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Abstract

We develop, analyze, and test a sparse tensor product phase space Galerkin discretization framework for the
stationary monochromatic radiative transfer problem with scattering. The mathematical model describes the
transport of radiation on a phase space of the Cartesian product of a typically three-dimensional physical domain and
two-dimensional angular domain. Known solution methods such as the discrete ordinates method and a spherical
harmonics method are derived from the presented Galerkin framework. We construct sparse versions of these
well-established methods from the framework and prove that these sparse tensor discretizations break the “curse of
dimensionality”: essentially (up to logarithmic factors in the total number of degrees of freedom) the solution
complexity increases only as in a problem posed in the physical domain alone, while asymptotic convergence orders
in terms of the discretization parameters remain essentially equal to those of a full tensor phase space Galerkin
discretization. Algorithmically we compute the sparse tensor approximations by the combination technique. In
numerical experiments on 2 + 1 and 3 + 2 dimensional phase spaces we demonstrate that the advantages of sparse
tensorization can be leveraged in applications.
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Introduction
In this paper, we consider the numerical solution of the
radiative transfer problem (RTP). This transport problem
is stated on the phase space � = D × S as the Carte-
sian product of a bounded physical domain D ⊂ R

d,
where d = 2, 3, and the unit dS-sphere as the parameter
domain S of dimension dS = d − 1 = 1, 2. The RTP (see
e.g. Modest 2003) is then given as the task of finding the
unknown radiative intensity u : � → R, a real function
over the phase space satisfying

s · ∇xu(x, s) + (κ(x) + σ(x))

u(x, s) = κ(x)Ib(x) + σ(x)
∫
S

�(s, s′)u(x, s′) ds′, (1a)

u(x, s) = g(x, s), x ∈ ∂D, s · n(x) < 0 . (1b)

We refer to Eq. (1a) as the stationary monochro-
matic radiative transfer equation (RTE), while Eq. (1b)
constitutes inflow boundary conditions. A ray of light of
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direction s is attenuated by absorption and scattering with
the medium. In (1a), κ ≥ 0 is the absorption coefficient,
σ ≥ 0 the scattering coefficient, and � > 0 the scat-
tering kernel or scattering phase function. The scattering
phase function is normalized to

∫
S �(s, s′) ds′ = 1 for

each direction s. Sources inside the domainD are modeled
by the blackbody intensity Ib ≥ 0, radiation from sources
outside of the domain or from its enclosings is prescribed
by the boundary data g ≥ 0. The vector n(x) denotes the
outward unit normal vector which is defined in (almost
every) point x on the boundary ∂D of the physical domain.
Due to the high dimension of the phase space, the

nonlocality of the scattering operator, and the hyperbolic
nature of the PDE, the efficient numerical simulation of
radiative transfer is a challenging computational task even
today. Still, radiative transfer as such or as a means of
energy transfer among others is of interest in many appli-
cations, e.g. in the fields of heat transfer (Modest 2003),
neutron transport (Hébert 2010), atmospheric sciences
(Evans 1998), medical imaging (e.g. Peng et al. 2011), or
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other areas where transported particles interact with a
background medium, but only negligibly with each other.
In this paper, we extend the range of sparse tensor prod-

uct discretizationmethods for the RTP investigated before
(Grella and Schwab 2011a; Grella and Schwab 2011b;
Grella 2013; Widmer et al. 2008) by a new phase space
Galerkin framework.
Apart from Monte Carlo methods for raytracing, the

most popular deterministic approaches for the radiative
transfer problem are the discrete ordinates method and
the spherical harmonics approximation. We quote a brief
overview of their properties from (Grella 2013).
In the discrete ordinate method (DOM) or SN -

approximation, the angular domain is discretized by a
number of fixed directions, which are inserted into Eq. (1)
so that a system of spatial PDEs results. Without scatter-
ing the equations for single directions are independent
of each other, with scattering, however, they are coupled
through the scattering integral. After the straightforward
discretization of the angular domain, the spatial PDEs are
typically solved using finite differences, finite elements, or
finite volume methods.
The DOM is popular as it is simple to implement, offers

straightforward parallelization, and can capture directed
radiation relatively well as some of the ordinates can
usually be chosen freely.
On the downside, the method can suffer from so-called

“ray effects” (Lathrop 1968): due to the point evaluation
in the angular domain, the scalar flux or incident radi-
ation from small isotropic sources may appear star-like
with rays emanating from the source into the chosen
angular directions (Stone 2007, p. 2 and following). These
effects occur especially pronounced in settings with low
scattering and absorption, i.e. in optically thin media.
An example for truncated series expansion is the

method of spherical harmonics or PN -approximation. The
solution of Eq. (1) is replaced by a series of spherical
harmonics up to some order N with spatially dependent
coefficients. Due to orthogonality relations, the scattering
part often decouples or couples only few terms depending
on the scattering kernel. However, the system of PDEs for
the spatial coefficient functions is always coupled by the
transport part s · ∇xu.
As low order series expansions in spherical harmonics

do not permit a very localized resolution of the angular
variable, the method performs best when the solutions are
nearly isotropic in angle, which is the case in diffusive,
so-called “optically thick” media. Then, rather low order
spherical harmonics approximations might suffice for a
good approximation. Indeed, the P1 method can be for-
mulated as a diffusion equation for the incident radiation
(Modest 2003, Sec. 15.4). For smooth solutions, the spher-
ical harmonics method exhibits spectral convergence in
angle (Grella and Schwab 2011a).

On the other hand, beam-like solutions require a high
spectral order to be resolved appropriately, leading to
high computational complexity. In general, higher spec-
tral orders also lead to a sharp increase in computational
complexity when boundary conditions are to be satisfied
(Modest and Yang 2008).
When combined with a standard finite element or finite

volume discretization in the physical domainD, the deter-
ministic, numerical SN - and PN -approximations exhibit
the so-called “curse of dimensionality”: the error (typically
the L2-error of the solution) with respect to the numbers
of degrees of freedom (DoF) MD and MS on the compo-
nent domainsD and S scales with the dimension d and dS
of the application problem as O

(
M−s/d

D + M−t/dS
S

)
with

constants s and t.
The first sparse finite element approximation method

was proposed in (Zenger 1991) for the solution of Laplace
equation in the unit square and cube. In this paper, Zenger
developed the (direct) sparse grid approximation method
which alleviates this curse of dimensionality: the compu-
tational complexity is reduced, up to logarithmic terms, to
that of a one-dimensional problem.
The idea of sparse tensorization of finite element and

finite difference methods was generalized by (Bungartz
and Griebel 2004; Hegland 2003; Garcke 2007), and oth-
ers, for the numerical solution of PDEs as well as for
other applications where standard numerical methods are
obstructed by the curse of dimensionality.
Sparse tensor methods were first applied to radiative

transfer by (Widmer et al. 2008). In that paper, the authors
formulated a least squares phase space Galerkin sparse
tensor approximation with hierarchical finite elements
as discretization of the physical domain and wavelets in
the angular domain. They proved that sufficient regu-
larity of the solution provided, their method breaks the
curse of dimensionality: the problem complexity reduces
to log-linear in the number of degrees of freedom, while
convergence rates deteriorate only by a logarithmic factor.
However, the discretization of the scattering operator had
not been addressed in that work.
In earlier work (Grella and Schwab 2011a), we showed

that the sparse tensor product method of (Widmer et al.
2008) can also be combined with a spectral discretization
involving spherical harmonics, resulting in a sparse PN -
method which also treats scattering. Boundary conditions
were satisfied in a strong sense by introducing piecewise
spectral functions in angle.
Secondly we presented a sparse tensor version of the

