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Background
Hypertension affects approximately 50 million individuals in the United States and 
approximately 1 billion individuals worldwide (Chobanian et  al. 2003), and it is esti-
mated to account for 4.5 % of the global burden of disease (Whitworth and World Health 
Organization International Society of Hypertension Writing Group 2003). Hyperten-
sion plays a major etiologic role in the development of cerebrovascular disease, cardio-
vascular disease (CVD), and renal failure (Whitworth and World Health Organization 
International Society of Hypertension Writing Group 2003). CVD alone is responsible 
for one-third of global deaths and is a leading and increasing contributor to the global 
burden of disease (World Health Organization 2002). For 40 to 70-year-old individu-
als, each increment of 20 mmHg in systolic blood pressure (SBP) or 10 mmHg in dias-
tolic blood pressure (DBP) doubles the risk of CVD across the entire blood pressure (BP) 
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range from 115/75 to 185/115 mmHg (Lewington et al. 2002). The risk of CVD can be 
lowered by controlling BP. In multiple clinical trials, antihypertensive therapy has been 
associated with significant reductions in stroke incidence (averaging 35–40 %), myocar-
dial infarction (20–25 %), and heart failure (over 50 %) (Neal et al. 2000). Understanding 
the genetics of BP can advance our understanding of the physiology of BP regulation 
and the pathology of hypertension. Finding genes associated with BP could potentially 
uncover novel targets for pharmacotherapy. Furthermore, the development of precision 
medicine based on genetic profiles of individuals could increase the efficiency of preven-
tion and treatment of hypertension (Collins and Varmus 2015).

For a long time, BP has been known to be a complex trait influenced by multi-
ple genetic and environmental factors (Lifton 1996; Hamet et al. 1998). Its heritability 
ranges from 30 to 50 %, estimated in family and twin studies (Miall and Oldham 1963). 
Early success in dissecting the genetic architecture of hypertension revealed 12 genes 
that cause a monogenic type of hypertension. These genes are members of two path-
ways: renal sodium handling and steroid hormone metabolism, the latter of which 
includes mineralocorticoid receptor activity (Ehret and Caulfield 2013). Inheritance of 
monogenic hypertension in families follows a clear segregation pattern and casual vari-
ants are typically rare and of large effect sizes. However, due to low frequencies of these 
variants, there is still a lack of clear understanding of essential hypertension (Pickering 
1965), which has no evident cause and accounts for 95 % cases of hypertension (Carret-
ero and Oparil 2000).

Genome-wide linkage analysis tests the association between the transmission of 
genomic regions and phenotypic similarity among family members (Thomas 2004); it 
was one of the most widely used methods for genetic studies of hypertension. A number 
of genome-wide linkage scans for BP or hypertension have provided some significant or 
suggestive linkage signals, whereas external replications have been very difficult (Binder 
2007; Simino et al. 2012). Limited statistical power of linkage analysis, small sample sizes, 
and small effect sizes of underlying variants may be the main reasons. Alternatively, the 
candidate gene approach focuses on genes in several major pathways that are involved 
in BP homeostasis. As only a small number of polymorphisms were under investigation, 
the burden of multiple testing was alleviated, which allowed the identification of variants 
of small effects in moderate sample sizes. The major limitation is that this method relies 
on the existing biological knowledge of BP regulation, therefore precludes a large num-
ber of genes and chromosomal regions that may harbor novel associated variants lacking 
immediate physiological relationships with hypertension (Charchar et  al. 2008). As in 
linkage analyses, replication of findings from candidate gene studies were challenging, 
such as in Basson et al. (2012). With advancements in genotyping technology, hundreds 
of thousands to millions of single-nucleotide polymorphisms (SNPs) could be measured 
on a single microarray at a reasonable cost (Fan et al. 2000). The study of hypertension 
genetics called for a paradigm shift to the genome-wide association studies (GWAS). In 
this paper, we summarize recent advances in genetic studies of BP/hypertension, focus-
ing on study designs and strategies used therein. We also share our thoughts on some 
future directions. For a comprehensive review on the genetic and molecular aspects of 
hypertension, refer to Padmanabhan et al. (2015).
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Review
Overview of GWAS methods

