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Abstract

We examined the properties of growth mixture modeling in finding longitudinal quantitative trait
loci in a genome-wide association study. Two software packages are commonly used in these
analyses: Mplus and the SAS TRAJ procedure. We analyzed the 200 replicates of the simulated data
with these programs using three tests: the likelihood-ratio test statistic, a direct test of genetic
model coefficients, and the chi-square test classifying subjects based on the trajectory model’s
posterior Bayesian probability. The Mplus program was not effective in this application due to its
computational demands. The distributions of these tests applied to genes not related to the trait
were sensitive to departures from Hardy-Weinberg equilibrium. The likelihood-ratio test statistic
was not usable in this application because its distribution was far from the expected asymptotic
distributions when applied to markers with no genetic relation to the quantitative trait. The other
two tests were satisfactory. Power was still substantial when we used markers near the gene rather
than the gene itself. That is, growth mixture modeling may be useful in genome-wide association
studies. For markers near the actual gene, there was somewhat greater power for the direct test of
the coefficients and lesser power for the posterior Bayesian probability chi-square test.
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Background
Growth mixture modeling (GMM) is an important tool
for analyzing longitudinal data [1-3]. GMM hypothesizes
that there is a fixed but unknown number of trajectory
pattern components observed in a population. GMM
applies mixture analysis methods to estimate the
number of trajectory components and the probability
that a trait variable (such as a genotype) affects the
probability of trajectory component membership. The
procedure allows for controlling for time-varying covari-
ates (TVCs) as well. Two popular software packages for
GMM are the SAS TRAJ procedure [4-6] and the Mplus
program [7-9]. We analyze simulated data on the
coronary artery calcification (CAC) measurements
taken at the three visits [10]. We apply GMM software
to assess whether genotypes appear to be associated with
trajectory component membership, and hence identify
longitudinal quantitative trait loci (QTL). We compare
the empirical distribution of three measures of associa-
tion for genes not in the genetic model for CAC to the
usual chi-squared distributions. We compare the power
of GMM analyses that explicitly incorporate genotype
measurements of the genes in the genetic model for CAC
into the mixture modeling to GMM analyses that assess
genetic association with post hoc tests. Finally, we also
report the reduction in power using genes close to the
true gene rather than the gene itself.

Methods
Analysis software
We use the SAS TRAJ procedure [6] and the Mplus
program [11] to perform GMM and to identify long-
itudinal QTLs. Each SAS TRAJ analysis reports the
maximized log-likelihood, the maximum-likelihood
estimates (MLEs) of the trajectory group parameters,
the t-statistics of the trajectory group parameters, the
estimated frequency of each trajectory group, the
Bayesian posterior probability (BPP) that each subject
is a member of each trajectory component and the
Bayesian information criterion (BIC) statistic, which is
used to assess the number of trajectory components.
Mplus also reports these statistics.

Genes used in the analysis
For each gene considered, we create the two indicator
variables, whether the subject’s genotype is the more
common homozygote and whether the subject’s geno-
type is the less common homozygote. We study 17
single-nucleotide polymorphisms (SNPs): τ1, ..., τ5, j1,
j2 and 10 SNPs v1, v2, ..., v10 on human chromosome
(HC) 22 that were not in the genetic mechanism
determining the simulated CAC and myocardial infarc-
tion (MI) events. The genes τ1, ..., τ5 determined the CAC
level, and the genes j1, j2 determined MI but not the

CAC level [10]. The results for v1, v2, ..., v10 are the basis
of the empirical null distribution of our test statistics.
The distribution for j1, j2 should be similar to the
empirical null distribution. We also report PROC TRAJ
results for four SNPs near τ5 and τ2 that had a minor
allele frequency (MAF) greater than 0.1 and were in
Hardy-Weinberg equilibrium (HWE) to demonstrate the
applicability of this procedure for genome-wide associa-
tion studies (GWAS).

CAC analyses
We consider two sets of analyses applied to the 200
replicates. For each of the 17 SNPs, the first uses the
longitudinal CAC measures with the two genetic
indicator variables used as traits but without any TVCs.
The second is the longitudinal CAC with the TVCs
cholesterol (CHOL) and high-density lipoprotein (HDL)
level and with the two genetic indicator variables as
traits. We use a quadratic trend function and set the
number of components to two and three. The dataset
consists of subjects with genotypes and simulated
phenotypes (n = 6,476). We treat the subjects as
independent observations.

