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Abstract

Alzheimer’s disease (AD) is a prominent form of dementia, characterized by aggregation of the amyloid β-peptide
(Aβ) plaques and neurofibrillary tangles, loss of synapses and neurons, and degeneration of cognitive functions.
Currently, although a variety of medications can relieve some of the symptoms, there is no cure for AD. Recent
breakthroughs in the stem cell field provide promising strategies for AD treatment. Stem cells including embryonic
stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells
(iPSCs) are potentials for AD treatment. However, the limitation of cell sources, safety issues, and ethical issues
restrict their applications in AD. Recently, the direct reprogramming of induced neural progenitor cells (iNPCs) has
shed light on the treatment of AD. In this review, we will discuss the latest progress, challenges, and potential
applications of direct reprogramming in AD treatment.
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Introduction
Alzheimer disease (AD) is an aging-associated disorder
with an incidence of 13% in people over 65 years of age
[1]. In most countries, people with AD are a heavy bur-
den to their families and the society. In China, the num-
ber of patients with AD and other dementias will reach
an estimated 18 million by 2030 [2]. Thus, it is urgent to
seek effective therapeutic strategies to cure this intr-
actable disease. Although the neuropathogenesis of AD
remains largely unknown, increasing evidence suggests
that the accumulation and deposition of β-amyloid pro-
tein (Aβ), caspase activation, mitochondrial dysfunction,
and neuronal loss contribute to the neuropathogenesis
of AD. Specifically, the accumulation of Aβ in the brain
is always believed to be the primary factor that triggers
local inflammatory response and the extent of synaptic
and forebrain cholinergic neuron loss [3-7], which cause
direct decline in cognitive function. Currently, the
chemical treatments of AD mainly include: (i) NMDA
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receptor channel blocker, such as Memantine [8,9]
(antagonist to glutamate NMDA receptors). (ii) Enhancing
the function of cholinergic neurons [10], such as Donepe-
zil [11], Tacrine [12], Galanthamine [13], Rivastigmine
[14], Huperzine A [15] (inhibitors of acetylcholinesterase,
AChEI). (iii) Blocking Aβ’s production and decreasing its
aggregation [16], such as Solanezumab [17] (humanized
anti-Aβ monoclonal antibody), Bapineuzumab [18] (hu-
manized anti-Aβ monoclonal antibody), Semagacestat
[19] (small-molecule γ-secretase inhibitor). Unfortunately,
these drugs have failed clinical trials, because they did not
improve cognitive function. E.g., Semagacestat presented
side effect, such as skin cancers and infections [17-19].
(iv) Scavenging free radical [20,21] such as N-acetyl-L-
cysteine [22,23]. (v) Immune modulating [24], such as
nonsteroidalanti-inflammatory drugs (NSAIDs) [25]. Al-
though these treatments can alleviate symptoms to a
certain extent (see Table 1) [26], they are incapable of pre-
venting the degeneration of neurons and replacing the im-
paired ones in AD brains [27]. Stem-cell based therapy
will provide a potential strategy for AD treatment, which
is different from the chemical treatments.
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Table 1 Therapeutic effects of traditional treatments and
stem cells-based therapies for AD

Therapeutic effects Chemical treatments Stem-cells based
therapies

Neuron replacement None ESCs

NSCs

MSCs

iPSCs

iNPCs

Aβ’s reduction Solanezumab
(clinical trials failed)

NSCs

Bapineuzumab
(clinical trials failed)

MSCs

Semagacestat
(clinical trials failed)