GWAS utilize a dense panel of SNPs to investigate associations between genetic markers 
and complex traits, such as BP. SNPs are distributed across the entire human genome 
and are measured by high-throughput genotyping platforms, which are commercially 
available. Many GWAS further impute unmeasured common SNPs based on haplotype 
data provided by the International HapMap Project (International HapMap Consortium 
2005, 2007) and computational approaches implemented in genetic software, such as 
MACH (Li and Abecasis 2006), IMPUTE (Marchini et al. 2007), and BIMBAM (Servin 
and Stephens 2007). The number of SNPs in GWAS varies from hundreds of thousands 
to millions. Association between each SNP and a phenotype of interest is tested typically 
by a linear or logistic regression for continuous or dichotomous phenotypes, respec-
tively. Additive genetic models are widely assumed in the majority of GWAS. A stringent 
genome-wide significance threshold of P  <  5 ×  10−8 is routinely used as a correction 
for multiple testing, which is based on the estimation of approximately 1 million inde-
pendent SNPs in a population of European decent (Pe’er et al. 2008). To boost statisti-
cal power and find genetic variants with small effects, international collaborations have 
been established among studies and are organized in consortia. GWAS analyses are first 
conducted in participating studies; results are then combined using meta-analysis, which 
helps to achieve an overall sample size much larger than that based on any individual 
study. This approach has an inherent advantage, in which each study is able to analyze its 
own data using a standard analysis plan, but otherwise taking study-specific attributes 
into account, such as adjusting for study-specific covariates that are not common across 
all participating studies. More recently, GWAS are imputing millions of common and 
rare variants based on the 1000 Genomes Project (1000 Genomes Project Consortium 
2012). Appropriate methods and analysis strategies for effectively harvesting such huge 
data sets are still evolving.

GWAS of quantitative BP phenotypes in diverse populations

GWAS of quantitative BP phenotypes have been conducted in diverse populations 
including samples of European ancestry, African ancestry and East Asians. The first 
GWAS (Wellcome Trust Case Control Consortium 2007) adopted a case–control study 
design using 3000 shared controls and 14,000 cases (2000 for hypertension) of European 
ancestry to study seven complex diseases simultaneously. About 500,000 genotyped 
SNPs were tested yielding 24 association signals at P < 5 × 10−7 significance level for 
six diseases. Hypertension was the only disease without any significant results and none 
of the variants previously associated with hypertension showed evidence of association. 
The first GWAS of quantitative BP phenotypes, SBP and DBP, was conducted by the 
Framingham Heart Study (Levy et  al. 2007). The study analyzed approximately 71,000 
genome-wide SNPs, including 1400 family subjects. No significant results were found 
either. These two studies highlighted the complexity of the genetic mechanisms underly-
ing BP regulation. Research then progressed to population-based cohort studies. Recog-
nizing the need for much larger sample sizes, collaborative consortia were established to 
look for genes associated with BP/hypertension.
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The first two successful GWAS of BP were reported by the Cohorts for Heart and 
Aging Research in Genomic Epidemiology (CHARGE) consortium (Levy et  al. 2009) 
and the Global Blood Pressure Genetics (Global BPgen) consortium (Newton-Cheh 
et al. 2009). The CHARGE consortium consisted of six population-based cohort stud-
ies with a sample size of 29,000. Global BPgen included 17 cohorts ascertained through 
population-based sampling or case–control studies with a sample size of 34,000 at the 
discovery phase. Eight genomic loci were identified to be associated with SBP or DBP 
by each study; three loci overlapped in both groups. Both consortia analyzed cross-
sectional SBP and DBP phenotypes, which are commonly measured in many clinical 
or epidemiology studies. The additive genetic main effect was tested by both consortia, 
ignoring possible dominant, recessive, or interaction effects. Approximately 2.5 million 
SNPs were imputed and tested providing a common ground for the meta-analysis of the 
results from studies using various platforms for genotyping. Most of the 13 unique loci 
identified were novel except for CYP17A1-NT5C2 and MTHFR-NPPB that contain BP 
regulation genes previously known. Results from these two studies and others are listed 
in Table 1.

A follow-up expanded investigation was conducted by the International Consortium 
of Blood Pressure (ICBP) (ICBP 2011), consisting of 29 studies of European ancestry, 
many of which were from CHARGE and Global BPgen consortia. ICBP included GWAS 
data on 69,000 individuals for gene discovery and 133,000 for replication. The study 
replicated the previous 13 loci effectively and discovered 16 new loci significant at the 
genome-wide level. Another study by the ICBP consortium (Wain et al. 2011) analyzed 
two derived BP phenotypes: mean arterial pressure (MAP) and pulse pressure (PP). 
MAP, computed as the sum of two-thirds of DBP and one-third of SBP, represents an 
average BP in a cardiac cycle; PP, a measure of stiffness of main arteries, is the difference 
between SBP and DBP. This study discovered four novel PP loci and two novel MAP loci. 
The signals for MAP were strongly associated with both SBP and DBP, reflecting a high 
correlation between these three BP traits.

