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Eigi?;::r?;'Eaffegi;b:arbln In this paper, a new conservative high-order compact finite difference scheme is
150001, China studied for the initial-boundary value problem of the generalized

Rosenau-regularized long wave equation. We design new conservative nonlinear
fourth-order compact finite difference schemes. It is proved by the discrete energy
method that the compact scheme is uniquely solvable; we have the energy
conservation and the mass conservation for this approach in discrete Sobolev spaces.
The convergence and stability of the difference schemes are obtained, and its
numerical convergence order is O(t? + h*) in the L*°-norm. Furthermore, numerical
results are given to support the theoretical analysis. Numerical experiment results
show that the theory is accurate and the method is efficient and reliable.

Keywords: generalized Rosenau-RLW equation; compact finite difference scheme;
unigue solvability; convergence; stability; conservation

1 Introduction
In this paper, we consider the following initial-boundary value problem of the Generalized
Rosenau-RLW Regularized Long Wave (RLW) equation (GRRLW):

Us + Ugpxnt — Unny + Uy + (u”)x =0, xt)eQx(0,T], (11)
M(xl,t) = u(xr’ t) = 07 Mxx(XZ, t) = Mxx(xrr t) = 0’ te (0) T]r (12)
u(x,0) = up(x), x€€, (1.3)

where p > 2 is a positive integer, 2 = (x;,%,) and uo(x) are known smooth functions.
Let H3(Q) = {v(x) € H*(Q) | v(x,t) = v(%,,£) = 0,Va(x1, ) = Vax(x,,2) = 0}. The initial-
boundary value problem (1.1)-(1.3) possesses the following conservative quantities:

E@®) = lullfs + luxl}o + luall72 = EO), (1.4)

X X
Q) = / u(x, t)dx = / u(x,0) dx = Q(0). (1.5)
x] x]

For the Schrodinger equation, the Cahn-Hilliard equation, and the Klein-Gordon equa-

tion, the existence and uniqueness of numerical solutions were discussed in [1-5], respec-
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tively. The convergence and stability of the finite difference schemes were proved in the
theory, and their numerical convergence orders are O(t? + 42). In [6-12], some new finite
difference schemes for the initial-boundary value problem of the RLW equation were con-
sidered. Two types of conservative finite difference schemes were proposed in [13], which
depended on the choice of a parameter. On the basis of the prior estimates as regards the
norms, the convergence of the difference solution was proved with order O(t? + 42) in
the energy norm in [14, 15]. For the Cahn-Hilliard equation, a three-level linearized high-
order compact difference scheme was derived. The unique solvability and unconditional
convergence of the difference solution were proved. The convergence order is O(t? + 4%) in
the maximum norm in [16]. In [17], a new conservative difference scheme for the general
Rosenau-RLW equation was proposed. In [18], Pan and Zhang proposed a conservative
linearized difference scheme for the general Rosenau-RLW equation which was uncondi-
tionally stable and second-order convergent and simulates conservative laws at the same
time. In [19], the initial-boundary value problem for the Rosenau-RLW equation was stud-
ied. One proposed a three-level linear finite difference scheme, which has the theoretical
accuracy of O(t? + 1*).

This paper is organized as follows. In Section 2, a nonlinear and conservative difference
scheme for the GRRLW equation is constructed, and the discrete conservative laws of
the difference scheme are discussed. The unique solvability of the numerical solutions
is also given. In Section 3, the prior error estimates for a fourth-order finite difference
approximation of the GRRLW equation are obtained, and the convergence and stability of
the difference scheme are proved. Numerical experiments are reported in Section 4.

2 Finite difference scheme and conservation law

Let & = (x, —x;)/] be the uniform step size in the spatial direction for positive integer J. Let
7 denote the uniform step size in the temporal direction. Denote x; = x; + jh (0 <j <),
t"=nt (0 <n<N).Let ur denote the approximation of u(x;, t,), and let

R)={Vi=(V)jez | Vo= V; =0}.