DOM as a sparse collocation method with a Galerkin
ansatz in the physical domain and strong enforcement
of the boundary conditions, while not yet accounting for
scattering (Grella and Schwab 2011b). This sparse ten-
sor SN -method was realized computationally with the
sparse grid combination technique (Griebel et al. 1992) to
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construct a sparse approximation to the radiative transfer
solution.
The sparse DOM was subsequently reformulated as a

phase space Galerkin method with quadrature in angle
(Grella 2013) in order to treat sparse PN - and sparse
SN -method in a more uniform manner. In this reformu-
lation, we employed streamline upwind Petrov Galerkin
(SUPG) stabilization and weak satisfacion of boundary
conditions. Sparse SN -methods were derived as a direct
sparse tensor method and implemented algorithmically
via the combination technique.
In the present paper, we derive a sparse PN - and sparse

SN -method from the same phase space Galerkin frame-
work with transport stabilization and scattering. Bound-
ary conditions are satisfied in a weak sense. In doing so
we close a gap in the list of conceivable combinations
of formulations regarding stabilization and type of angu-
lar approximation. In contrast to the previous approach
(Grella 2013), we stabilize the formulation in a different
way and the analytical focus will be on the direct sparse
approach. With transport stabilization and direct sparse
approach we follow (Widmer et al. 2008) more closely,
extending their work by treatment of scattering and weak
satisfaction of the boundary conditions.
Similar savings in computational effort are realized with

other variational formulations, such as Petrov-Galerkin
saddle point formulations (see e.g. Dahmen et al. (2012)
and the references there).
The outline of this paper is as follows. In Section

‘Phase space Galerkin method’ we formulate the phase
space Galerkin framework in operator form and outline
how PN and SN -methods can be derived from it. Then
we develop full tensor and sparse tensor discretizations
based on the framework and analyze and compare their
convergence properties.
Section ‘Numerical experiments’ presents several basic

numerical experiments designed with the purpose of vali-
dating and illustrating the theoretical convergence results.
Finally we conclude this work in Section ‘Conclusion’ by

summarizing and reviewing the results.

Phase space Galerkinmethod
We begin by introducing the radiative transfer problem in
operator form. Using this compact notation we then state
the variational formulation of our phase space Galerkin
method and proceed to discretizations of the method.

Operator formulation
Problem (1) reads in operator form: Find the intensity
u(x, s) : D × S → R such that

Au = f , u|∂�− = g. (2)

In this, ∂�− represents the inflow part of the bound-
ary ∂� = ∂D × S of the computational domain or

phase space � = D × S . The inflow boundary is defined
by

∂�− := {(x, s) ∈ � : x ∈ �−(s)} (3)

with the physical part of the inflow boundary

�−(s) := {x ∈ ∂D : s · n(x) < 0}. (4)

Correspondingly we define the physical part of the out-
flow boundary as

�+(s) := {x ∈ ∂D : s · n(x) > 0}. (5)

The radiative transfer operator A = T + Q consists of
the transport operator T,

Tu := (s · ∇x + κ)u, (6)

and the scattering operator Q,

Qu := σQ1u := σ(Id − �)u := σ(x)u(x, s)

− σ(x)
∫
S

�(s, s′)u(x, s′) ds′ .
(7)

Here, Q1 = Id − � is the unity scattering operator, and
� is the scattering integral operator, the integral of � and
u. The source function f contains the sources of radiation
in the domain,

f := κIb, (8)

and g is the incoming radiation on the boundary ∂�−, as
in Sec. ‘Introduction’.

Properties of the scattering operator
Aside from the positivity and normalization requirements
already mentioned in Sec. ‘Introduction’, we assume an
isotropic medium, i.e. � does not depend on x. As �

models the type of scattering, this assumption can safely
be made for most applications (cf. Modest 2003, p. 268).
Variations in the strength of scattering due to e.g. varying
spatial density of the medium are modeled by the scat-
tering coefficient σ . As long as the following properties
hold for almost every x, the complexity and convergence
analysis later on could also be conducted without this
assumption.
Furthermore, if spherical scatterers are assumed, the

scattering phase function does not vary with the
azimuthal angle so that � only depends on the inner
product of s and s′. From this it follows immediately that
�(s, s′) = �(s · s′) = �(s′, s).
From here on, we shall take � to be forward

dominant (cf. Kanschat 2008, Def. 1) if �(s, s′) =∑∞
k=0 ak cos(k arccos(s · s′)) with all ak ≥ 0. Then, one

can show that � is positive semi-definite (Kanschat 2008,
Lemmata 2 and 3), i.e.

(v,�v)L2(S) ≥ 0 ∀v ∈ L2(S). (9)
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Normalization and symmetry of � with respect to its
arguments leads to normalization of the operator norm
||�||L2(S)→L2(S) = 1 (Kanschat 2008, Lemma 5).
From these properties and a Hilbert-Schmidt theorem

for integral operators (e. g. Knapp 2005, Thm. 2.4), one can
derive that the spectrum ofQ1 lies in [0, 1] with an isolated
eigenvalue λ0 = 0, from which the next largest eigenvalue
λ1 differs by a positive constant (Ávila et al. 2011, Sec. 2.2).
With the previous considerations, one arrives at the

following properties of Q:

Lemma 1. For any u ∈ L2(�), the scattering operator Q
as defined by Eq. (7) satisfies (cf. Ávila et al. 2011, Eq. (11))

λ1

∥∥∥σP⊥u
∥∥∥
L2(�)

≤ ‖Qu‖L2(�) ≤ ‖σ‖L∞(�) ‖u‖L2(�) ,

(10)
(u, Qu)L2(�) ≥ ‖Qu‖2L2(�)

≥ 0, (11)

in which the projector P⊥ maps u(x, ·) ∈ L2(S) to (kerQ)⊥,
the space orthogonal to the kernel of Q, and λ1 ∈ (0, 1] is
the smallest nonzero eigenvalue ofQ1.

For a proof of (11) we refer to (Grella 2013).

Variational formulation
Our variational formulation will be based on a Galerkin
finite element framework over the phase space � with
stabilization applied to the operator RTP (2).

A generic stabilized phase space variational formulation
To begin with, we define the Hilbert space

V := {
u ∈ L2(�) : s · ∇xu ∈ L2(�)

}
(12)

with the usual L2(�) inner product

(u, v)L2(�) :=
∫
S

∫
D
u(x, s)v(x, s)dx ds, (13)

and the triple bar norm

‖|v‖|2 := ‖v‖2L2(�)
+‖s · ∇xv‖2L2(�)

+‖Q1v‖2L2(�)
, v ∈ V .

