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Abstract
In this paper, we consider the operator L generated in L2(R+) by the Sturm-Liouville
equation –y′′ + q(x)y = λ2y, x ∈ R+ = [0,∞), and the boundary condition
(α0 + α1λ + α2λ

2)y′(0) – (β0 + β1λ + β2λ
2)y(0) = 0, where q is a complex-valued

function, αi ,βi ∈C, i = 0, 1, 2, and λ is an eigenparameter. Under the conditions
q,q′ ∈ AC(R+), limx→∞ |q(x)| + |q′(x)| = 0, supx∈R+

[eε
√
x|q′′(x)|] < ∞, ε > 0, using the

uniqueness theorems of analytic functions, we prove that L has a finite number of
eigenvalues and spectral singularities with finite multiplicities.
MSC: 34B08; 34B09; 34B24

Keywords: Sturm-Liouville equations; eigenparameter; eigenvalues; spectral
singularities

1 Introduction
Let us consider the non-selfadjoint Sturm-Liouville operator L generated in L(R+) by
the differential expression

l(y) := –y′′ + q(x)y, x ∈R+, (.)

and the boundary condition y′() – hy() = , where q is a complex-valued function and
h ∈ C. The spectrum and eigenfunction expansion of L were investigated by Naimark [].
In this study, the spectrum of L is investigated and it is shown that it is composed of the
eigenvalues, a continuous spectrum, and spectral singularities. The spectral singularities
are poles of the resolvent which are embedded in the continuous spectrum and are not
eigenvalues.

The effect of the spectral singularities in the spectral expansion of L in terms of the
principal functions has been investigated in [–].

The spectral analysis of the non-selfadjoint operator, generated in L(R+) by (.) and
the integral boundary condition

∫ ∞


A(x)y(x) dx + αy′() – βy() = ,

where A ∈ L(R+) is a complex-valued function, and α,β ∈ C, was investigated in detail
by Krall [, ].
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Some problems of spectral theory of differential and other types of operators with spec-
tral singularities were also studied in [–].

Note that in all the above articles, the boundary conditions are independent of the spec-
tral parameter.

In , Fulton [], considered the Sturm-Liouville equation with one boundary condi-
tion dependent on the spectral parameter and obtained asymptotic estimates of eigenval-
ues or eigenfunctions. Since , one of such Sturm-Liouville equations with boundary
condition dependent on the spectral parameter was discussed by a number of authors (see
[–]).

Let L denote the operator generated in L(R+) by

–y′′ + q(x)y = λy, x ∈R+, (.)
(
α + αλ + αλ

)y′() –
(
β + βλ + βλ

)y() = , (.)

where q is a complex-valued function, αi,βi ∈C, i = , , , with |α| + |β| �= .
Differently from other studies in the literature, the specific feature of this paper, which

is one of the articles having applicability in study areas such as physics, engineering, and
mathematics, is the presence of the spectral parameter not only in the Sturm-Liouville
equation but also in the boundary condition for a quadratic form.

In this article, we intend to investigate eigenvalues and the spectral singularities of the
L, which has a finite number of eigenvalues and spectral singularities with a finite multi-
plicities, if the conditions

q, q′ ∈ AC(R+), lim
x→∞

∣∣q(x)
∣∣ +

∣∣q′(x)
∣∣ = ,

sup
x∈R+

[
eε

√
x∣∣q′′(x)

∣∣] < ∞, ε > ,

hold, where AC(R+) denotes the class of complex-valued absolutely continuous functions
on R+.

2 Jost solutions and Jost functions of L
Let us suppose that

∫ ∞


x
∣∣q(x)

∣∣dx < ∞. (.)

By e(x,λ), we will denote the bounded solution of (.) satisfying the condition

lim
x→∞ y(x,λ)e–iλx = , for λ ∈C+ := {λ : λ ∈C, Imλ ≥ }. (.)

The solution e(x,λ) is called the Jost solution of (.). Under the condition (.), the
solution e(x,λ) has the integral representation [, Chapter ]

e(x,λ) = eiλx +
∫ ∞

x
K(x, t)eiλt dt, (.)
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where the function K(x, t) is the solution of the integral equation

K(x, t) =



∫ ∞

x+t


q(s) ds +



∫ x+t


x

∫ t+s–x

t+x–s
q(s)K(s, u) du ds

+



∫ ∞

x+t


∫ t+s–x

s
q(s)K(s, u) du ds, (.)

and K(x, t) is continuously differentiable with respect to its arguments. We also have

∣∣K(x, t)
∣∣ < cw

(
x + t



)
,

∣∣Kx(x, t)
∣∣, ∣∣Kt(x, t)

∣∣ ≤ 


∣∣∣∣q
(

x + t


)∣∣∣∣ + cw
(

x + t


)
,

(.)

where w(x) =
∫ ∞

x |q(s)|ds and c >  is a constant.
Let

N+(λ) :=
(
α + αλ + αλ

)e′(,λ) –
(
β + βλ + βλ

)e(,λ), λ ∈ C+,

N–(λ) :=
(
α + αλ + αλ

)e′(, –λ) –
(
β + βλ + βλ

)e(, –λ), λ ∈ C–,
(.)

where C– = {λ : λ ∈C, Imλ ≤ }.
Therefore, N+ and N– are analytic inC+ = {λ : λ ∈C, Imλ > } andC– = {λ : λ ∈ C, Imλ <

}, respectively, and are continuous up to the real axis. The functions N+ and N– are called
Jost functions of L.