Neuron protective/
neurotrophic action

Memantine MSCs

Donepezl

Tacrine

Galanthamine

Rivastigmine

Huperzine A

N-acetyl-L-cysteine

Immune modulating Nonsteroidalantiinflammatory
drugs

MSCs

Table 2 Stem cells-based therapies for AD

Stem
cell
types

Sources Advantages for
clinical treatment

Limitations

ESCs Blastocyst Low immunogenicity Ethical issues

High capacity of
pluripotency

Difficult to get
enough cells

Tumorigenicity

NSCs Fetal brain Low immunogenicity Immune rejection

Capacity of Aβ reduction Ethical issues

Low tumorigenicity Difficult to get
enough cells

MSCs Bone marrow Low immunogenicity Low differentiated
efficacy into
neurons

Human
umbilical
cord blood

No ethical issues Injure patients to
harvest BM-MSCs

Capacity of Aβ reduction Very limited source
of hUCB-MSCs

Immune modulation

iPSCs Somatic cells No immunogenicity Tumorigenicity

No ethical issue Low
reprogramming
efficacy

High capacity of
pluripotency

Low differentiation
efficacy into
specific neurons

iNPCs Somatic cells No immunogenicity Low
reprogramming
efficacy

No ethical issue

Abilities to differentiate
into region- and subtypes-
specific neurons

Direct reprogramming
in vivo is simpler, quicker,
safer, and harmless, as well
as avoiding challenges of
transplanted cells.
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Current situation of stem cell-based therapies for AD
Increasing evidence suggests that embryonic stem cells
(ESCs), neural stem cells (NSCs), mesenchymal stem
cells (MSCs), and induced pluripotent stem cells (iPSCs)
have potential for AD treatment. These cells can im-
prove the ability of spatial learning and memory for ani-
mals [28-37] by cell replacement [28,29], Aβ reduction
[30-33,38], neurotrophic action [31] and immune modu-
lation [34,39-41] (see Table 2) (Figure 1).
After transplanted, ESCs, NSCs and bone marrow

derived-MSCs (BM-MSCs) can survive well and migrate
to various brain regions [28], where they differentiate into
cholinergic neurons, restore hippocampus synaptic den-
sity, and improve spatial learning and memory abilities for
animals [28,29,33]. Moreover, NSCs and MSCs also reduce
Aβ or tau pathology by phagocytic activity of astrocytes
derived from transplanted NSCs [30-32] or microglia acti-
vation mediated by grafted MSCs to retard inflammatory
processes [33,34,38-41]. Meanwhile, transplanted NSCs
also secrete a series of neurotrophic factors, such as
GDNF, BDNF and MANF [30-32], supporting the grafted
cells to create more functional cholinergic neurons. More-
over, grafted human umbilical cord blood-derived MSCs
(hUCB-MSCs) can also ameliorate the pathogenesis of AD
by reducing the apoptosis and proinflammatory cytokines,
increasing anti-inflammatory cytokines [39,40] and modu-
lating oxidative stress [41]. Although the iPSCs technology
has opened a new window for AD treatment, and newly
generated neurons from iPSCs of familial AD patients also
expressed MAP2 and β III-tubulin, formed functional syn-
aptic contacts, and exhibited normal electrophysiological
activity in vitro, these neurons showed similar cellular
pathological feature with those in AD patients [42]. These
studies suggest that iPSCs derived from AD patients may
not be suitable for their own treatment.
Although ESCs, NSCs, MSCs, and iPSCs have some

advantages in AD treatment, there are also problems
that need to be solved before transplantation (also see
Table 2). Currently, the ethical issues and immune rejec-
tion for ESCs and NSCs remain concerns, and also low
differentiation efficiency for neurons due to lineage bar-
riers and the limitation of cell source will be a challenge
for MSCs [41]. Furthermore, the safety issue and low



Figure 1 Current situation of stem cell-based therapies for AD. Stem cell-based therapies for AD can be achieved by cell replacement, Aβ reduction,
neurotrophic action and immune modulation. ESCs, NSCs, MSCs, iPSCs, and iNPCs have the capacity to differentiate into cholinergic neurons to
replace the apoptotic ones after transplanted. NSCs and MSCs are able to reduce Aβ or tau’s level. MSCs can play a positive role in neuroprotection and
immune modulation.
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efficiency of iPSCs into subtype specific neurons will
also limit its application in AD treatment.

Generation of induced neural progenitors (iNPCs) by
direct lineage conversion
Although functional neurons have been successfully gen-
erated through direct reprogramming [43], the low yield
and non-proliferative nature of neurons derived from
direct reprogramming limit its broad application in cell
transplantation therapy of AD. Recently, progress sug-
gests that induced neural progenitors (iNPCs) that give
rise to all types of neural cells hold promising thera-
peutic effects on AD [44-46]. In our laboratory, we have
been one of the first groups in the world to successfully
convert somatic cells into iNPCs by ectopic expression
of defined transcription factors, which share high simi-
larities with primary neural progenitors in proliferation,
self-renewal, and differentiation abilities [47,48]. Mean-
while, Pei’s lab successfully achieved iNPCs from mouse
embryonic fibroblasts by chemical cocktails under a
physiological hypoxic condition, without introducing ex-
pression of exogenous genes. These chemical-induced
NPCs (ciNPCs) resembled mouse brain-derived NPCs in
both cell properties and gene expression profiles [49].
These strategies avoid the ethical issue and reduce the
risk of tumor formation [50,51]. Recently, we have been
working on the direct reprogramming of somatic cells
into region-specific iNPCs and subtype-specific iNPCs
by ectopic expression of defined transcription factors.
Hopefully, these iNPCs will have high differentiation