(14)

For the weak enforcement of boundary conditions, we
define the boundary form

b(u, v) := (v, |s · n|u)L2(∂�−) =
∫
S

∫
�_(s)

|s · n|uvdx ds,
(15)

in which we have omitted the dependence of the outward
unit normal n on the position x. This boundary form was
introduced byManteuffel et al. (2000, Eq. (2.16)). It is well-
defined for functions v ∈ L2(�) with finite inflow norm

‖v‖− := b(v, v)1/2. (16)

Combining (14) and (16) yields the new norm

‖v‖1 :=
(|‖v|‖2 + ‖v‖2−

)1/2 , (17)

which gives rise to the closed, linear subspace of V ,

V1 := {v ∈ V : ‖v‖1 < ∞} (18)

which, with the inner product related to ‖v‖1, is a Hilbert
space. For functions u, v ∈ V1, we define the bilinear form

a(u, v) := (Rv, Au)L2(�) + 2b(u, v), (19)

where R is a stabilization operator on the test function side
yet to be specified. Together with the linear form

l(v) := (
Rv, f

)
L2(�)

+ 2b(g, v), (20)

the bilinear form constitutes the following variational
problem: Find u ∈ V1 such that

a(u, v) = l(v) ∀v ∈ V1. (21)

Different ways of stabilization are conceivable and have
been used in the literature, e. g. the least squares approach
by (Manteuffel et al. 2000), or SUPG introduced by
(Brooks and Hughes 1982). For our purposes here, we will
choose the T-stabilized formulation (Grella and Schwab
2011a) to avoidmesh-dependent quantities and the square
of the scattering operator. More precisely, we set R =
εT with a stabilization parameter ε that depends on the
absorption coefficient κ .

Properties of the variational formulation
At this point, we introduce the anisotropic or mixed
Sobolev spaces Hs,t(�) = Hs(D) ⊗ Ht(S) as

Hs,t(�) :=
{
v ∈ L2(�) : Dβ

s Dα
x v ∈ L2(�),

0 ≤ |α| ≤ s, 0 ≤ |β| ≤ t
} (22)

with the corresponding mixed Sobolev norms ‖·‖Hs,t(�),
given by

‖v‖2Hs,t(�)
:=

∑
0≤|α|≤s

∑
0≤|β|≤t

∥∥∥Dβ
s Dα

x v
∥∥∥2
L2(�)

. (23)

Here, Dβ
s Dα

x v denotes the weak derivative of v : D×S →
R of order |α| w. r. t. x ∈ D and order |β| w. r. t. s ∈ S , with
the multi-indices α ∈ N

d
0 and β ∈ N

dS+1
0 .

The following lemma collects auxiliary results which
will become helpful later.

Lemma 2 (Auxiliary results).

1. Let v ∈ V . Then
(v, s · ∇xv)L2(�) ≥ 1

2
∫
S

∫
�−(S)

v2s · n(x)dx ds. If
furthermore v ∈ V0, then (v, s · ∇xv)L2(�) ≥ 0.

2. For v ∈ H1,0(�), it holds ‖s · ∇xv‖ ≤ √
d‖v‖H1,0(�).
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Proof. 1. A proof is given by (Manteuffel et al. 2000,
Thm. 2.1). It uses the divergence theorem and
exploits the fact that v|∂�− = 0 for s · n(x) < 0 if
v ∈ V0, where n(x) is the outward unit normal on the
boundary ∂D:

(v, s · ∇xv)L2(�) = 1
2

∫
S

∫
D

∇x · (sv2)dx ds

= 1
2

∫
S

∫
∂D

v2s · n(x)dx ds

= 1
2

∫
S

∫
�−(s)

v2s · n(x)dx ds

+ 1
2

∫
S

∫
�+(s)

v2s · n(x)dx ds.

As s · n ≥ 0 in the second integral, we obtain the
first assertion. If additionally v ∈ V0, then the first
integral vanishes, and the second assertion follows.

2. We again quote Manteuffel et al. (2000, Lemma
4.1 (i)):

‖s · ∇xv‖2L2(�)
≤

∫
D

∫
S

⎛
⎝ d∑

i=1
siDxiv

⎞
⎠2

ds dx

≤ d
∫
D

∫
S

d∑
i=1

(
siDxiv

)2ds dx
≤ d

d∑
i=1

∥∥Dxiv
∥∥2 ≤ d‖v‖2H1,0(�)

.

In order to establish well-posedness of the variational
formulation (21), we prove continuity and coercivity of the
bilinear form (19) and continuity of the linear form (20) in
the following.

Lemma 3 (Continuity of bilinear form). Let σ , κ , ε ∈
L∞(D) with ‖σ‖L∞(D) =: σmax, ‖κ‖L∞(D) =: κmax,
‖ε‖L∞(D) =: εmax, then there is a constant 0 < cc < ∞
such that for all u, v ∈ V1

|a(u, v)| ≤ cc ‖u‖1 ‖v‖1.

Proof. We proceed analogously to (Manteuffel et al.
2000, Thm. 3.3). To begin with, we estimate for all u, v ∈ V

‖Rv‖ = ‖εκv + εs · ∇xv‖ ≤ εmaxκmax‖v‖ + εmax ‖s · ∇xv‖
≤ max{εmaxκmax, 1} ‖v‖1 , (24)

‖Au‖ ≤ κmax ‖u‖ + ‖s · ∇xu‖ + σmax ‖Q1u‖
≤ max{κmax, 1, σmax}|‖u|‖. (25)

Using the Cauchy-Schwarz inequality as well as esti-
mates (24) and (25) it holds

|a(u, v)| ≤ | ‖Rv‖ ‖Au‖ + 2‖v‖− ‖u‖− |
≤ 2

(‖Rv‖2 + ‖v‖2−
)1/2 (‖Au‖2 + ‖u‖2−

)1/2
≤ 2max{1, εmaxκmax}max{κmax, 1, σmax} ‖u‖1 ‖v‖1 .

Lemma 4 (Continuity of linear form). Given the assump-
tions of Lemma 3 on κ , σ , ε, and additionally f ∈ L2(�),
g : ∂�− → R with

∥∥g∥∥− < ∞, there is a constant
0 < cl < ∞ such that for v ∈ V1 it holds

|l(v)| ≤ cl‖v‖1 .

Proof. The proof is analogous to that of Lemma 3:

|l(v)| ≤ | ‖Rv‖ ∥∥ f ∥∥ + 2‖v‖−
∥∥g∥∥− |

≤ 2
(‖Rv‖2 + ‖v‖2−

)1/2 (∥∥ f ∥∥2 + ∥∥g∥∥2−)1/2
≤ 2max{1, εmaxκmax}(

∥∥ f ∥∥ + ∥∥g∥∥−) ‖v‖1 .

Next, we show coercivity of the bilinear form. For ease
of exposition we shall assume ε and κ to be constant on
the physical domain. Coercivity can also be obtained for
non-constant coefficients (seeWidmer 2009, Thm. 2.2, for
an example). Coercivity of the SUPG variational formula-
tion for the RTP has also been proved by (Ávila et al. 2011,
Lemma 2), although in a different norm. Previously, we
had proved coercivity of the T-stabilized variational for-
mulation without the boundary form b(·, ·) (Grella 2013,
Lemma 4.1), here we include this boundary form in the
formulation, which will motivate the choice of the stabi-
lization parameter ε.