3 Eigenvalues and spectral singularities of L
We will denote the set of all eigenvalues and spectral singularities of L by σd(L) and σss(L),
respectively. It is evident that

σd(L) =
{
λ : λ ∈ C+, N+(λ) = 

} ∪ {
λ : λ ∈C–, N–(λ) = 

}
,

σss(L) =
{
λ : λ ∈R

∗, N+(λ) = 
} ∪ {

λ : λ ∈R
∗, N–(λ) = 

}
, (.)

{
λ : λ ∈R

∗, N+(λ) = 
} ∩ {

λ : λ ∈R
∗, N–(λ) = 

}
= ∅,

where R
∗ = R\{}.

Definition  The multiplicity of a zero of N+ (or N–) inC+ (orC–) is called the multiplicity
of the corresponding eigenvalue or spectral singularity of L.

From (.) we find that, in order to investigate the quantitative properties of the eigen-
values and the spectral singularities of L, we need to discuss the quantitative properties of
the zeros of N+ and N– in C+ and C–, respectively.

Let

M±
 :=

{
λ : λ ∈C±, N±(λ) = 

}
, M±

 :=
{
λ : λ ∈ R

∗, N±(λ) = 
}

. (.)

Let us denote the set of all limit points of M+
 and M–

 by M+
 and M–

 and the set of all
zeros of N+ and N– with infinite multiplicity in C+ and C–, by M+

 and M–
 , respectively.
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It follows from the boundary uniqueness theorem of analytic functions that

M±
 ⊂ M±

 , M±
 ⊂ M±

 , M±
 ⊂ M±

 , (.)

and the linear Lebesgue measures of M±
 and M±

 are zero.
Using (.) and (.), we get

σd(L) = M+
 ∪ M–

 , σss(L) = M+
 ∪ M–

 . (.)

Now, let us suppose that

q, q′ ∈ AC(R+), lim
x→∞

∣∣q(x)
∣∣ +

∣∣q′(x)
∣∣ = ,

∫ ∞


x∣∣q′′(x)

∣∣dx < ∞. (.)

Theorem  Under condition (.) the functions N+ and N– have the following represen-
tations:

N+(λ) = iαλ
 + β+λ + δ+λ + ϕ+ +

∫ ∞


f +(t)eiλt dt, λ ∈ C+, (.)

N–(λ) = iαλ
 + β–λ + δ–λ + ϕ– +

∫ ∞


f –(t)e–iλt dt, λ ∈C–, (.)

where β±, δ±,ϕ± ∈C, and f ± ∈ L(R+).

Proof Using (.), (.), and (.) we have (.), where

β+ = iα – αK(, ) – β,

δ+ = iα + iαKx(, ) – αK(, ) – β – iβK(, ),

ϕ+ = –αKxt(, ) + iαKx(, ) – αK(, ) – β + βKt(, ),

f +(t) = –αKxtt(, t) + iαKxt(, t) + αKx(, t) + βKtt(, t) – iβKt(, t) – βK(, t).

(.)

The following result is obtained in []:

∣∣Ktt(, t)
∣∣ ≤ c

[
t
∣∣∣∣q

(
t


)∣∣∣∣ +
∣∣∣∣q′

(
t


)∣∣∣∣ + tw
(

t


)
+ w

(
t


)]
. (.)

Then from (.), (.), and (.), we get

∣∣Kxtt(, t)
∣∣ ≤ c

[∣∣∣∣q′′
(

t


)∣∣∣∣ + t
∣∣∣∣q′

(
t


)∣∣∣∣ + t
∣∣∣∣q

(
t


)∣∣∣∣
+ tσ

(
t


)
+ tσ

(
t


)
+ δ

(
t


)
+ δ

(
t


)]
, (.)

where

δ(x) =
∫ ∞

x

∣∣q′(s)
∣∣ds, δ(x) =

∫ ∞

x
δ(t) dt

and c >  is a constant.
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It follows from (.), (.), (.), and (.) that f + ∈ L(R+). In a similar way we obtain
(.). �

Theorem  Under the condition (.), we have:
(i) The set of eigenvalues of L is bounded, has at most a countable number of elements,

and its limit points can lie only in a bounded subinterval of the real axis.
(ii) The set of spectral singularities of L is bounded and μ(σss(L)) = .