As usual, the following notations will be used:

yr o_yn v o _yr Vi, -V
axvinz%, SV = %, 5;2\/,-"=%,
|V VA Ve ynel
8’% ‘/in — i+1 h2l + l*l’ 5‘3 ‘/in — 8’% (5"% ‘/irl), at ‘/jn _ i i ,
T

n+% ‘/in+1 + ‘/in

W, w o,
. AVi=(1+ =82 v,  AvVi=(1+—8%)V.
é 2 ! (+12’“) 2 (+6x>

We now introduce the discrete L2-inner product and the associated norm

J-1 1
WUVy=hy UV, UVeRy, [VIi=(V,V).
i=1
The discrete H”-seminorm | - |, the H”-norm || - ||,,» and the L>®-norm || - ||oo are
defined, respectively, as

J-m ) % m %
Q 2
|V|m,h=<h2|a;"viy) : ||V||m,h=<ZO|V|S,h> b IV lleon = max Vil
s=

i=0
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where the 3;” (m > 1) denote the mth-order forward difference quotient operators in the
x direction. It is convenient to let Lﬁ(Qh) and H;"(€2;,) (m > 1) denote the normed vector
space, respectively, as

L2) = Ry 0 - ln}, HP(2) = {RY, I+ o}

where Q= {x; =x;+jh | 0<j<]}.
For the discretization of the first-order derivatives u,, the second-order derivatives .,
and the fourth-order derivatives iy, of the function u(x), we have the following formulas:

At (%) = 82ulx;) + O(h4) = Uee() = AT u(x) + O(h4),
Aot (x;) = Szu(x;) + O(h4) = ulx;) = Agl&gu(xi) + O(h4),
Aothynnn () = S5u(x) + O(H*) = s () = A1 85 ulx;) + O(H*),

omitting the small terms O(/*), we obtain the approximation of u,,, i, and . as
Aluxx(xi) ~ Szuz = uxx(xi) ~ Al_lfs,% ui;
Ao () U = uela) ~ A 8:U,
A U (Xi) R S;L u; = U (X)) & -’4518;; u;,

where U is the approximation of u(x;). The corresponding matrix form is

Mi(Mptige) = 82U = Mpug ~ M82U,
My(Tpuy) = U = Tue ~ M, 8:U,

MZ(Hhuxxxx) ~ (S;:U = Hhuxxxx %MQIS,%U,
where

u= (uly UZ) RN U]_l),
Hhux = (Mx(xl)v ux(xz)! e MX(x/*I))’
Myttex = (uxx(xl)’ Upx (%), ..., uxx(x/—l))’

My thxns = (uxxxx(xl)’ Unrex(X2)5 + s Uignx (x]—l));

and
10 1. 0 ... 0 O
1|1 10 1 0 0
Ml = TA )
12 P
0O 0 O 1 10 J-D)xU-1)
4 1 0 0 0
111 4 1 0 0
My =—
6 :
0 0 O 1 4
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Imposing the compact difference scheme of the GRRLW equations (1.1)-(1.3) gives

n+l
QU + AJ'8%0, LI + AS UL — AS20,U"

A (A VAR UL

+3(p+1) i i

- gl Y s oy =0,

1<i<J]-1,0<n=<N-], (2.1)
us=Uy=0, &8U;=5U'=0, 0<n<N, (2:2)
U =uplx), 0<i<]. (2.3)

Lemma 2.1 [20] The eigenvalues of the matrices My, M, are, respectively, in the following

forms:

A i 5 — A =—12 — k—12 -1
+ COS 5 + COS ) , ,...,} .
My ,k 5 ] Mg,k 3 ]

For the real symmetric positive definite matrices M;, M, we let H; = M;' and H, = M;".
Then H;, H, are also real symmetric positive definite matrices. Now, we introduce the

following discrete norm:
1 1
Wil = [Eov.elt, Vi, =[2v.evl, ver, @)

Lemma 2.2 The discrete norms ||| - |||, and | - |1, (I =1,2) are equivalent. In fact, for any
grid function V € Rf), we have

alVie < [IVI], S calVis — alVizn < [IVI]|,, < el Viap (2.5)

wherec; =1, ¢y = %, c3 = /3.

Proof 1t follows from Lemma 2.1 that the eigenvalues of H; and H, satisfy

W

ISA'Hl,kfii ISAHz,kSS) k:1:27-~,1_1'

these give the spectral radius p(H;) < %, p(H3) < 3, and consequently
3
1< ||Hy|| = |o(Hy)| < > 1=l = |o(Hy)|| < 3. (2.6)
Thus we have

3
VI < (Hi8:V, 8,V ) < IHI IV, 8V < S IV,
2 (2.7)

VI3, < (Ha82V,82V), < |Hall(87V,8;V), <3IVI3,
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Lemma 2.3 [17] For U,V € R{), we have
(U, V)i = (U, 8: V), (S:U, V) = —(U, 8z V).