Lemma 5 (Coercivity of bilinear form). Let κ , ε be posi-
tive functions which are constant on the physical domain
D. Assume minx∈D σ =: σmin > 0 and σmax = ‖σ‖L∞(D),
and additionally that

σ 2
max < 4κσ 2

min, ε <
2
κ
. (26)

Then the bilinear form a(·, ·) from (19) is coercive onV1×
V1: there is a constant ce > 0 such that for all v ∈ V1 it
holds

a(v, v) ≥ ce ‖v‖21 .
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Proof. For an overview of the involved terms we split the
bilinear form into separate inner products:

a(v, v) = (εκv + εs · ∇xv, Av) + 2b(v, v)
= (εκv + εs · ∇xv, s · ∇xv + κv + Qv) + 2b(v, v)
= (εκv, s · ∇xv) + (εκv, κv) + (εκv, Qv)

+ (εs · ∇xv, s · ∇xv) + (εs · ∇xv, κv)
+ (εs · ∇xv, Qv) + 2b(v, v) (27)

As we assumed ε and κ to be constant, we can factor
these coefficients out of the inner products. We begin by
analyzing the sum of first and fifth inner product.
Applying statement 1 of Lemma 2 yields

2εκ (v, s · ∇xv) ≥ −εκ‖v‖2−.
Together with the boundary term, we obtain

(εκv, s · ∇xv)+(εs · ∇xv, κv)+2b(v, v) ≥ (2−εκ)‖v‖2−.
The second inner product is bounded from below by

(εκv, κv) ≥ εκ2‖v‖2.
To estimate the third inner product, we use prop-

erty (11) of the scattering operator:

εκ (v, Qv) ≥ εκ ‖Qv‖2 ≥ εκσ 2
min ‖Q1v‖2 .

The fourth inner product in Eq. (27) is

(εs · ∇xv, s · ∇xv) = ε ‖s · ∇xv‖2 .
For the sixth inner product we apply Cauchy-Schwarz

inequality and Young’s inequality with a parameter θ > 0:

(εs · ∇xv, Qv) ≥ −εσmax ‖s · ∇xv‖ ‖Q1v‖
≥ −εσmax

(
θ

2
‖s · ∇xv‖2 + 1

2θ
‖Q1v‖2

)
Combining all estimates yields the result:

a(v, v) ≥ εκ2 ‖v‖2 + ε

(
1 − θ

2
σmax

)
‖s · ∇xv‖2

+ ε

(
κσ 2

min − 1
2θ

σmax

)
‖Q1v‖2

+ (2 − εκ) ‖v‖2−
≥ min

{
εκ2, ε

(
1 − θ

2
σmax

)
,

ε

(
κσ 2

min − 1
2θ

σmax

)
, 2 − εκ

}
‖v‖21 .

By eliminating θ we obtain the condition σ 2
max <

4κσ 2
min. The condition ε < 2/κ results from the last of the

terms over which the minimum is taken.

The previous condition on the stabilization parameter
leads to a choice of ε = 1/κ . Well-posedness of the
variational formulation now follows directly.

Theorem 6 (Existence and uniqueness of solution to
variational formulation). Provided that f ∈ L2(�) and∥∥g∥∥− < ∞ there exists a unique solution u ∈ V1 to the
variational formulation (21).

Proof. Since (V1, ‖·‖1) is a Hilbert space and Lem-
mata 3–5 guarantee continuity of the augmented SUPG
bilinear form and linear form as well as coercivity of the
bilinear form, the Lax-Milgram theorem (Brenner and
Scott 2008, Thm. 2.7.7) ensures existence and uniqueness
of the solution to (21).

Discretization
For the discretization of the variational problem (21),
we restrict the space V1 in the variational formulation
(21) to tensor products of hierarchic, finite dimensional
approximation spaces over the component domains D
and S .

Full tensor discretization
In the standard full tensor approximation, we choose a full
tensor product space VL,N to approximate V1:

V1 ≈ VL,N := VL
D ⊗ VN

S . (28)

As H1,0(�) ∼= H1(D) ⊗ L2(S) is a dense subspace of V1,
we define the family of physical approximation spaces as

VlD
D := S0,1

(
D,T lD

D

)
⊂ H1(D), lD = 1, . . . , L, (29)

the spaces of continuous, piecewise linear functions on a
dyadically refined mesh T lD

D over D. Here, the parameter
lD stands for the physical resolution. It is related to the
mesh width h in T lD

D by h = O
(
2−lD

)
. With respect to

the resolution lD = 0, . . . , L, the spaces VlD
D form a nested

sequence

V 0
D ⊂ V 1

D ⊂ . . . ⊂ VL
D ⊂ H1(D).

Let MD := dimVL
D denote the number of degrees of

freedom for the FE space VL
D in the physical domain D.

Then

MD = O
(
2dL

)
(30)

with the dimension d of the physical domain. The exact
number will depend on the geometry of the domain. For a
square or cube D =[ 0, 1]d, respectively, we obtain

MD = (
2L + 1

)d . (31)

In the angular domain, we distinguish between the PN -
method and the SN -method.
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SN -method Here, the family of approximation spaces is
given by

VlS
S := S−1,0

(
S ,T lS

S

)
⊂ L2(S), lS = 1, . . . ,N ,

(32)

the spaces of piecewise constant functions on a dyadically
refined mesh T lS

S . As the physical spaces, these spaces
exhibit a nested structure. The angular resolution N and
the dimension of VN

S are related by

MS := dimVN
S = O

(
2dSN

)
. (33)

PN -method To define the angular approximation
spaces of the PN -method, we first introduce the spaces of
spectral functions of the dS-sphere,

P
dS
Ñ = span

{
Y (dS )
n,m : n = 0, . . . , Ñ ;

m = 1, . . . ,mn,dS

}
⊂ L2(S),

(34)

where Y (dS )
n,m are the spherical harmonics of the dS-sphere,

and mn,dS is the largest value of the secondary index m
depending on the value of the primary index n and the
dimension. These spaces offer an inherent nested struc-
ture. To obtain the same relation (33) between resolution
level and degrees of freedom as in the SN -method, we
connect the resolution level N and Ñ by Ñ = 2N − 1.
Then, the angular approximation spaces are

VlS
S := P

dS
2lS −1

, lS = 1, . . . ,N , (35)

and relation (33) also holds here. Up to the index rela-
beling and the additional boundary form, we obtain the
spherical harmonics method already analyzed by (Grella
and Schwab 2011a).
In both methods, the full tensor approximation space

consequently has the dimension

ML,N := dimVL,N = MD · MS = O
(
2dL+dSN

)
. (36)

The full tensor approximate solution can be expressed
by means of a physical basis {αi(x)}MD

i=1 of VL
D and an

angular basis {βj}MS
j=1 of VN

S as

uL,N (x, s) :=
MD∑
i=1

MS∑
j=1

uijαi(x)βj(s) (37)

with solution coefficients uij ∈ R. The discrete variational
formulation finally reads: Find uL,N ∈ VL,N such that

a(uL,N , vL,N ) = l(vL,N ) ∀vL,N ∈ VL,N , (38)

with the bilinear form a(·, ·) from (19) and the linear form
l(·) from (20). As VL,N is a subspace of V1 well-posedness
ensured by Thm. 6 for the continuous problem follows
also for this discrete problem.

By choosing a subset of H1(D) ⊗ L2(S) as trial space
we effectively assume a slightly higher regularity on the
solution than what is guaranteed by the definition (12) of
V1. For instance, solutions with line discontinuities due
to the transport of discontinuous boundary data into the
domain are not included in VL,N . However, since VL,N is
dense in V1, even discontinuous solutions will be approx-
imated with increasing resolution. Furthermore, in order
to leverage the advantages of a sparse tensor approxima-
tion, a higher regularity of the solution will be required in
any case.