BP loci were also discovered in GWAS with much smaller sample size, for example 
CDH13 (Org et al. 2009; N = 1600) and STK39 (Wang et al. 2009; N = 7000). However, 
although these studies did not show genome-wide significance during the discovery 
phase or lacked immediate replication, results were replicated later by other independ-
ent studies, suggesting that the so-called “winner’s curse” (Yu et al. 2007) for replication 
could be a “complexity’s blessing” at the discovery phase (Shi et al. 2011).

The largest GWAS effort to date involving participants of African origin was done by 
the Continental Origins and Genetic Epidemiology Network (COGENT) (Franceschini 
et al. 2013). Discovery samples were obtained from 19 studies with an aggregate sam-
ple size of 29,000 individuals. Due to the lack of sufficient samples from similar genetic 
backgrounds, replication was conducted using a trans-ethnic design with 10,000 sam-
ples of African ancestry, 69,000 of European ancestry, and 20,000 of East Asian ancestry. 
For the top discovery signals (P < 1 × 10−5), meta-analysis was conducted by combining 
all replication samples from the three ethnicities. Five loci reached genome-wide sig-
nificance level, three of which were not previously reported to be associated with BP. 
Other GWAS on samples of African ancestry conducted earlier by Adeyemo et al. (2009) 
and Fox et al. (2011) also reported genome-wide significant associations. Due to limited 
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Table 1 Blood pressure/hypertension loci reported by  genome-wide association studies 
and candidate gene studies

Chr Genes Lead SNP Position Trait Ethnicity

1p36.22 CASZ1 rs880315 10,736,809 SBP EA( Levy et al. 2009)
Asian (Takeuchi et al. 2010)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

1p36.22 MTHFR-NPPB rs17367504 11,802,721 SBP EA (Newton-Cheh et al. 2009)
EA (Tomaszewski et al. 2010)
Asian (Takeuchi et al. 2010)
EA (Johnson et al. 2011b)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
EA (Ganesh et al. 2013)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

1p13.2 ST7L-MOV10 rs2932538 112,673,921 SBP
DBP

EA (ICBP 2011)
Asian (Kato et al. 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

1q32.1 MDM4 rs2169137 204,528,785 DBP EA (Ganesh et al. 2013)
EA (Tragante et al. 2014)

1q42.2 AGT rs2004776 230,712,956 HT EA (Johnson et al. 2011b)
EA (Johnson et al. 2011a)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

2p23.2 KCNK3 rs1275988 26,691,496 SBP
MAP

EA (Ganesh et al. 2014)

2q11.2 FER1L5 rs7599598 96,686,103 DBP EA (Ganesh et al. 2014)

2q24.3 FIGN rs13002573 164,058,698 PP
MAP

EA (Wain et al. 2011)
Asian (Kato et al. 2011)
Asian (Hong et al. 2012)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

2q24.3 STK39 rs6749447 168,184,876 SBP EA (Wang et al. 2009)
AA (Adeyemo et al. 2009)
EA (Tragante et al. 2014)

2q32.1 PDE1A rs16823124 182,359,400 DBP
MAP

EA (Tragante et al. 2014)

2q32.2 PMS1 rs5743185 189,873,112 SBP AA (Adeyemo et al. 2009)
EA (Levy et al. 2009)

3p25.3 HRH1 rs347591 11,248,436 SBP EA (Ganesh et al. 2013)
EA (Tragante et al. 2014)

3p24.1 SLC4A7 rs13082711 27,496,418 DBP EA (ICBP 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

3p22.1 ULK4 rs9815354 41,871,159 DBP EA (Levy et al. 2009)
EA (ICBP 2011)
EA + AA + Asian (Franceschini et al. 2013)
Asian (Lu et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)
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Table 1 continued

Chr Genes Lead SNP Position Trait Ethnicity

3p21.31 MAP4 rs319690 47,885,994 MAP EA (Wain et al. 2011)
Asian (Hong et al. 2012)
Asian (Kelly et al. 2013)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

3p21.1 CACNA1D rs9810888 53,601,568 DBP Asian (Lu et al. 2014)

3q26.1 MIR1263 rs16833934 164,019,462 DBP EA (Simino et al. 2014)

3q26.2 MECOM rs419076 169,383,098 SBP
DBP

EA (ICBP 2011)
EA (Tragante et al. 2014)

4q12 CHIC2 rs871606 53,933,078 PP EA (Wain et al. 2011)
Asian (Hong et al. 2012)
EA (Tragante et al. 2014)

4q21.21 FGF5 rs16998073 80,263,187 DBP EA (Newton-Cheh et al. 2009)
Asian (Takeuchi et al. 2010)
Asian (Tabara et al. 2010)
Asian (Kato et al. 2011)
EA (ICBP 2011)
Asian (Kelly et al. 2013)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