Lemma 2.4 [21] For any discrete function V € R{), we have interpolation formulas as fol-

lows:

k 1k
Ve = KollVI VI " (2.8)

for0<k<n,and

1 1-1
Vlloon = KNV VI, 7 (2.9)

n,

for n>1, where Ky and K are constants independent of h and V.

Lemma 2.5 [21] For V € H(Qy,), we have
IVIG <KV
where Ki is a constant independent of h and V.
Lemma 2.6 [22] ForV € HZ(Qh), we have
VIEn < Kal Vg
where K is a constant independent of h and V.
Lemma 2.7 [23] Let (H,(-,-)n) be a finite-dimensional inner product space, || - ||, be the
associated norm, and g : H — H be continuous. Assume, moreover, that 3a > 0, Vz € H,

Izl =, (g(2),2) = 0. Then there exists a z* € H such that g(z*) = 0 and || z*|; < a.

Lemma 2.8 [19] Suppose that the discrete function {0" | n=0,1,2,...,N; Nt = T} satisfies
the inequality
n

o" — " <At0" + Bto" ' + C,1,

where A, B, and C,, are nonnegative constants. Then

N
max ’a)"| <|o®+71 E C; |UBT,
1<n<N )

where t is sufficiently small, such that (A + B)t < % (N >1).
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The matrix form of the difference scheme (2.1)-(2.3) can be written as

QU + HyS20,U" + HyS3 U™ s — Hy 829, LI

4‘[7 nei\p 1t i n+d V4
+3(p+1)[(u s 4+ 8;(U; )]
p n+1\p-1 n+l niiyp
- [(umz) U™ + 8 (U"2)P =0, 0<m<N-1, 2.10
3(p+1) [( ) x + x( ) ] =nz= ( )
U"ye, =0, 82U"30,=0, 0<n<N, (2.11)
U =up(x)), 0<i<]. (2.12)

Let Z) = {V; = (V))jez | Vo = V; = 0,82V, = 82V} = 0}, obviously, the solution U" € Z)) of

the difference scheme (2.1)-(2.3), then there are the following lemmas:

Theorem 2.9 Assume uy € H3(S2), then the finite difference scheme (2.1)-(2.3) is conser-
vative for the discrete energy and the discrete mass, i.e.

= el |5, + e, = = E° (213)
and
J-1
Qn:hZL[]ﬂ:Qn—lz.“:QO‘
j=1

Proof Taking the inner product of (2.10) with 21/ "+, we obtain

(8,7, 2U7 ), + (Ha80,U",2U"™3), + (Had:U™ 3,2U™2)

(a2, P (s sty i),
-3 (pp = (U 2) s + s5(Ur3Y), 2Um8), = 0, (2.14)
letting
o(U, U) = % (UPs,U + 8:(L7)),
WU, U) = 3(pp+ 5 (s + (),

from Lemma 2.3, we have

(p(u, ), u), = 3(;‘? U st (), u),
__ W
T 3(p+1)

__ 4
C3(p+1)

(st 1), + (8:(u?), U), |

[(&:u,uP), - (8:U,U”),] =0 (2.15)
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and
(v (U, W), U), = 3(;7 5 Ut s (), u),
- 3(pp+ 5 [(ur'ssu,u), + (5:(uP), u), ]
- 3(;1 Sl - u.ur),] <o (2.16)

Thus from (2.14)-(2.16), we can obtain

(1= e )+ (e 1, = ) + a1, - Harll,) = 0. 47)
Let E” denote the following discrete energy:

e =furf+ [, + Narll,, (2.18)
then from (2.17), we get

EMZEn_1=~~~=EO.

Multiplying (2.1) with %, according to the boundary condition (2.2), summing for j from
1toJ -1, we obtain

h (Un+1 Un) — 0
j=1
letting
J-1
Q=hy_ ur,
j=1

then we have

Qn:Qn_lz"':ro
This completes the proof. O

Lemma 2.10 Assume ug € H3(S2), then there is the estimation for the solution of the dif-
ference scheme (2.1)-(2.3)

i | (2K +1)E ; | (2K +DE°
’u ||1h— 13 +1 |U ”ooh— ]j +1

Proof From Lemma 2.2, Lemma 2.6, and Theorem 2.9, we have

Ky +1
(Bl o herl = ol o ey <20, o
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Hence, we can get

T — K,E° (2K, + 1)E°
”Un”l,h: ||Un||h+‘un‘1,h§\/EO+I(22+12\/ I§2+1 :

It follows from Lemma 2.4 that

0
<K (2K2 + 1)E

[t oo = KNU" ] <Ky =

This completes the proof. d
Lemma 2.11 For V € Z}), we have
18: VI < 18:VII7 < 118: V7.