Equivalence of collocation DOMand phase space Galerkin
DOMwith quadrature
Ordinarily the discrete ordinates method is presented as
a collocation method in angle: Fixed directions sj ∈ S ,
j = 1, . . . ,MS , are inserted into the RTE (1a), and for each
direction, the intensity uj(x) := u(x, sj) ∈ VL

D is sought
as the solution to a purely spatial PDE. In these PDEs, the
scattering integral is replaced by a quadrature rule

∫
S

�(sj, s′)u(x, s′) ds′ ≈
MS∑
m=1

wm�(sj, sm)um (39)

with weights wm > 0. By applying a Galerkin ansatz with
stabilization in the physical domain to the PDEs, a system
of coupled variational formulations

(
Rjv, Tjuj + σuj −

MS∑
m=1

wm�(sj, sm)um

)
L2(D)

+ 2
(
v, |sj · n|uj

)
L2(�−(sj))

= (
Rjvf

)
L2(D)

+ 2
(
v, |sj · n|gj

)
L2(�−(sj)) ∀v ∈ VL

D

(40)

results with directional stabilization and transport
operators

Rj := R|s=sj , Tj := T|s=sj , j = 1, . . . ,MS . (41)

In the phase space Galerkin approach, variational for-
mulation (38) is discretized further by substituting the
angular quadrature rule (39) for all angular integrals so
that the bilinear form (19) is approximated by

a(u, v) ≈ ã(u, v) =
MS∑
j=1

wj

(
Rjvj, Tjuj + σuj

−
MS∑
m=1

wm�(sj, sm)um

)
L2(D)

+ 2
MS∑
j=1

wj
(
vj, |sj · n|uj

)
L2(�−(sj)) .
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Let the linear functional l(·) from (20) be approximated
by a functional l̃(·) with angular quadrature correspond-
ingly, then the directional solutions uj are determined
from the variational formulation with angular quadrature

ã(u, v) = l̃(v) ∀v ∈ VL,N , j = 1, . . . ,MS . (42)

Since this formulation has to hold for all v ∈ VL,N ,
it follows that for test functions which vanish at every
angular quadrature node si, i = 1, . . . ,MS except one sj,
formulation (42) can be reduced to the variational for-
mulation (40) from the collocation discretization. This
condition on the test functions is satisfied e. g. for a basis
of the test space of characteristic functions on the angu-
lar mesh if each mesh cell contains exactly one angular
quadrature node. With such a one-point quadrature rule
and characteristic basis functions of VN

S , the phase space
Galerkin DOM is therefore equivalent to the collocation
DOM after discretization.

Sparse tensor discretization
The full tensor approach presented before shows the typ-
ical complexity for full tensor approximations: The num-
ber of degrees of freedoms increases exponentially with
the dimension and the resolution levels in a dyadically
refined scheme.
A way to counter this exponential increase is found

in sparse tensorization. Using the same approximation
spaces on the component domains VlD

D and VlS
S as for

the full tensor approximation we define a sparse tensor
approximation space V̂ L,N by

V1 ≈ V̂ L,N :=
∑

0≤ f (lD,lS )≤L
V lD
D ⊗ VlS

S , (43)

where the sparsity profile f : {0, . . . , L} × {0, . . . ,N} → R

determines which tensor product subspacesVlD
D ⊗VlS

S are
to be included in the approximation. The sparsity profile
usually depends on N as well. Here, we employ a linear
profile

f (lD, lS) = lD + LlS/N , (44)

which is normally chosen if the component complexities
MD and MS depend on the resolution parameters L and
N in the same way and identical order of approxima-
tion is sought over both component domains (cf. Zenger
1991; Bungartz and Griebel 2004; Griebel and Harbrecht
2013a).
If direct sum decompositions of the component approx-

imation spaces VlD
D and VlS

S into detail spaces WlD
D and

WlS
S , i. e.

VlD
D = VlD−1

D ⊕ WlD
D , lD = 1, . . . , L

are available (correspondingly in the angular domain),
then the sparse tensor approximation space V̂ L,N can also
be written as

V̂ L,N =
∑

0≤ f (lD,lS )≤L
WlD

D ⊗ WlS
S . (45)

By choosing hierarchical bases for VlD
D and VlS

S , each
degree of freedom uij can directly be associated with a ten-
sor product detail space WlD

D ⊗ WlS
S . The sparse solution

is then given by

ûL,N =
∑

0≤ f (lD,lS )≤L
ulD,lS ,

ulD,lS =
dimWlD

D∑
i=1

dimWlS
S∑

j=1
uijαlD

i (x)β lS
j (s) ∈ WlD

D ⊗ WlS
S .

Thus, the sparse discrete variational problem reads: Find
ûL,N ∈ V̂ L,N such that

a(ûL,N , v̂L,N ) = l(v̂L,N ) ∀v̂L,N ∈ V̂ L,N . (46)

The dimension of the sparse tensor product space V̂ L,N

depends on the sparsity profile f (lD, lS). For a linear spar-
sity profile as in (44), the following complexity estimate is
known (e. g. Bungartz and Griebel 2004, Lemma 3.6), or
Griebel and Harbrecht (2013a, Thm. 4.1)).

Lemma 7. Assuming the dimensions of the detail spaces
WlD

D and WlS
S scale as dim(Wli

i ) ≤ ci2dili with constants
ci > 0 and dimensions di, i = D,S , with dD = d, and given
a linear sparsity profile f (lD, lS) as in (44), the dimension
of the sparse tensor product approximation space V̂ L,N as
defined by (45) is

M̂L,N � Lθ2max{dL,dSN} � (logMD)θ max{MD,MS}, (47)

where θ = 1 if dL = dSN and θ = 0 otherwise. Relation
“�” defines an order up to constants with respect to the
relevant scaling parameters L, N: a � b iff a ≤ Cb with
constant C independent of L and N.

Error analysis
In this section, we shall show that the convergence rates
of the full tensor and sparse tensor Galerkin methods dif-
fer only by a logarithmic factor in the degrees of freedom,
provided that somewhat stronger regularity requirements
are met for the exact solution.
The analysis will proceed along the usual fashion, cp.

(Bungartz and Griebel 2004). We define the Galerkin pro-
jector PL,N : V1 → VL,N into the full tensor product
approximation space

a
(
PL,Nu, v

) = a(u, v) ∀v ∈ VL,N . (48)
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Letting L → ∞ (N → ∞) the fact that the sub-
spaces are closed and dense implies that in the respec-
tive limits we obtain semidiscrete Galerkin projectors
PNS := limL→∞ PL,N

(
PLD := limN→∞ PL,N

)
on the physi-

cal (angular) domain, as the Galerkin projector is stable in
the ‖·‖1-norm:

Lemma 8 (Stability of the Galerkin projector). Let v ∈ V1.
Then there is a constant cP > 0 independent of L and N so
that∥∥PL,Nv∥∥1 ≤ cP‖v‖1.

Proof. With continuity (Lemma 3) of the bilinear form
we obtain

|a (
PL,Nv, vL,N

) | = |a(v, vL,N )|
≤ cc‖v‖1

∥∥vL,N∥∥
1 ∀vL,N ∈ VL,N .

Since this holds for all vL,N ∈ VL,N , we can set
vL,N = PL,Nv and exploit coercivity of the bilinear
form (Lemma 5):

ce
∥∥PL,Nv∥∥21 ≤ |a (

PL,Nv, PL,Nv
) |

= |a (
v, PL,Nv

) | ≤ cc‖v‖1
∥∥PL,Nv∥∥1 .