4q24 SLC39A8 rs13107325 102,267,552 SBP
DBP

EA (ICBP 2011)
EA (Tragante et al. 2014)

4q25 ENPEP rs6825911 110,460,482 DBP Asian (Kato et al. 2011)
EA (Tragante et al. 2014)

4q32.1 GUCY1A3-GUCY1B3 rs13139571 155,724,361 DBP EA (ICBP 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

5p13.3 NPR3-C5orf23 rs1173771 32,814,922 SBP
DBP
HT

EA (ICBP 2011)
AA (Zhu et al. 2011)
EA (Johnson et al. 2011b)
Asian (Kato et al. 2011)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

5q33.3 EBF1 rs11953630 158,418,394 SBP
DBP

EA (ICBP 2011)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

6p22.2 HFE rs1799945 26,090,951 SBP
DBP
HT

EA (ICBP 2011)
EA (Johnson et al. 2011b)
EA (Ganesh et al. 2013)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

6p21.33 BAT2-CYP21A2 rs805303 31,648,589 SBP
DBP
HT

EA (ICBP 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

6p21.32 HLA-DQB1 rs2854275 32,660,651 DBP EA (Tragante et al. 2014)

6p21.1 CRIP3 rs10948071 43,312,975 PP EA (Ganesh et al. 2014)

6q22.33 RSPO3 rs13209747 126,794,309 SBP
DBP

EA + AA + Asian (Franceschini et al. 2013)

6q25.1 PLEKHG1 rs17080102 150,683,634 SBP
DBP

EA + AA + Asian (Franceschini et al. 2013)

7p15.2 EVX1-HOXA rs17428471 27,298,248 SBP
DBP

EA + AA + Asian (Franceschini et al. 2013)

7p12.3 IGFBP3 rs2949837 45,954,779 PP EA (Ganesh et al. 2014)

7q21.2 CDK6 rs2282978 92,635,096 PP EA (Tragante et al. 2014)
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Table 1 continued

Chr Genes Lead SNP Position Trait Ethnicity

7q22.3 PIK3CG rs17477177 106,771,412 PP EA (Wain et al. 2011)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

7q36.1 NOS3 rs3918226 150,993,088 DBP EA (Johnson et al. 2011b)
EA (Salvi et al. 2012)
EA (Tragante et al. 2014)

8p23.1 BLK-GATA4 rs4841569 11,594,668 SBP
MAP

EA (Simino et al. 2014)
EA (Tragante et al. 2014)

8q24.12 NOV rs2071518 119,423,572 PP EA (Wain et al. 2011)
EA (Tragante et al. 2014)

10p12.31 CACNB2 rs11014166 18,419,869 DBP EA (Levy et al. 2009)
EA (Ho et al. 2011)
EA (ICBP 2011)
Asian (Lin et al. 2011)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

10q21.2 c10orf107 rs1530440 61,764,833 DBP EA (Newton-Cheh et al. 2009)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

10q22.2 VCL rs4746172 74,096,084 DBP
MAP

EA (Tragante et al. 2014)

10q23.33 PLCE1 rs932764 94,136,183 SBP
HT

EA (ICBP 2011)
EA (Tragante et al. 2014)

10q24.32 CYP17A1-NT5C2 rs1004467 102,834,750 SBP EA (Levy et al. 2009)
EA (Newton-Cheh et al. 2009)
Asian (Takeuchi et al. 2010)
Asian (Hong et al. 2010)
Asian (Tabara et al. 2010)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
Asian (Lin et al. 2011)
Asian (Kelly et al. 2013)
EA (Ganesh et al. 2013)
Asian (Lu et al. 2014)
Asian (Qi et al. 2014)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

10q25.3 ADRB1 rs2782980 114,021,768 MAP EA (Wain et al. 2011)
EA (Ganesh et al. 2013)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

11p15.5 LSP1 rs661348 1,884,062 MAP EA (Johnson et al. 2011b)
EA (Ganesh et al. 2013)
EA (Tragante et al. 2014)

11p15.4 ADM rs7129220 10,328,991 SBP EA (ICBP 2011)
EA (Tragante et al. 2014)
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Table 1 continued

Chr Genes Lead SNP Position Trait Ethnicity

11p15.1 PLEKHA7 rs381815 16,880,721 SBP EA (Levy et al. 2009)
Asian (Hong et al. 2010)
EA (Ho et al. 2011)
EA (ICBP 2011)
EA (Johnson et al. 2011b)
Asian (Lin et al. 2011)
EA + AA + Asian (Franceschini et al. 2013)
EA (Ganesh et al. 2013)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

