C4) 0.28 53(C5), 71(C6), 148(C3)

- 113(C6) 0.26 112(C4), 71(C6), sulfate ion binding site

- 114 0.20 Sulfate ion binding site

- 143(C2) 0.22 74(C2), 142(C2), 148(C3)

- 148(C3) 0.15 112(C4),143(C3), 150(C3), 160(C3)

This table lists residues with betweenness centrality z-score values larger than 2 and closeness centrality values larger than 1.5. It also gives the relative solvent
accessibility for each residue, and its first degree neighbors. The symbols between brackets denote hotspot clusters
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residues 73, 74, and 50, are considered binding specifi-
city determinants [52,53]. The un-weighted network de-
tects residue 53(C5, RSA = 0.22) from the first group,
and residue 74(C2, RSA = 0.13) from the third group. It
does not detect any of the residues from the second
group. The CSU-weighted network detects residues
41(C5, RSA = 0.03) and 53(C5, RSA = 0.22) from the first
group, residue 148(C3, RSA = 0.15) from the second group,
and residue 74(C2, RSA = 0.13) from the third group. The
JRP-weighted network detects residue 49(C1, RSA = 0.25)
from the first group, residue 162(C4, RSA = 0.42) from the
second group, and residue 50(C5, 0.35) from the third
group. Again, the hotspots detected by the JRP-weighted
network tend to have higher RSA values. This should be
noteworthy since the significant hydration of the BLIP
interface surface, has been proposed as a major factor in its
“promiscuity”, and ability to bind multiple enzymes [37,48].
It is also worth noting that a significant number of the resi-
dues with large B and C values extracted from the JRP
weighted network, lie in the flexible loop regions between
the secondary structure elements of the protein. It is also
interesting that even though the hotspot residue 49 has a
relatively low RSA value of 0.25, it was not detected dir-
ectly by the un-weighted or the CSU-weighted networks.
Conclusions
In this work we introduce the use of joint recurrences to
represent interaction strengths between residue pairs in
a weighted protein residue network. We also remove the
cutoff distance condition used in defining edges, thus
keeping long range interactions. We use betweenness
and closeness centralities to detect key hotspot residues
in the BLIP protein, which has a large, solvent exposed
interaction surface. Our JRP-weighted network results
compare well with those extracted from an un-weighted
network with a 7 Å cutoff distance, and a weighted net-
work with the edge weights defined by the number of
the inter-atomic contacts between residues. While the
CSU-weighted network detected more hotspots, the
JRP-weighted network was able to detect the “anchor”
residues 49(C1) and 142(C2). Our results indicate that
residues with significant B and C values are either them-
selves, or are in contact with, hotspot residues or ion
binding sites. Our approach also favors residues that lie
in loop regions between secondary structure elements,
and that are partially or highly exposed to the surround-
ing solvent. This seems more appropriate for this “pro-
miscuous” protein, which has experimentally determined
hotspot residues that tend to be either partially or highly



Table 3 Betweenness centrality and closeness centrality results
for significant nodes in the JRP-weighted network

Centrality Residue RSA Significant neighbors

Betweenness 5 0 .40 Ammonium ion binding site

- 50(C5) 0.35 36(C5), 41(C5), 49(C1)

- 66 0.47 -

- 68 0.10 Sulfate ion binding site

- 93 0.58 -

- 116 0.15 Sulfate ion binding site

- 122 0.67 -

- 140 0.58 74(C2)

- 141 0.39 74(C2), 142(C2), 143(C2)

- 152 0.34 -

- 162(C4) 0.42 148(C3), 150(C3), 160(C3)

- 163 0.67 142(C2)

- 164 0.05 -

Closeness 46 0.64 50(C5)

- 47 0.07 49(C1), 50(C5), 74(C2)

- 49(C1) 0.25 50(C5)

- 50(C5) 0.35 36(C5), 41(C5), 49(C1), 53(C5)

- 68 0.10 Sulfate ion binding site

- 116 0.15 Sulfate ion binding site

- 117 0.44 -

- 122 0.67 -

140 0.58 74(C2)

141 0.39 74(C2), 142(C2), 143(C2)

142(C2) 0.86 143(C2)

163 0.67 142(C2), 162(C4)

This table lists residues with betweenness centrality z-score values larger than 2
and closeness centrality values larger than 1.5. It also gives the relative solvent
accessibility for each residue, and its first degree neighbors. The symbols between
brackets denote hotspot clusters

Fig. 6 The locations of the significant un-weighted network residues
inside BLIP. This figure shows the locations of significant BLIP residues
with B z-score values larger than 2, and C z-score values larger than 1.5.
The black colored spheres are experimentally determined hotspots. The
red colored spheres are experimentally determined hotspots detected
by this network. The green colored spheres are significant residues
determined by this network

Fig. 7 The locations of the significant CSU-weighted network residues
inside BLIP. This figure shows the locations of significant BLIP residues
with B z-score values larger than 2, and C z-score values larger than 1.5.
The black colored spheres are experimentally determined hotspots.
The red colored spheres are experimentally determined hotspots
detected by this network. The green colored spheres are significant
residues determined by this network
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exposed to the solvent, and which presents a large inter-
action surface to the solvent. In general, protein net-
works should not neglect any interaction mechanisms.