Proof From the definition of || - ||, we have

J-2 J-2
h
I8:VIG =Y _(0:V)* = § (82 Vi + 8: Vi)
j=2 j=

h ]
= 7 2 (V)" + 62V + 28:15,0)8:Yj0)) = 1V I
j=2

and
J-1 h J-1
182 VIG =1 D (8:Vi)P = 2 D (V] + 8:V)?
j=1 j=1
A J-1
= 7 2 (G + BeVia) +200:V)(6: Vi) < 18V I
j=1
The proof is completed. d

Theorem 2.12 The difference scheme (2.1)-(2.3) is uniquely solvable.
Proof For a fixed n, (2.10) can be written as
U™ — U™ + Hyst(Us — U”) + 2H28 LU - Hy 82U - U
o urd) - 2y (Ut urt) <o, (2.19)
we define F on Z{ as follows:
n 4 4y T
F(E)=& - U" + Hy5,& — Hy5, U™ + 5H255c‘§

~ Hi82 + HiS2U" + 2 9(6,€) = S 06.6) (2:20)
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obviously, F is continuous. Computing the inner product of (2.20) with & and considering

(P(&,€),6)n =0, (V(£,&),8)n =0 and (H28;&, &), = 0, we obtain

(F&),£), = 1€} - (Ung), + |181]5, - (Has2u",8%€), + |1€1], + (Fhs2u", &),
1
> EW; - 5 (115 + |u ;) + g1, + Dl

- (Hy82U",828), + (83U E),

v

1 1

S UEE =) + g5, + gl - 5 (e, + e,
1

— 5 (g, + e,

1 1 1 1 1

5 (U= Ju5) + S g5, + 5 el = S s, - S e,
1

L —(HU”Hh eI, + 1 ll,)-

Hence, for all & € Z), let |[§]|7 = |U”|; + I[U"[II7), + 1U"[[13,, + 1, then there exists
(F(&),€)n > 0. It follows from Lemma 2.7 that there exists a £* € 22 which satisfies
F(£*) = 0. Let U™ = 2&* — ", then it can be proved that L/"*! € Z2 is the solution of
scheme (2.1)-(2.3).

Next, we will give the uniqueness of the difference solution. Assume that " and V"
satisfy scheme (2.1)-(2.3), letting w” = V" — U", we have

W' + HyS*S,w" + HySyw"™ 2 — Hy820,w"
+ [¢(Vn+%’ VVH—%) —(P(UYH%,UYH%)] _ [w(vn+%7 Vn+%) _ w(u;ﬁ U™ )]

-0. (2.21)

Computing the inner product of (2.21) with 2w+d , we have

+ (w1 = N[5

h

0= (w5 = w5 + (L1 = w1

+2'L’(¢(Vn+ Vn+ ) ¢(Un+ Un+ )W;H%

)
)

— 2T (Y (VI V) g (U3, L), W) (2.22)
by Lemma 2.10, we can estimate (2.22) as follows:

1

((ﬁ(V’H%, Vn+7) _(p(urﬁ%’ur&%)’wiﬂ%)h

J-1
4}71’1 r1+7 7 nedp-1 n+iq nel
= —(u; 2y su; tw,
0o+ 21 A

4ph 2t el el el
i 3p+1) L=Z1[8x(Vl +2)p —8;6(L[l. +2)p]wi+2

4 - - 7+
< 30+ D) max {K? 1,(p—1)](§’ 1}(||w IHih+ ”Wn”ih)’ (2.23)
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J-2
ph n+l n+y n+y
*3(p+1)§[5"‘(v" ()

p
6(p+1)

< P max [k - D (w2, + ), 220

where K3 = K,/ (212;1{50. Substituting (2.23) and (2.24) into (2.22), from Lemma 2.2, we
obtain

(st w1+ w150 = v s+ w1 + 1w ,)
5pt
3p+1)

<K ([lw |15, + 1wl15,)