11q13.1 EHBP1L1 rs4601790 65,586,435 MAP
DBP

EA (Simino et al. 2014)
EA (Tragante et al. 2014)

11q22.1 FLJ32810-TMEM133 rs633185 100,722,807 SBP
DBP
HT

EA (ICBP 2011)
EA (Tragante et al. 2014)

11q24.3 ADAMTS8 rs11222084 130,403,335 PP EA (Wain et al. 2011)
EA (Tragante et al. 2014)

12q13.13 HOXC4 rs7297416 54,049,306 SBP EA (Tragante et al. 2014)

12q21.33 ATP2B1 rs2681492 89,619,312 SBP
DBP
HT

EA (Levy et al. 2009)
Asian (Cho et al. 2009)
Asian (Takeuchi et al. 2010)
Asian (Hong et al. 2010)
Asian (Tabara et al. 2010)
EA (Johnson et al. 2011b)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
Asian (Wang et al. 2013b)
Asian (Kelly et al. 2013)
EA (Ganesh et al. 2013)
Asian (Lu et al. 2014)
Asian (Qi et al. 2014)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

12q24.12 SH2B3 rs3184504 111,446,804 SBP
DBP

EA (Levy et al. 2009)
EA (Newton-Cheh et al. 2009)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
AA (Fox et al. 2011)
EA (Ganesh et al. 2013)
Asian (Lu et al. 2014)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

12q24.13 ALDH2 rs11066280 112,379,979 SBP
DBP

Asian (Kato et al. 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

12q24.21 TBX3-TBX5 rs2384550 114,914,926 DBP EA (Levy et al. 2009)
Asian (Kato et al. 2011)
EA (ICBP 2011)
AA (Fox et al. 2011)
Asian (Lu et al. 2014)
Asian (Qi et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

12q24.21 MED13L rs11067763 115,760,536 SBP
DBP

Asian (Lu et al. 2014)

15q21.1 FBN1 rs1036477 48,622,729 PP EA (Tragante et al. 2014)
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replication resources, neither of these replication efforts were successful except that the 
PMS1 gene demonstrated suggestive evidence of association with SBP (P = 7.2 × 10−7) 
(Adeyemo et al. 2009; Levy et al. 2009).

African American is a recently admixed population, which is estimated to have an 
80 % African lineage and a 20 % European lineage on average (Parra et al. 1998). Given 
significant differences in the prevalence of hypertension in populations of European and 
African ancestries (Rosamond et  al. 2007), admixture mapping (Zhu et  al. 2008) was 
conducted by the Candidate gene Association Resource (CARe) consortium (Zhu et al. 
2011). The discovery sample included approximately 6000 unrelated African Ameri-
can subjects from five participating cohorts. Quantitative admixture analyses for SBP 
and DBP were carried out using 3200 ancestry informative SNPs. After correcting for 
multiple testing, three loci were significantly associated with SBP and one with DBP. In 
the meta-analysis of the replication set, which included six independent cohorts with a 

Table 1 continued

Chr Genes Lead SNP Position Trait Ethnicity

15q24.1 CYP1A1-ULK3 rs6495122 74,833,304 DBP EA (Levy et al. 2009)
EA (Newton-Cheh et al. 2009)
Asian (Takeuchi et al. 2010)
Asian (Hong et al. 2010)
Asian (Tabara et al. 2010)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
AA (Fox et al. 2011)
EA (Ganesh et al. 2013)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

15q26.1 FURIN-FES rs2521501 90,894,158 SBP
DBP

EA (ICBP 2011)
EA (Ganesh et al. 2013)
EA (Tragante et al. 2014)

16p12.3 UMOD rs13333226 20,354,332 HT EA (Padmanabhan et al. 2010)
EA (Tragante et al. 2014)

16q22.1 NFAT5 rs33063 69,606,314 PP EA (Tragante et al. 2014)

16q23.3 CDH13 rs11646213 82,609,046 HT EA (Org et al. 2009)
AA (Adeyemo et al. 2009)
EA (Tragante et al. 2014)

17q21.32 GOSR2 rs17608766 46,935,905 SBP EA (ICBP 2011)
EA (Simino et al. 2014)
EA (Tragante et al. 2014)

17q21.33 ZNF652 rs16948048 49,363,104 DBP EA (Newton-Cheh et al. 2009)
EA (Ho et al. 2011)
Asian (Kato et al. 2011)
EA (ICBP 2011)
EA (Tragante et al. 2014)

20p12.2 JAG1 rs1327235 10,988,382 SBP
DBP

EA (ICBP 2011)
Asian (Lu et al. 2014)
EA (Tragante et al. 2014)

20q13.32 GNAS-EDN3 rs6015450 59,176,062 SBP
DBP
HT

EA (ICBP 2011)
EA (Simino et al. 2014)
EA (Ganesh et al. 2014)
EA (Tragante et al. 2014)

Lead SNP and trait are as reported in the first reference for each locus listed in the table. Position is based on dbSNP 142/
hg38

Chr Chromosomal region, AA African Ancestry, EA European Ancestry, HT Hypertension
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sample size of 11,000, a novel variant located between the SUB1 and NPR3 genes was 
identified and shown to be associated with SBP and DBP.