Proof From (.), (.), and (.), we have

N+(λ) = iαλ
 + β+λ + δ+λ + ϕ+ + o(), λ ∈ C+, |λ| → ∞,

N–(λ) = iαλ
 + β–λ + δ–λ + ϕ– + o(), λ ∈C–, |λ| → ∞.

(.)

Using (.), (.), and the uniqueness theorems of analytic functions [], we obtain (i)
and (ii). �

Theorem  If

q, q′ ∈ AC(R+), lim
x→∞

∣∣q(x)
∣∣ +

∣∣q′(x)
∣∣ = ,

∫ ∞


eεx∣∣q′′(x)

∣∣ < ∞, ε > , (.)

then the operator L has a finite number of eigenvalues and spectral singularities, and each
of them is of finite multiplicity.

Proof Using (.), (.), (.), (.), and (.) we find that

∣∣f +(t)
∣∣ ≤ ce–( ε

 )t , (.)

where c >  is a constant. By (.) and (.) we observe that the function N+ has an ana-
lytic continuation to the half-plane Imλ > – ε

 . So we get M+
 = ∅. It follows from (.) that

M+
 = ∅. Therefore the sets M+

 and M+
 have a finite number of elements with a finite mul-

tiplicity. We obtain similar results for the sets M–
 and M–

 . From (.) we have the proof
of the theorem. �

It is seen that the condition (.) guarantees the analytic continuation of the functions
N+ and N– from the real axis to the lower and upper half-planes, respectively. So the finite-
ness of eigenvalues and spectral singularities of L are achieved as a result of this analytic
continuation.

Now let us suppose that

q, q′ ∈ AC(R+), lim
x→∞

∣∣q(x)
∣∣ +

∣∣q′(x)
∣∣ = , sup

x∈R+

[
eε

√
x∣∣q′′(x)

∣∣] < ∞, ε > , (.)

which is weaker than (.).
It is evident that under the condition (.) the function N+ is analytic in C+ and in-

finitely differentiable on the real axis. But N+ does not have an analytic continuation from
the real axis to the lower half-plane. Similarly, N– does not have an analytic continuation
from the real axis to the upper half-plane, either. Therefore, under the condition (.) the
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finiteness of eigenvalues and spectral singularities of L cannot be proved in a way similar
to Theorem .

Lemma  If (.) holds, then M+
 = M–

 = ∅.

Proof It follows from (.) and (.) that the function N+ is analytic in C+, and all of
its derivatives are continuous up to the real axis. Moreover, by Theorem  for sufficiently
large T > , we have

∣∣∣∣
∫ –T

–∞
In|N+(λ)|

 + λ dλ

∣∣∣∣ < ∞,
∣∣∣∣
∫ ∞

T

In|N+(λ)|
 + λ dλ

∣∣∣∣ < ∞.

From (.), we obtain

∣∣∣∣ dn

dλn N+(λ)
∣∣∣∣ ≤ A+

n , λ ∈ C+, |λ| ≤ T , n ∈N∪ {},

where

A+
n = nc

∫ ∞


tne–( ε

 )
√

t dt, n ∈N∪ {}, (.)

and c >  is a constant. Since the function N+ is not equal to zero identically, by Pavlov’s
theorem [], M+

 satisfies

∫ h


ln T+(s) dμ

(
M+

 , s
)

> –∞, (.)

where T+(s) = infn
A+

nsn

n! , μ(M+
 , s) is the linear Lebesgue measure of an s-neighborhood of

M+
 , and the constant A+

n is defined by (.).
Now we obtain the following estimates for A+

n :

A+
n ≤ Aann!nn, (.)

where A and a are constants depending on c and ε. Substituting (.) in the definition of
T+(s), we arrive at

T+(s) ≤ A inf
n

(
ansnnn) ≤ A exp

(
–a–e–s–).

Now by (.) we get

∫ h




s

dμ
(
M+

 , s
)

< ∞. (.)

Inequality (.) holds for arbitrary s if and only if μ(M+
 , s) =  or M+

 = ∅. In a similar way
we can prove that M–

 = ∅. �

Theorem  Under the condition (.) the operator L has a finite number of eigenvalues
and spectral singularities, and each of them is of a finite multiplicity.
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Proof To be able to prove the theorem, we have to show that the functions N+ and N–

have a finite number of zeros with finite multiplicities in C+ and C–, respectively. We give
the proof for N+.

It follows from (.) and Lemma  that M+
 = ∅. So the bounded sets M+

 and M+
 have

no limit points, i.e., the function N+ has only a finite number of zeros in C+. Since M+
 = ∅,

these zeros are of finite multiplicity. �
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