If PL,Nv �= 0 we obtain the result with cP = cc/ce.

Error estimates on the physical domain
To begin with, we require some approximation results in
theH1(D)-norm on the physical domain.With a Clément-
type quasi-interpolation operator PLI (Scott and Zhang,
1990, Thm. 4.1 and Cor. 4.1) we obtain

Lemma 9 (Approximation of quasi-interpolation). For
polyhedral D ⊂ R

d and a shape-regular triangulation T L
D

on D with mesh width h = 2−L, the quasi-interpolation
PLI v of a function v ∈ Hs+1(D), s ∈ [0, 1], to the space
VL
D = S0,1

(
D,T L

D
)
of piecewise affine functions on T L

D
satisfies the error estimate

‖v − PLI v‖H1(D) ≤ cH2−sL‖v‖Hs+1(D),

where cH > 0 is a constant independent of L.

Lemma 10 (Stability of quasi-interpolation). Under the
assumptions of Lemma 9, quasi-interpolation is H1-stable,
i. e. there exists a constant cB > 0 independent of L such
that for all v ∈ H1(D) it holds

‖PLI v‖H1(D) ≤ cB‖v‖H1(D).

Next we derive an error estimate for the Galerkin
approximation on the physical domain. At this point, the
approximation is semidiscrete.

Lemma 11 (Error estimate for Galerkin projection on
physical domain). Let u ∈ Hs+1,0(�), s ∈ {0, 1}, be the

exact solution to problem (21) and uL := PLDu ∈ VL
D ⊗

L2(S) the Galerkin projected solution to

a(uL, vL) = l(vL) ∀vL ∈ VL
D ⊗ L2(S) (49)

with a(·, ·) from (19) and l(·) from (20). Then, there is a
constant cp > 0 independent of L such that

‖u − uL‖1 ≤ cp 2−sL ‖u‖Hs+1,0(�) .

Proof. The proof is standard, and is based on coerciv-
ity and Galerkin orthogonality. We proceed analogous to
(Ávila et al. 2011, Lemma 3 and Theorem 1). After insert-
ing the quasi-interpolated solution ûL := (PLI ⊗IdS)uwith
PLI from Lemma 9 the triangle inequality permits us to
write

‖u − uL‖1 ≤ ∥∥u − ûL
∥∥
1 + ∥∥ûL − uL

∥∥
1 . (50)

For the first part, we use the fact that there is a constant
cn > 0 for all v ∈ H1(D) ⊗ L2(S) such that

‖v‖1 ≤ cn‖v‖H1,0(�).

Thus, we can apply Lemma 9:∥∥u − ûL
∥∥
1 ≤ cn

∥∥u − ûL
∥∥
H1,0(�)

≤ cncH2−sL ‖u‖Hs+1,0(�) .

For the second part in (50), we use coercivity of the bilin-
ear form, then in a second step Galerkin orthogonality,
and finally continuity of the bilinear form to write∥∥uL − ûL

∥∥2
1 ≤ c−1

e a(uL − ûL,uL − ûL)

≤ c−1
e a(u − ûL,uL − ûL)

≤ ccc−1
e

∥∥u − ûL
∥∥
1

∥∥uL − ûL
∥∥
1

≤ ccc−1
e cn

∥∥u − ûL
∥∥
H1,0(�)

∥∥uL − ûL
∥∥
1 ,

and therefore with Lemma 9∥∥uL − ûL
∥∥
1 ≤ ccc−1

e cncH2−sL ‖u‖Hs+1,0(�) .

By inserting into (50) we arrive at the result

‖u − uL‖1 ≤ cncH
(
1 + ccc−1

e
)
2−sL ‖u‖Hs+1,0(�) .

Error estimates on the angular domain
On the angular domain, the considerations in the follow-
ing require an approximation result for L2-projections.

Lemma 12. For functions v ∈ Ht(S), t ∈ {0, 1}, the L2-
projection to the space VN

S satisfies the error estimate∥∥∥v − PNL2(S)
v
∥∥∥
L2(S)

≤ cl2−tN‖v‖Ht(S), (51)

where the constant cl > 0 is independent of N.

This result can be obtained for approximation by spec-
tral functions as in the spherical harmonics method (in
which case t ≥ 0 is arbitrary), for instance, as well as for
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approximation by piecewise constants as in the discrete
ordinates method (in which case 0 ≤ t ≤ 1). It allows
the derivation of the same approximation rate for the
semidiscrete Galerkin projection on the angular domain.

Lemma 13 (Error estimate for angular Galerkin projec-
tion). Let u ∈ H1,t(�), t ∈ {0, 1}, be the exact solution to
problem (21) and uN := PNS u ∈ H1(D) ⊗ VN

S the Galerkin
projected solution with angular part from the subspace VN

S
of L2(S). Then there is a constant ca > 0 independent of N
such that

‖u − uN‖1 ≤ ca N−t ‖u‖H1,t(�) .

Proof. The proof proceeds analogously to the one of
Lemma 11 while substituting the L2-projected solution
with Lemma 12 for the quasi-interpolated solution, the
details are therefore omitted here.

Error estimate for the full tensor phase spaceGalerkinmethod
The following theorem gives an error estimate for the full
tensor approximation.

Theorem 14 (Error estimate full tensor Galerkin
method). The full tensor Galerkin approximation
uL,N = PL,Nu of a solution u ∈ Hs+1,0(�) ∩ H1,t(�),
s ∈ {0, 1}, t ∈ {0, 1}, to the variational problem (21)
satisfies the asymptotic error estimate

∥∥u − uL,N
∥∥
1 � 2−sL ‖u‖Hs+1,0(�) + 2−tN ‖u‖H1,t(�) ,

(52)

with relation “�” as in Lemma 7.

Proof. By Céa’s Lemma (Brenner and Scott 2008, Thm.
2.8.1) the Galerkin approximation is quasi-optimal in
VL,N , its error can therefore be bounded (up to con-
stants) by the error of any other approximation to u in
VL,N , for example the quasi-interpolated and L2-projected
approximation PLI ⊗ PNL2u:∥∥u − PL,Nu

∥∥
1 �

∥∥u − PLI ⊗ PNL2u
∥∥
1 ≤ ∥∥u − PLI ⊗ Idu

∥∥
1

+ ∥∥PLI ⊗ Idu − PLI ⊗ PNL2u
∥∥
1

� 2−sL ‖u‖Hs+1,0(�)

+ ∥∥(Id − Id ⊗ PNL2)P
L
I ⊗ Idu

∥∥
1

� 2−sL ‖u‖Hs+1,0(�)

+ 2−tN ∥∥PLI ⊗ Idu
∥∥
H1,t(�)

� 2−sL ‖u‖Hs+1,0(�) + 2−tN ‖u‖H1,t(�) .

Here, we used the approximation properties of the
quasi-interpolant from Lemma 9 and of the angular L2-

projection from Lemma 12. The last step is a conse-
quence of the H1-stability asserted in Lemma 10 of the
quasi-interpolation.

Error estimate for the sparse tensor phase space Galerkin
method
After the full tensor approximation properties, we con-
sider the convergence properties of a direct sparse tensor
approximation on the sparse tensor product space V̂ L,N as
defined in (45).
In analogy to the full tensor Galerkin projector PL,N , we

can define a sparse tensor Galerkin projector P̂L,N by the
orthogonality relation

a
(
P̂L,Nu, v

)
= a(u, v) ∀v ∈ V̂ L,N .