The first large meta-analysis of GWAS of BP traits among East Asians was conducted 
by the Asian Genetic Epidemiology Network (AGEN) consortium (Kato et  al. 2011). 
AGEN-BP work group included 30,000 individuals from population and family-based 
studies as part of its two-stage discovery phase and 20,000 at the replication stage. The 
study identified six novel loci that were genome-wide significantly associated with SBP 
or DBP, and seven loci previously reported in populations of European decent. In a fur-
ther study of MAP and PP by AGEN (Kelly et al. 2013), no novel loci were discovered 
when the five previously identified MAP loci and two PP loci were replicated (Wain et al. 
2011). A recent meta-analysis of GWAS in a Chinese population was carried out with 
approximately 12,000 samples for discovery and 69,000 for replication (Lu et al. 2014). 
This work lead to the discovery of a total of three novel BP loci and replicated 14 previ-
ously reported loci.

GWAS of dichotomous hypertension phenotypes

Most GWAS findings discovered to date were based on quantitative BP traits, for which 
statistical power is generally larger than for dichotomous outcomes, such as hypertension 
status. Two studies have reported positive hypertension susceptibility loci. In one GWAS, 
authors used an extreme case–control design with 1600 hypertensive cases and 1700 
controls for discovery, and 20,000 cases and 17,000 controls for replication (Padmanab-
han et  al. 2010). Compared to the usual case–control studies, cases and controls were 
drawn from the extremes of the BP distribution, which provided a much sharper contrast 
between the two groups. The top SNP near gene UMOD was reported to be genome-
wide significant (P = 3.6 × 10−11). The SNP showed only suggestive association with SBP 
(P = 2.6 × 10−5) and DBP (P = 1.5 × 10−5) in population-based cohorts (N = 79,000), 
therefore would not be discovered by large GWAS of BP phenotypes. In another GWAS 
of hypertension, a classical two-stage case–control study showed genome-wide signifi-
cance of an SNP (P = 2.6 × 10−13) in the promoter region of NOS3 (Salvi et al. 2012).

Candidate gene studies of BP

A number of candidate gene studies have been carried out focusing on genes associ-
ated with cardiovascular phenotypes. Methodologies for candidate gene studies have 
changed significantly in the GWAS era, making it possible to carry out meta-analyses 
with much larger samples and many more candidate genes in a single investigation using 
the genotype data from either a subset of GWAS data or measured using high-through-
put genotyping microarrays. As a result, reproducibility of candidate gene studies has 
much improved. Using the Illumina HumanCVD BeadChip array (Keating et al. 2008), 
50,000 SNPs capturing variants of approximately 2000 candidate genes for cardiovascu-
lar phenotypes in 25,000 individuals were genotyped (Johnson et al. 2011a). The study 
identified eight significant loci, of which LSP1 and NOS3 were novel, concurrently with 
Salvi et al. (2012). In a different study, 62,000 individuals of European ancestry were gen-
otyped by the same array. This study discovered one novel SNP associated with SBP and 
one with DBP, and confirmed 10 previously known loci associated with SBP, DBP, MAP 
or PP. All results were confirmed in an additional 66,000 individuals (Ganesh et al. 2013). 
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In a study with a larger sample size, 88,000 for discovery and 68,000 for replication, 11 
novel BP loci were reported and 27 known associations were replicated (Tragante et al. 
2014). As most known hypertension target genes were not significant in GWAS, asso-
ciations of SBP and DBP with 30 genes known to be antihypertensive drug targets were 
examined. All GWAS SNPs within 60 kb of each target gene were analyzed. ADRB1 and 
AGT reached genome-wide significance in this meta-analysis (Johnson et al. 2011b).