=

max{Kg_l’ - 1)1(317_1 }(“Wn+1 Hfh + “Wn ”fh)

<Kz ([w I+ w15, + 1w ]5,)

Kz (w5 + 1w |15, + Dw]15,) (2.25)

where K, = % max{K? ™, (p - DKL)

Choosing small enough t, we obtain by Lemma 2.8
[ s+ w15 + 11w, = 0 (2:26)
This completes the proof. O

3 Convergence and stability of the difference solution
In this section, we will consider the convergence and stability of the finite difference
scheme (2.1)-(2.3). Assume that the solution u(x, £) of (1.1)-(1.3) is sufficiently smooth. We

define the net function u} = u(x;, ¢,) and the truncation errors as follows:

1
n “1¢dq 1 -1¢ "3 -1¢249 1
duf + Ay 8 0] + Ay Su; T — AL 8L 0,u]

4p [(uer%)p_l(S;cM?Jr% N 52(1/!?%)19]

+
3p+1)
p n+dp-1 nt n+diip
BT R R CAD N R
1<i<J-1,0<n<N-1], (3.1)
uy=u; =0, S2ug=8u} =0, 0<n=<N, (3.2)
0

u; =uo(x;),0<i<]. (3.3)
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Suppose that u € H3 () and u(x, t) € C®*, then from Taylor’s expansion, the truncation
errors of scheme (3.1) satisfy

| =O(t* +h*), ast—0,h—0. (3.4)

Theorem 3.1 Suppose that uy € H3(Q2) and u(x, t) € Co*, then the solution of the difference
scheme (2.1)-(2.3) converges to the solution of the problem (1.1)-(1.3) with order O(z? + h*)
by the L* norm.

Proof Subtracting (2.1)-(2.3) from (3.1)-(3.3) letting e’ = u — U}, we obtain

de" + Hy828e" + Hyze"™% — H,820e" + [qb(u’”%,u”*?) —p(um2,uma)]

— [y @3,y — (U, ur) ] =, 0<n<N-1, (3.5)
e"lag, =0, 82¢"lsq, =0, 0<n<N, (3.6)
=0, 0<i<]J. (3.7)

Computing the inner product of (3.5) with 23”"%, we have
27(r", e'”%)h

= (el = lle"l) + (Ne s = e 120 + (e 5 = Mlel 1)

+ 2.’:( (uﬂ+%’un+%) _d)(uzﬁ%,u;ﬂ%)’e;ﬁ%)h
1
)_

1

¢
— 2t (y (w3, W) g (U, Ut ), e ), (3.8)

Similarly to the proof of Theorem 2.12, we have

(e [+ e + e 15,0 = (el + e 15 + e 15,
< el b kse(ler e 1 + Her 11,

eir (|24 1 + e lI2,) 69

where K5 = Ky + 1. Let B* = e[| + | |€"[]1%, + l|[€"][13,, then (3.9) can be rewritten as

B™ - B" <t|r"|} + tKs(B™ + BY). (3.10)
Choosing small enough t, from Lemma 2.8, we obtain

B" < C(B°+ (> + h*)). (3.11)
From the discrete initial conditions, we know that

B <O(z* +ht)’. (3.12)
Then we have

le*ll, <o+ 4%, el = 0> +n%), el = 0= +A). (313
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Table 1 The errors of numerical solutions at t = 60 with T =h forp =2

h lu"=Uleop  NU" = U"loo,n [17]
04  35235x 103 19587 x 1072
02  80413x10* 49838 x 1073
0.1 19123 x 1 12520 x 1073
1

0.05 46595 x

04
0™ 31346 x 10

Table 2 The errors of numerical solutions at t = 60 with T =hforp =3

h lu" -Uloop  Nu" =Uoo,n [17]
04  52629x 1073 42510 x 1072
0.2 14684 x 107 1.0804 x 1072

1
0.1 3.8492 x 1074 2.7090 x 1073
005 98927 x 107

6.7722 x 1074

Table 3 The errors of numerical solutions at t = 60 with T =hforp=6

Table 4 The maximum norm errors and spatial convergence order with fixed time step

h lu" =Uloop  NU" = U oo,n [17]
04 31535 x 1072 63539 x 1072
02 74328 x 1073 16496 x 1072