The error of the sparse tensor solution ûL,N = P̂L,Nu
is estimated in the following theorem (see also Widmer
2009, Thm. 2.6) and (Griebel and Harbrecht 2013a,
Thms. 4.3 and 7.1)).

Theorem 15 (Error estimate of direct sparse tensor solu-
tion). Let the linear sparsity profile as in (44) be given.
Assume further that L and N vary such that −sL + tN =
ζ = const, then the direct sparse tensor approximation
ûL,N of a function u ∈ Hs+1,t(�), s, t ∈ {0, 1}, satisfies the
error estimate

∥∥u − ûL,N
∥∥
1 � L

(
2−sL + 2−tN) ‖u‖Hs+1,t(�) ,

where relation “�” is defined as in Lemma 7.

Proof. We follow the proof of Thm. 2.6 by (Widmer
2009). First we introduce so-called difference projectors
�

lD
I := PlDI − PlD−1

I and �
lS
L2 := PlSL2 − PlS−1

L2 as the dif-
ference between projections to two consecutive resolution
levels with the convention P−1

I = 0 = P−1
L2 . They project

onto the detail spacesWlD
D andWlS

S , respectively.
With these difference projectors, a sparse quasi-

interpolated and L2-projected approximation ūL,N ∈ V̂ L,N

to u can be expressed as

ūL,N =
L∑

lD=0

lmax
S (lD)∑
lS=0

�
lD
I ⊗ �

lS
L2u,

where lmax
S (lD) is the largest feasible angular resolution

index which results from solving f (lD, lS) ≤ L with
respect to lS .
Now we exploit quasi-optimality of the Galerkin

approximation on the sparse tensor product space to
replace the Galerkin approximation error by the error of
the quasi-interpolated and L2-projected approximation.
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Additionally applying the norm estimate ‖v‖1 �
‖v‖H1,0(�) yields

∥∥u − ûL,N
∥∥
1 �

∥∥∥∥∥∥u −
L∑

lD=0

lmax
S (lD)∑
lS=0

�
lD
I ⊗ �

lS
L2u

∥∥∥∥∥∥
H1,0(�)

.

(53)

The error is split into two terms:

∥∥u − ūL,N
∥∥
H1,0(�)

≤
∥∥∥∥∥∥

L∑
lD=0

∞∑
lS=lmax

S (lD)+1
�

lD
I ⊗ �

lS
L2u

∥∥∥∥∥∥
H1,0(�)︸ ︷︷ ︸

=:I

+
∥∥∥∥∥∥

∞∑
lD=L+1

∞∑
lS=0

�
lD
I ⊗ �

lS
S u

∥∥∥∥∥∥
H1,0(�)︸ ︷︷ ︸

=:II

.

(54)

The second term on the right hand side can be estimated
by Lemma 9:

II = ∥∥(
Id − PLI

) ⊗ Idu
∥∥
H1,0(�)

≤ cH2−sL ‖u‖Hs+1,0(�) .
(55)

This term will not contribute to the asymptotic terms.
The first term on the right hand side of (54) is split up

further:

I =
∥∥∥∥∥∥

L∑
lD=0

(
PlDI − PlD−1

I

)
⊗

(
Id − Pl

max
S (lD)

L2

)
u

∥∥∥∥∥∥
H1,0(�)

=
∥∥∥∥∥∥

L∑
lD=0

(
PlDI − Id + Id − PlD−1

I

)
⊗

(
Id − Pl

max
S (lD)

L2

)
u

∥∥∥∥∥∥
H1,0(�)

≤
L∑

lD=0

(∥∥∥(
Id − PlDI

)
⊗

(
Id − Pl

max
S (lD)

L2

)
u
∥∥∥
H1,0(�)

+
∥∥∥(

Id − PlD−1
I

)
⊗

(
Id − Pl

max
S (lD)

L2

)
u
∥∥∥
H1,0(�)

)
.

(56)

Both norms on the right hand side of (56) can be
estimated by Lemma 9 and Lemma 12:∥∥∥(

Id − PlDI
)

⊗
(
Id − Pl

max
S (lD)

L2

)
u
∥∥∥
H1,0(�)

≤ cH2−slD
∥∥∥Id ⊗

(
Id − Pl

max
S (lD)

L2

)
u
∥∥∥
Hs+1,0(�)

≤ cHcl2−slD−tlmax
S (lD) ‖u‖Hs+1,t(�) .

Inserting back into (56) yields

I ≤ 2cHcl ‖u‖Hs+1,t(�)

L∑
lD=0

2−slD−tlmax
S (lD). (57)

The task is now to estimate the series. Using the
assumption ζ = −s + tN/L:

L∑
lD=0

2−slD−tN/L(L−lD) = 2−tN
L∑

lD=0
2(−s+tN/L)lD

= 2−tN
L∑

lD=0
2ζ lD . (58)

We estimate the sum on the right hand side of (58) by its
largest summand. Two cases can be distinguished here:

1. If ζ ≤ 0, the largest summand occurs for lD = 0:

2−tN
L∑

lD=0
2ζ lD ≤ L2−tN .

2. If ζ > 0, the largest summand occurs for lD = L:

2−tN
L∑

lD=0
2ζ lD ≤ 2−tNL2−sL+tN = L2−sL.

In summary, we may write
L∑

lD=0
2−slD−tlmax

S (lD) ≤ L2−sL−tN .

By combining this estimate with relations (53) to (57),
we finally arrive at∥∥u − ûL,N

∥∥
H1,0(�)

� L2−sL−tN ‖u‖Hs+1,t(�) .

In conclusion, we find that the convergence rate of
O(2−sL−tN ) of the full tensor approximation is maintained
up to an additional factor L, which byMD = O(2dL) is log-
arithmic in the number of degrees of freedom. This result
in conjunction with the greatly reduced complexity of the
sparse tensor method (Lemma 7) shows its superior effi-
ciency provided that the function u to be approximated is
at least in Hs+1,t(�), with s, t ∈ {0, 1}.

Numerical experiments
Algorithms
For the numerical experiments we compute a sparse ten-
sor solution with the help of the combination technique.
The sparse solution is constructed according to the for-
mula

ǔL,N =
L∑

�D=0

(
u�D,�max

S (�D) − u�D,�max
S (�D+1)

)

from a number of solutions u�D,�S ∈ V �D,�S to the full
tensor discrete variational formulation (38) of reduced
physical resolution �D and angular resolution �S .
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Clearly ǔL,N is in the space V̂ L,N = ∑L
lD=0 V �D,�max

S (�D),
which is identical to the sparse tensor approximation
space from (43). However, in general the combination
approximation differs from a direct sparse approxima-
tion ûL,N (see also Grella 2013, Sec. 2.3.1). Due to
the quasi-optimality of the direct sparse solution as
an approximation in V̂ L,N , the error of the combina-
tion approximation can serve as an upper bound (up to
factors) for the error