Measures of association with a gene
In an analysis that identifies c trajectory groups, there
are 2(c-1) indicator variables associated with gene i, i Œ
{τ1, ..., τ5, j1, j2, v1, ..., v10}. For example, for the τ5 gene
(which has homozygous genotypes AA and GG), there
are estimated coefficients for the two homozygous
indicators in Groups 2 through c. Group 1 is a reference
group with coefficients of trait variables set to 1
identically in the SAS TRAJ procedure. With τ5, we

calculate S T TAA j GG j
j

c
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2
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null distribution with the empirical distribution for v1,
v2, ..., v10. We call this the “direct coefficient test” (DCT)
and use level of significance 0.05 with the empirical
critical value from the distribution for v1, v2, ...., v10.

Our second procedure is the BPP chi-squared test on the
three genotype rows by c trajectory group column
contingency table. We classify each subject into the
trajectory group that has the largest BPP. A significant
value of the chi-square test for independence (p < 0.05
based on the empirical distribution of the chi-square test
for v1, v2, ...., v10) indicates association with the gene.

Our third procedure is the likelihood-ratio test statistic
(LRTS). We take the difference of the likelihood function
with the two genetic indicator variables and the like-
lihood function without the two genetic indicator
variables. We perform this test without TVC and with
TVC. A significant value of the LRTS (p < 0.05 based on
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the distribution of the chi-square test for v1, v2, ...., v10)
indicates association with the gene.

Results
We ran the Mplus software on Replicates 1 through 11
with two and three trajectory groups specified, with
subject’s age as individually varying times of observa-
tions for the outcome CAC. The software either failed to
converge or failed to identify the solution due to
excessive numbers of local maxima. We used at least
500 sets of starting values in the initial stage and 100
optimizations in the second stage. Computation times
were between 67 and 75 hours for each replicate to fit
the two-group models without any time-invariant or
time-varying covariates. The Mplus software was not
considered any further.

The distribution of the results from the three procedures
using the SAS TRAJ procedure had greater means and
standard deviations for the five SNPs from v1, v2, ...., v10
that were not in HWE than for the five in HWE as shown
in Table 1. We used the 95th percentile for the five
markers in HWE as the critical value for our tests. Use of
TVC appeared to increase the mean and standard
deviation of the distribution.

For j1, j2 and τ1, ..., τ5, we studied either two- or three-
trajectory components, with and without TVCs. Table 2
contains rejection rates by gene for the three tests using
the two- and three-trajectory group models. For j1 and
j2, which are genes associated with MI but not CAC, the
DCT and BPP rejection rates are roughly consistent with
5% level of significance. The LRTS rejection rates are 0,
suggesting that the test is not well defined for this
application, and we did not consider the LRTS further.
For τ5, the rejection rate was 100% for both DCT and
BPP using the two-trajectory group model. The

corresponding rejection rate for τ2 is 97.5% for DCT
and BPP. For τ1, τ3, and τ4, the rejection rates for DCT
and BPP are not substantially above 5%, the level of
significance.

Figure 1 shows the rejection rate of DCT and BPP for four
SNPs near τ5 (116.99 cM). The rejection rate for one of
the nearby SNPs was 100% for both DCT and BPP, and

Table 1: Summary test statistics for the HC22 SNPs, 200 replicates

Mean (SD)

Test Group TVC In HWE Not in HWE In HWE, 95th percentile

LRTS 2 no 699.07 (929.04) 20112.96 (9897.54) 2547.31
LRTS 2 yes 14284.71 (921.18) 32726.20 (9359.47) 16184.79
LRTS 3 no 698.58 (925.06) 20044.89 (9853.60) 2535.54
LRTS 3 yes 14722.74 (928.14) 32905.40 (9241.30) 16618.77

DCT 2 no 1.22 (1.24) 2.87 (3.06) 3.81
DCT 2 yes 1.62 (1.52) 3.40 (3.74) 4.72
DCT 3 no 3.48 (3.17) 4.24 (3.31) 9.27
DCT 3 yes 4.04 (5.82) 3.97 (3.17) 10.48

BPP 2 no 2.20 (2.27) 4.82 (5.52) 6.64
BPP 2 yes 2.95 (2.80) 8.07 (15.13) 8.46
BPP 3 no 6.32 (5.14) 8.88 (7.12) 16.74
BPP 3 yes 9.26 (10.10) 14.91 (19.20) 22.42