GWAS of BP with gene–environment interactions

Essential hypertension is known to be influenced by multiple susceptibility genes, envi-
ronmental and lifestyle factors, as well as their interactions (Kunes and Zicha 2009). 
Inspired by the discoveries from analyzing the genetic main effect, researchers started 
looking for evidence of gene–environment interactions. A large-scale GWAS assessing 
the pervasiveness of gene–age interactions was recently carried out by CHARGE, Global 
BPgen, and ICBP consortia (Simino et al. 2014), which included approximately 56,000 
individuals for discovery and 43,000 for replication. Samples were stratified by age, and 
the conventional genetic main effect was examined separately in age bins in each cohort. 
Meta-regression was then used to test genetic main effects together with interaction 
effects (Xu et al. 2013), which was more powerful than either of the marginal tests (Kraft 
et al. 2007). Two out of the 20 genome-wide significant loci were novel. Nine loci dem-
onstrated nominal evidence (P < 0.05) of age-dependent effects on BP when testing the 
interactions alone, and five would have been missed by main-effect-only analysis. Those 
loci demonstrating age-dependent effects are of particular relevance to essential hyper-
tension, which is marked by a chronically elevated BP.

Gene–alcohol interactions were evaluated in a relatively small sample of 6900 indi-
viduals from the Framingham Heart Study (Simino et al. 2013). Using the same test (2 
degrees of freedom), a significant locus was discovered. The same group, based on the 
same sample, identified two significant loci by gene–education interaction analysis (Bas-
son et al. 2014b), and seven loci by gene–smoking interaction analysis (Sung et al. 2014). 
As these results were not replicated in external samples, they were subject to further 
validations.

GWAS of other BP phenotypes

Despite the wide availability of cross-sectional BP phenotypes, which allows for the 
employment of large sample sizes, a single BP measurement is subject to random varia-
tions. A number of studies were conducted on other BP-related phenotypes, which are 
believed to have much larger signal-to-noise ratios. One investigation studied long-term 
averaging of quantitative BP traits, aimed at reducing the intra-individual variability due 
to the measurement error (Ganesh et  al. 2014). Nineteen significant loci were identi-
fied by this study; additionally, four were uniquely identified by the analysis using a dis-
covery sample of 47,000 and replication of 39,000. In contrast to the long-term average, 
a different study looked into visit-to-visit BP variability in 3800 and 15,000 individu-
als for discovery and replication, respectively. One locus showed genome-wide signifi-
cance; however, the result has not been replicated (Yadav et  al. 2013). A family study 
that included 2000 individuals from 500 European nuclear families showed association 
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between a mean 24-h DBP and an SNP in the promoter regions of MTHFR and CLCN6 
genes (Tomaszewski et al. 2010).

GWAS of BP responses to low-sodium, high-sodium, potassium interventions, and 
cold pressor test were reported (He et  al. 2013). This study was based on a relatively 
small sample of 1900 Han Chinese subjects from approximately 700 families, of which 8 
novel loci were discovered. Unlike in GWAS of clinical BP measurements, genetic vari-
ants associated with BP responses in such well-controlled experiments demonstrated 
much greater effect sizes. Estimated effect sizes varied from 0.5 to 6.9 mmHg per coded 
allele. Due to the shortage of independent samples with the same intervention design, 
results could not be effectively replicated.

Pharmacogenomic studies of BP

Understanding the genetic basis of how hypertensive patients respond to antihyperten-
sive medicines differently is crucial for the implementation of precision medicine. There 
are a few GWAS of hypertension using SNP-medication (antihypertensive medications) 
interactions in a pharmacogenomics setting. A genetic mechanism of BP responses to 
antihypertensive medicines was investigated by employing an extreme case–control 
design with approximately 200 individuals of African ancestry and 200 of European 
ancestry. Approximately 100,000 genome-wide SNPs were genotyped using the Affym-
etrix Gene Chip Human Mapping 100 K Array. One significant locus was reported to be 
associated with the DBP response to hydrochlorothiazide (Turner et al. 2008). In a fur-
ther effort using 1,100,000 SNPs and 650 samples for discovery and 620 for replication 
(Turner et al. 2013), three loci showed genome-wide significance while not replicated. 
Combining all samples, one locus became genome-wide significant, which also showed 
a large effect of 4.2 mmHg per coded allele. In another study, about 300 hypertensive 
patients were recruited for GWAS of BP responses to three antihypertensive medicines. 
Associations were tested between quantitative BP responses and approximately 300,000 
SNPs, and no significant loci were detected (Kamide et al. 2013). Although SNPs under-
lying BP responses may have large effects, small sample sizes employed in current phar-
macogenomic studies may have limited their discovery.

Future directions

There is no doubt that GWAS achieved considerable success in dissecting the genetic 
architecture of BP regulation with over 60 novel loci identified. However, a substantial 
proportion of heritability has not been accounted for. Known loci appear to explain 
less than 2.5 % of the phenotypic variance for SBP and DBP (ICBP 2011). Rare variants, 
structural variations, gene–gene, and gene–environment interactions, among many oth-
ers, have been suggested as potential sources for finding the missing heritability (Mano-
lio et al. 2009).