∥∥u − ûL,N
∥∥
1 of the direct sparse

approximation.
Note that the convergence of the combination technique

for the radiative transfer problem has not been shown for-
mally yet. A recent proof for elliptic operators by (Griebel
and Harbrecht 2013b) would be applicable under certain
stability assumptions on the semidiscrete Galerkin pro-
jectors (for details we refer to (Grella 2013, Sec. 5.3.7)).
However, the use of the combination technique approx-
imation has practical advantages over the direct sparse
approximation. First, to construct the subproblem solu-
tions of lower resolution, an existing full tensor solver
with standard nonhierarchical FEM bases can be reused,
no direct sparse solver needs to be implemented. Second,
the splitting into subproblems entails a natural level for
parallelism in the algorithm, which can still be combined
with parallel solution procedures at the level of each sub-
problem (an implementation is described in (Grella 2013,
Chap. 7)).
Each of the full tensor subproblems is solved by a

phase space Galerkin finite element method with non-
hierarchical affine hat functions as physical basis and
piecewise constants as angular basis. In the experiment of
Sec. ‘Experiment 2’, the midpoint rule is used for angular
quadrature which corresponds to the SN -method. How-
ever, in situations where ray effects (Lathrop 1968) pollute
the results, adaptive quadrature may help (Stone 2007).
As a simple adaptive rule we link the number of quadra-
ture points nq per dimension and per mesh element to
the resolution levels lD, lS of the subproblem by nq =
max{lD/lS , 1} in the experiment of Sec. ‘Experiment 1’.
Even though the overall computational effort is then not
bounded by Lemma 7, the total number of degrees of free-
dom still is. As the iterative, approximate solution of the
linear system constitutes the most time consuming part,
the sparse tensor method is, in practice, more efficient
than the full tensor method.

Quantities of interest
In applications, the radiative intensity is often coupled to
other modes of energy transport via the net emission (e. g.
Larsen et al. 2002, Eq. (1.1a)). The net emission can be
computed in turn from the incident radiation

G(x) =
∫
S
u(x, s) ds. (59)

For this reason, we choose the incident radiation as a
lower-dimensional variable to visualize results and to ana-
lyze errors. The relative L2- or H1-error of the incident
radiation is given by

err(GL,N )X = ‖G − GL,N‖X/‖G‖X , X = L2(D),H1(D).

Numerical experiments
All experiments are set on the domains D = [0, 1]d, S =
SdS , with d = dS + 1. We solve the RTP with isotropic
scattering �(s, s′) = 1/|S| and zero inflow boundary
conditions g = 0.

Experiment 1
We search the solution to the Gaussian blackbody radia-
tion

Ib(x) = 2 exp
(−32(x − c)2

)
, c = (0.5, 0.5)�,

with absorption and scattering coefficient κ = σ = 1.
The H1-error of the incident radiation indeed con-

verges faster in the sparse approximation than the full
approximation (Figure 1). Note that the L2-error of the
sparse approximation can be larger than the error of the
full approximation because the sparsity profile f (lD, lS)

has been optimized for essentially undeteriorated conver-
gence in the ‖·‖1-norm of the error in the radiative inten-
sity, which is more closely represented by the H1-error
than the L2-error of the incident radiation.

Experiment 2
A blackbody radiation Ib(x, s) corresponding to the exact
solution

u(x, s) = 3
16π

(1 + (s · s′)2)
3∏

i=1
(−4xi(xi − 1)),

with fixed s′ = (1/
√
3, 1/

√
3, 1/

√
3)� is inserted into the

right hand side functional in (38) (Grella 2013, Sec. 8.2,
Exp. 1). The absorption is set to κ = 1, the scattering
coefficient to σ = 0.5.
For this experiment we employed a discrete ordinates

solver in which the angular resolution N ′ is related to the
angular degrees of freedom by MS = (N ′ + 1)2 so that
N ≈ �log2(N ′ + 1)�, where N is the angular resolution
used otherwise in this paper.
Figure 2 shows the superior efficiency of the sparse

approach with respect to number of degrees of freedom
vs. achieved error. The convergence rates indicate that the
curse of dimensionality is mitigated by the sparse discrete
ordinates method.
For a comparison to other sparse tensor approaches

we refer to the numerical experiment section of (Grella
2013), which features a sparse tensor spherical harmon-
ics approximation and a sparse collocation discrete ordi-
nates method realized via the combination technique. We
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Figure 1 Experiment 1: Convergence in incident radiation with full and sparse phase space Galerkin approximation. Reference resolution
was Lref = 6/Nref = 6. Reference slopes provided as visual aids only. Even with the lowest order sparse tensor phase space Galerkin discretization,
the savings in DoFs to reach engineering accuracy of 1%–10% in the H1 error is about an order of magnitude.

observed that the approach presented here performs sim-
ilarly to the sparse collocation DOM combination tech-
nique as the methods are similar from the point of view
of implementation, even though their theoretical deriva-
tion is different. The presented approach is somewhat less
susceptible to ray effects at the expense of slightly longer

computational times as the angular quadrature is adapted
to the resolution of the angular mesh. The spherical har-
monics method is most effective for solutions with highly
regular angular part because of its regularity requirements
for spectral convergence. In general, at the same resolu-
tion levels L and N, the combination technique approach

Figure 2 Experiment 2: Convergence in incident radiation with full and sparse DOM. Reference resolution was Lref = 4. Angular resolution N′
corresponds to N ≈ {1, 2, 3, 4}. Reference slopes provided as visual aids only. The savings in DoFs to reach engineering accuracy of 1%–10% are
about two orders of magnitude.
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realizes approximately the same error as the direct sparse
approach, while the number of degrees of freedom in the
combination technique is larger than in the direct sparse
approach because the approximation spaces of different
subproblems in the combination technique overlap in the
degrees of freedom. It is therefore slightly less efficient
than the direct sparse approach, but considerably more
efficient than the full tensor approach and advantageous
in practice due to faster and simpler implementation and
parallelization.

Conclusion
We have shown a direct sparse tensor phase space
Galerkin approximation of the radiative intensity in the
stationary monochromatic radiative transfer problem can
be computed with only O(logMD(MD + MS)) degrees
of freedom as opposed to O(MDMS) degrees of freedom
for a standard full tensor approximation. Here, MD is the
number of physical degrees of freedom andMS the num-
ber of angular degrees of freedom. At the same time, the
error of the sparse approximation in the ‖·‖1-norm still
decreases essentially as the error of the full approximation,
namely with the order O

(
logMD

(
M−s/d

D + M−t/dS
S

))
as compared to O

(
M−s/d

D + M−t/dS
S

)
in the full tensor

approximation. The parameters s, t ∈ {0, 1} indicate the
regularity of the exact solution which is required to be in
the space of mixed smoothness Hs+1,t(D × S) to achieve
the sparse convergence rate, whereas Hs+1,0(D × S) ∩
H1,t(D × S) is sufficient in the full tensor approximation.
To simplify implementation, we realized the sparse ten-

sor approximation algorithmically via the combination
technique. Together with suitable quadrature rules, we
demonstrated in numerical experiments that this sparse
tensor combination approximation retains the analyzed
theoretical advantages of the direct sparse tensor method
while allowing for straightforward parallelization also at
the level of subproblems.
The proposed specialization of the phase space Galerkin

framework investigated here has the advantage that both
discrete ordinates and spherical harmonics method can
be derived from it so that the sparse tensorization
benefits hold for the sparse variants of both methods
alike.
Therefore, for problems whose solutions exhibit so-

called mixed regularity, the sparse tensor product
phase space Galerkin approximations realize a significant
increase in efficiency, i. e. achievable error per number
of degrees of freedom. Even in applications where high
numerical accuracy is the main objective, a sparse ten-
sor product approximation might be of value as an initial
value for an iterative solver or in a problem-adapted pre-
conditioning scheme.
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