Table 2: Rejection rates of tests by gene, 200 replicates

2 Groups 3 Groups

Gene, test No TVC TVC No TVC TVC

j1

LRTS 0 0 0 0
DCT 7.5 10.5 2.5 9.0
BPP 18.0 10.0 4.5 10.5

j2

LRTS 0 0 0 0
DCT 4.0 1.0 3.0 2.0
BPP 3.0 2.5 1.0 1.5

τ5
LRTS 0 0 0 0
DCT 100 100 90.0 85.0
BPP 100 100 90.0 85.0

τ 2

LRTS 0 0 0 0
DCT 97.5 100 65.5 85.5
BPP 97.5 100 80.5 85.5

τ 1

LRTS 0 0 0 0
DCT 12.5 3.5 1.5 30.0
BPP 9.5 1.0 1.5 16.5

τ 3

LRTS 0 0 0 0
DCT 2.5 1.0 3.5 3.0
BPP 3.0 2.0 3.5 3.0

τ 4

LRTS 0 0 0 0
DCT 1.5 6.5 1.0 3.5
BPP 2.0 3.0 0.5 0
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the rejection rate was greater than 50% for DCT for two
nearby SNPs. The rejection rate for the remaining SNP
was very low. The rejection rate for BPP was somewhat
less than the rejection rate for DCT. Similar results held
for τ2 (data not shown).

Discussion and conclusion
The Mplus software was not effective in analyzing this
data due to computational instability and lengthy
computing time. Computational instability also affected
the SAS TRAJ procedure. For example, about 17% of the
replicates did not have a solution when three groups
were specified with TVCs. One effect of this instability
was that using TVCs did not increase the overall power as
expected. The LRTS was not usable, possibly due to the
dependence of subjects within pedigree and the non-
normality of the distribution of CAC, especially for the
first visit. The empirical distribution of the DCT and BPP
for genes not associated with CAC values appeared to
depend on whether the gene was apparently in HWE.
Because violation of HWE is often used as a test for large
genotyping error rates [12], a question yet to be resolved
is the robustness of these procedures to genotyping error.
A second approach to calculating the p-value of the DCT
or BPP is to use a permutation method.

Specifically, one can generate a large number of random
permutations of the n vectors (here n = 6,476 partici-
pants) of CAC values. The fraction of permutations that
yield a value of the statistic larger than the one observed
is the permutation p-value.

The analyses based on the SAS TRAJ procedure have
power to detect genes associated with longitudinal for
CAC QTLs. For CAC, the SAS TRAJ analysis of unadjusted
CAC values with two trajectory groups and no TVCs had
excellent power (100% rejection rate) to detect the τ5
association and good power (97.5% rejection rate) to
detect the τ2 association using either DCT or BPP. The

associations with τ1, τ3, and τ4 were not detected with
this approach. The rejection rates at a marker near τ5
could be as large as the τ5 rejection rate. The rejection
rate for DCT was high for most markers near τ5. The BPP
had somewhat lower rejection rates than the DCT.
Similar results held for τ2.

We conclude that the SAS TRAJ procedure is useful in
GWAS to identify longitudinal QTLs. In an actual genetic
analysis, one should follow Maclean et al. and consider
multiple transformations of the data to reduce the
chances that skewness of the data would result in an
apparent genetic association [13]. Procedures to find the
most effective transformation should be developed to
enhance the applicability of GMM analysis. The chi-
square test using the Bayesian posterior probability
classification of subjects seems to be slightly less
powerful than the direct test of the coefficients.
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allele frequency; MI: Myocardial infarction; MLE: Max-
imum likelihood estimate; QTL: Quantitative trait loci;
SNP: Single-nucleotide polymorphism; TVC: Time-vary-
ing covariate.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
S-WC developed the methodology, carried out the
statistical and genetic analyses, organized the group,
and drafted the manuscript. SHC, KL, RSF, CH, and TS
participated in the data mining and statistical analyses.
KL was also in charge of the data distribution and
management. KA, DG, WK, RW, NRM, and SJF conceived
of statistical theories and possible applications. NRM
and SJF also participated in the study design, group
coordination, and manuscript drafting. All authors read
and approved the final manuscript.

Acknowledgements
We thank Genetic Analysis Workshop 16 organizers and participants for
their inspiring talks and discussions that led to the perfection of this paper.
Dr. Mendell’s research was supported by NIH grant MH071523. In
particular, we thank So-Youn Shin, Ti Zhou, Chrisnel Lamy, Songjie Li, and
Qilong Yuan for their time and efforts in this project.

Figure 1
Rejection rate of DCT and BPP for SNPs near τ5 by
position with τ5. The empirically obtained critical values
were used (see Table 1, column 4).
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