Methods
The starting point in reconstructing the phase space trajec-
tory X (t) of a given dynamical system, is a scalar time
series of one of the system’s measured or calculated ob-
servables Z(t), where Z = (Z1,Z2,….,ZN) consists of evenly
spaced single values 1 to N. The reconstructed trajectory
reflects the underlying dynamics of the original system.
Each point in the reconstructed phase trajectory represents
a possible state for that system, and is given by a vector

Xi
→¼ Zi; ;Ziþd; ::::; ;Ziþ k−1ð Þd

� �
k ¼ 1;…;m ð2Þ

where d is the delay parameter, and m is the embedding
dimension. The delay parameter d is estimated by
finding the first minimum in the mutual information func-
tion. This function can detect linear and nonlinear correla-
tions between the elements of the scalar time series [54]. A
suitable delay parameter should give the least amount of
shared information between the vector components, while
at the same time keeping them related. The embedding di-
mension m is then estimated using the method of false
nearest neighbors [55]. Choosing the correct embedding



Fig. 8 The locations of the significant JRP-weighted network resi-
dues inside BLIP. This figure shows the locations of significant BLIP
residues with B z-score values larger than 2, and C z-score values lar-
ger than 1.5. The black colored spheres are experimentally deter-
mined hotspots. The red colored spheres are experimentally
determined hotspots detected by this network. The green colored
spheres are significant residues determined by this network
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dimension helps to “unfold” the trajectory. For example, if
one inspects a circular orbit along its edge, two points that
are not true neighbors could appear to be neighbors due to
the low embedding dimension. By using a higher dimen-
sion to inspect this circle, in this case two, one can differ-
entiate between true and false neighbors. The embedding
dimension chosen would be where the number of false
nearest neighbors is very small. The RP then shows the re-
currence of a state Xi at time i to a former state Xj at time j
in the phase space trajectory if these two states are within
a threshold norm distance ε from each other. The math-
ematical expression of the RP matrix is:

Ri;j εð Þ ¼ Θ ε− Xi−Xj

�� ��� �
i; j ¼ 1; ::::::::::;N ð3Þ

where N is the number of states, ε is a threshold dis-
tance, Θ is the Heaviside function (Θ(x) = 0 if x < 0 and
1 otherwise), and ∥.∥ is the Euclidean norm. A recur-
rence (Rij = 1) in the matrix is represented as a black dot
in the plot. The rate of the number of black dots to the
total number of points in the matrix gives the recur-
rence rate value. The Euclidean norm is used due to its
intermediate value of neighbors between the maximum
and minimum norms. The threshold parameter ε is the
limit that transforms the distance matrix between the
states into a recurrence plot of 1’s and 0’s [33]. A too
small ε would give a small number of recurrences, while
a too large ε would give too many recurrences. This
threshold can be defined using different methods [33].
In this work, we chose ε to give a recurrence rate of 3 %.
If one is interested in studying how two or more
dynamical systems are related to each other, joint recur-
rences JRP can be used [34], as defined by

JR x;y
i;j εxε yð Þ ¼ Θ εx− Xi−Xj

�� ��� �
Θ εy− Y i−Y j

�� ��� �
; i ; j

¼ 1;…N

ð4Þ

where the JRP has a value of one at time instants when
the two systems recur to their simultaneous previous
states, and zero otherwise. Equation 4 can be generalized
to as many dynamical systems as is needed.
The molecular dynamics simulation and related ana-

lysis in this work are performed using the molecular dy-
namics computer programs NAMD [56] and VMD [57].
The starting BLIP protein structure is downloaded from
the protein data bank (PDB: 3gmu) [45]. The simulation
details are described elsewhere in detail [28]. The phase
space trajectory for each protein residue carbon alpha
atom is constructed from a scalar time series of the root
mean square deviation RMSD of its position over time
[28]. The RMSD values are calculated after removing
translational and rotational atomic motions using least
square fitting. Each time series consists of 1000 points
evenly separated by 10 ps, for a total time of 10 ns for
each series. The recurrence parameters of embedding di-
mension and delay are calculated using the VRA pro-
gram [58]. The threshold parameter is set to give a
recurrence rate of 3 %. The recurrence matrices are cal-
culated for all 165 residue carbon alpha atoms using the
CRP toolbox routines [59]. By inspecting the recurrence
matrices for all 165 residue carbon alpha atoms at all
time instants, the number of joint recurrences for each
residue pair are accumulated over 10 ns. This number of
joint recurrences constitutes the edge weight between the
two residues. Each edge weight is consequently divided by
the geometric distance between the corresponding residue
carbon alpha atoms [6]. For comparison, an un-weighted
network with a cutoff threshold distance of 7 Å is pre-
pared. Similarly, a weighted network is prepared with edge
weights based on inter-atomic contacts calculated by the
CSU program [49]. The B and C values for the three net-
works are then calculated using the MatlabBGL network
toolbox [60]. These values are then standardized by sub-
tracting the mean value, and dividing by the standard de-
viation for each distribution, respectively. Thus the B and
C values for each residue are given as z-scores.
The degree of exposure of each residue to the surround-

ing water solvent is given by the RSA value for that resi-
due. The RSA values are calculated by dividing the
residue’s accessible surface area ASA as given by the CSU
program [49], by the maximum solvent-accessible surface
area of the corresponding standard amino acid residue as
calculated recently [61]. Residue with RSA <5 %, RSA ≥
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5 % and < 20 %, and RSA ≥20 %, are considered buried,
partially buried, and exposed, respectively [50].
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