For height, a classic complex trait with an estimated heritability of 80 %, 697 genome-
wide significant variants have been reported that together explain one-fifth of its herita-
bility using samples of 253,000 individuals (Wood et al. 2014). For BP phenotypes, it was 
estimated that there are 116 (95 % confidence interval 57–174) independent BP variants, 
with the effect sizes similar to those reported previously (ICBP 2011), which are yet to be 
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discovered. Meta-analyses based on much larger sample sizes may find more common 
variants which explain additional BP variation.

With the advent of next-generation sequencing technology (Metzker 2010), it is pos-
sible now to detect rare variants via deep sequencing of whole exomes or even the entire 
genome at a much lower cost. Rare functional mutations were found to have much larger 
effects on BP than common mutations (Ji et al. 2008), potentially explaining at least a 
portion of the missing heritability. Sequencing studies of BP/hypertension are still at the 
initial stages. Early experiments suggest that large sample sizes are necessary (Nguyen 
et al. 2013; Morrison et al. 2014). While large sample sizes may be able to identify novel 
rare variants, efficient and cost-effective experimental design can enhance the power of 
even moderate sample sizes for studying rare variants (Shi and Rao 2011). The recently 
announced “Initiative on Precision Medicine” by the United States government aims to 
assemble over time a longitudinal cohort of 1 million or more American subjects (Col-
lins and Varmus 2015), which is likely to be a valuable resource for finding rare variants 
underlying BP regulation and many other human diseases.

Progress in testing gene–environment interactions has demonstrated great prom-
ise for discovering novel BP variants as summarized in this review. Gene–environment 
interaction studies very much complement current GWAS efforts, which focus solely on 
testing additive genetic main effect, and will likely help to explain a portion of non-addi-
tive heritability. The Gene–Lifestyle Interactions Working Group of CHARGE is leading 
a large international effort to evaluate gene–lifestyle interactions in large multi-ethnic 
populations with approximately 300,000 subjects for discovery and replication (Rao and 
Borecki, Coordinators). This great effort funded by the National Heart, Lung, and Blood 
Institute of the United States government (Rao and Borecki, Principal Investigators) 
will likely help decide whether interaction studies can help identify some of the missing 
heritability.

Genome-wide gene–gene interaction tests are more challenging given the much larger 
burden of multiple testing. In the first genome-wide SNP–SNP interaction study of high-
density lipoprotein cholesterol levels (van Leeuwen et al. 2014), no significant interaction 
was detected after Bonferroni correction of P values. In a focused study of SNP–SNP 
interaction among a small set of inflammation genes, no interaction was found to be 
associated with BP at an experiment-wide significance level (Basson et al. 2014a).

Epigenetics investigates trait and gene expression variations that are not caused by 
changes in the DNA sequence; it includes DNA methylation, histone modification, and 
alteration of microRNA expression, and more (Cowley et  al. 2012). There is evidence 
indicating that cardiovascular biomarkers are associated with epigenetic modifications 
(Baccarelli et al. 2010). Introduction of high-throughput technologies now enables epi-
genetic features to be comprehensively and quantitatively profiled across the genome. 
As most BP variants detected by GWAS reside in non-coding regions, suggesting regu-
latory roles, the study of epigenetics could potentially explain some of the BP variance 
mediated by the changes in gene expressions. Wang et al. (2011) has reviewed the poten-
tial of epigenetics in hypertension genetics. The first genome-wide methylation analysis 
was conducted in young African American males (Wang et  al. 2013a). A CpG site in 
the SULF1 gene showed higher methylation levels in leukocytes of hypertension case 



Page 14 of 20Zheng et al. Appl Inform  (2015) 2:10 

subjects than in those of healthy controls, confirmed in subjects younger than 30 years. 
This illustrates the promising future of epigenetic study in essential hypertension.

Conclusions
GWAS of BP allowed the testing of millions of common variants across the human 
genome for the first time. Tens of BP loci have been identified and reproduced in large 
cohorts; however, many BP variations are yet to be accounted for. Employing larger sam-
ple sizes and studying individuals with diverse genetic backgrounds help to identify more 
common variants. Next-generation sequencing technology permits the investigation of 
rare variants, which potentially have much larger effects. Gene–environment interac-
tion analyses may help to identify additional BP variation beyond the additive genetic 
main effect. With emerging epigenetic approaches, additional BP variance is likely to be 
explained by epigenetic differences in populations. It is hoped that advances in hyper-
tension genetics will provide insights into the pathogenesis of hypertension, identify 
novel drug targets, and lead to the development of novel antihypertensive medicines as 
well as personalized prevention and treatments.
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