1
0.1 1.8246 x 107 4.1593 x 1073
1

005 45437 x10%  1.0409 x 1073

|
T = 7,000
J p= 2 p= 3 p= 6
lu"-U"loo,n orderl ||u"-U"||oo,n orderl [|u"-U"||,n orderl
125 97465 x 107% - 29741 x 103 — 42113 x 1073 -
250 70687 x 10 37854 23162 x 10 36826 35045 x 107*  3.5870
500  45932x10° 39439  15359x 10 39164 26008 x 107°  3.7522
1,000 29062 x 1077 39823  99102x 1077 39540 16700 x 10°  3.9610

Page 12 of 16

Table 5 The maximum norm errors and temporal convergence order with the fixed space

step h=0.1
N p= 2 p= 3 p= 6
lu"-U"||o,, order2  |lu"-U"[|oc,n order2  |lu"-U"|loc,n  Order2
10 30491 x 10 - 67612 x 10 - 88887 x 10 -
20 73366x 1070 20552  16812x 107 20078 22979 x 107° 19517
40 18011 x10° 20262 42029107 20000 58571 x10° 19721
80 44617 x 107 20132  1.0439x 10° 20094  14822x 1070 19824
By Lemma 2.2, we obtain
4 4
|e”|1,h§O(rz+h )’ |e |2h O(T +h )

It follows from Lemma 2.4 that

le"llscs

(r + h4)

This completes the proof.

We can similarly prove the stability of the difference solution.

(3.14)

(3.15)
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Figure 1 Discrete energy E" with T = 0.5, h=0.2 at various t for p = 2.

-3 T LA R N IR

251 1

Figure 2 Discrete energy E" with T = 0.5, h=0.2 at various t for p = 3.

Theorem 3.2 Under the conditions of Theorem 3.1, the solution of conservative finite dif-
ference scheme (2.1)-(2.3) is stable by the L*>° norm.

4 Numerical experiments
In this section, numerical results are provided to demonstrate the accuracy and efficiency
of the compact scheme (2.1)-(2.3). The exact solution of the system (1.1)-(1.3) is

(p+1)(3p+1)(p+3)

Ino 4 -1
u(x, t) = exp<w> sechr-T ((p—>(x - ct)), (4.1)
p-1 V4p? +8p +20
pr+ap3 +14p> +20p+25

where ¢ = is the wave velocity. In order to compare with the literature

p4+4p3+10p2+12p+21
[17], we choose x; = =30, x, = 120, and consider three cases: p =2, p=3 and p = 6 in

Tables 1, 2, and 3, respectively. Tables 1, 2, and 3 give the errors in the sense of the L*>°-



Wang et al. Boundary Value Problems (2015) 2015:77 Page 14 of 16

3.5 . . . . . . . . .

Figure 3 Discrete energy E" with T = 0.5, h=0.2 at various t for p = 6.
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X

Figure 4 Numerical solution U" withp=2and 7 =0.1,h=0.2.

norm of the numerical solutions under various steps of T = 4 =0.4,0.2,0.1,0.05 at t = 60
forp=2,3 and 6.
Denote

E(1,2h) EQ2t,h)
orderl = logZE(”h) , order2 = logZE("h) ,

where E(t,h) = ||u" — U"|| 0o,n- First, we test the spatial errors and convergence orders by
letting /1 vary and fixing the time step size 7 sufficiently small to avoid contamination of the
temporal. Table 4 shows the numerical results when t = 1,0%’ h= %, h= %, h= %, and
h= 1’105—000. It can be seen from Table 4 that the convergence order of the compact difference
scheme (2.1)-(2.3) is about 4 with respect to the spatial step size.

We further test the temporal errors and convergence orders. Fix /1 = 0.1, a value small

enough so that the spatial error is negligible as compared with the temporal error. Take
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0.7
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.
*
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R T
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0.2
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Figure 6 Numerical solution U" withp=6and 7 =0.1,h=0.2.

11 1 1
10° 20’ 40 80°
difference scheme (2.1)-(2.3) with respect to the temporal variable is about 2.

T= respectively. Table 5 shows that the convergence order of the compact

Figures 1, 2, and 3 plot the conservative law of discrete energy E”, computed by scheme
(2.1)-(2.3) withr =0.5, s = 0.2 for p = 2,3 and 6. Figures 4, 5, and 6 plot the exact solutions
at ¢ = 0 and the numerical solutions computed by scheme (2.1)-(2.3) with t = 0.1, 1 = 0.2
at ¢ = 30,60, which also show the accuracy of scheme (2.1)-(2.3).
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