Figure 2 Strategies for direct reprogramming of iNPCs from somatic cells. iNPCs generated from different strategies. (A) Direct reprogramming of
iNPCs by ectopic expression of defined transcription factors. (B) Direct reprogramming of region-specific iNPCs by expression of lineage-specific
transcription factors. (C) Direct reprogramming of neuronal subtypes-specific iNPCs by using sets of defined transcription factors. (D) Generation
of neuronal subtypes through direct reprogramming in vitro and in vivo.
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efficiency for region-specific or subtype -specific neu-
rons, and significantly improve the therapeutic effects in
AD (Figure 2). Although multipotent neural stem/pro-
genitor cells (NSCs/NPCs), including iNPCs that give
rise to all types of neural cells hold promising thera-
peutic effects on AD, the specificity and efficiency induc-
tion of homogeneous cholinergic neurons generation
from NPCs/iNPCs remain a challenge. Studies have
showed that NSCs/NPCs respond poorly to pre-
patterning morphogens with low efficiency for specific
neuronal subtypes, and are prone to more glial-
restricted states under typical culture conditions in vitro
[52]. Moreover, grafted NSCs/NPCs are more likely to
terminally differentiate into astrocytes rather than func-
tional neurons in response to injury [53,54]. Therefore,
stem cell-based therapies for AD based on the regener-
ation of specific neuronal subtypes, such as forebrain
cholinergic neurons, will be more attractive. Although
the major pathogenesis of AD was characterized by the
selective degeneration of basal forebrain cholinergic
neurons, recent study has demonstrated that selective
degeneration of septal and hippocampal GABAergic
neurons in a mouse model of amyloidosis and tauopathy
has also been detected [55]. Thus, the direct conversion
of GABAergic neural progenitor can be used an alterna-
tive strategy for AD treatment. Recently, neural conver-
sion from somatic cells can also be successfully achieved
in vivo [56-59], suggesting that it may be feasible to con-
vert activated astrocytes into region- or subtype-specific
iNPCs in the AD patients’ brains in vivo. These studies
provide a simpler, quicker, and safer therapeutic strategy,
which will allow us to directly inject defined factors in
AD brain to switch the active astrogliosis into neurogen-
esis in the future, such as forebrain cholinergic neurons,
avoiding cell transplantation.
In AD brain, the disease-related microenvironment,

including aggregation of Aβ and inflammatory reaction,
may decrease the proliferation and neurogenesis of
transplanted cells, which will affect the treatment effi-
ciency of AD. It is possible to improve the efficiency of
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iNPCs-based therapy by modulating the microenviron-
ment via the use of a neurotrophic factor, Aβ-clear cells,
and gene-engineered cells.
Conclusion and prospective
Progresses in the stem cell field have opened new win-
dows to generate region-specific and subtypes-specific
neural progenitors through direct reprogramming from
somatic cells, which will set up a new concept for AD
treatment. Moreover, instead of cell transplantation, di-
rectly reprogramming activated astrocytes in the patho-
logical site of AD brain into region- or subtype-specific
iNPCs by the direct injection of defined factors in vivo,
will be a promising strategy for AD treatment in the fu-
ture. Furthermore, the therapeutic efficacy of stem cells
can also be improved by modulating the disease-related
microenvironment by improving the proliferation, dif-
ferentiation, and self-renew of the transplanted cells.
Although the transplanted iNPC will face pathological
situation and many potential problems,the experience
gained would set up a great foundation for our future
in vivo reprogramming work. For further studies, we
should try a more specific, more efficient and virus free
delivering method for in vivo reprogramming. Taken to-
gether, the direct reprogramming of region-specific and
neuronal subtype-specific neural progenitors in vitro and
in vivo will be a potential strategy for the effective treat-
ment of AD in the future.
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