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ABSTRACT 1 

Social behavior involves “staying and helping”, two individual attributes that vary considerably 2 

among organisms. Investigating the ultimate causes of such variation, this study integrates previ-3 

ously separate lines of research by analyzing the joint evolution of altruism and mobility. We 4 

unfold the network of selective pressures and derive how these depend on physiological costs, 5 

eco-evolutionary feedbacks, and a complex interaction between the evolving traits. Our analysis 6 

highlights habitat saturation, both around individuals (local aggregation) and around unoccupied 7 

space (local contention), as the key mediator of altruism and mobility evolution. Once altruism 8 

and mobility are allowed to evolve jointly, three general insights emerge. First, the cost of mobil-9 

ity affects the origin of altruism, determining whether and how quickly selfishness is overcome. 10 

Second, the cost of altruism determines which of two qualitatively different routes to sociality are 11 

taken: an evolutionary reduction of mobility, resulting in higher habitat saturation, is either pre-12 

ceded or followed by the adaptive rise of altruism. Third, contrary to conventional expectations, a 13 

positive correlation between evolutionarily stable levels of altruism and mobility can arise; this is 14 

expected when comparing populations that evolved under different constraints on mobility or that 15 

differ in other life history traits. 16 
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INTRODUCTION 1 

Sociality is an essential characteristic of life. It involves specific individual behaviors that lead to 2 

the emergence of collective properties, new levels of natural selection, and the adaptive com-3 

plexification of living systems (Michod 1999). One of the intriguing features of sociality is that it 4 

causes a double cost to individuals. Sociality typically requires, first, some form of altruistic be-5 

havior through which individuals sacrifice their own fitness for the benefit of others (Hamilton 6 

1964a, b), and second, some reduction in individual mobility, allowing for sustained interaction, 7 

which exacerbates competition for local resources (Frank 1995; Perrin and Lehmann 2001). The 8 

benefits associated with these costs must be substantial enough that the involved genes are not 9 

eliminated by natural selection. Thus, one of the challenges facing evolutionary theory is to ex-10 

plain the role of adaptive evolution in molding individual altruism along with the underlying 11 

population structure, to help us understand the wide diversity of social systems observed in the 12 

wild (Choe and Crespi 1997; Crespi 2001). 13 

The double cost of sociality reflects only some of the selective pressures acting on social 14 

traits. Low individual mobility may increase genetic relatedness between interacting individuals, 15 

thus promoting inbreeding as well as the evolution of helping behaviors through kin selection 16 

(Hamilton 1964b). Yet, the enhancement of neighbors’ performance through altruistic interaction 17 

may induce also habitat saturation and thus exacerbate local competition among kin (Grafen 18 

1984; Queller 1992). Increased competition between relatives for local resources can in turn re-19 

duce or even totally negate the indirect genetic benefits of altruism (Taylor 1992; Wilson et al. 20 

1992). The deleterious effects of kin competition resulting from low mobility have been demon-21 

strated in a recent comparative study of social traits in fig wasps. In these insects, strict philopatry 22 
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of males competing for mates results in extremely strong local competition, which nullifies any 1 

indirect genetic benefits of decreasing aggressiveness toward relatives (West et al. 2001). In other 2 

social insects, limited dispersal can lead to competition between colonies founded by relatives 3 

(Thorne 1997). In cooperatively breeding vertebrates, local recruitment can also cause competi-4 

tion among relatives for dominance and breeding opportunities within a group (Clutton-Brock 5 

2002). In general, the balance between kin cooperation and kin competition affecting the evolu-6 

tion of altruism is bound to vary with the species’ life history profile, the spatial scale over which 7 

cooperation and competition occur, and the underlying habitat structure (Kelly 1994; Queller 8 

1992). 9 

In a recent study, Le Galliard et al. (2003) presented the analysis of a model accounting 10 

for population viscosity (limited dispersal of offspring at birth) combined with adult mobility, 11 

overlapping generations, and fluctuations in local population size caused by local interactions and 12 

demographic stochasticity. In that model, the costs of local competition do not completely negate 13 

the benefits kin cooperation – a finding echoed by other recent theoretical analyses (Irwin and 14 

Taylor 2001; Mitteldorf and Wilson 2000). That study also highlighted the critical influence indi-15 

vidual mobility exerts on the evolution of altruism: high altruism could evolve only in species 16 

with low mobility, whereas the evolutionary trajectory of highly mobile species was halted in a 17 

state of ‘quasi-selfishness’. However, the assumption (made in that and many other studies) of 18 

mobility being fixed is appropriate only if mobility is strongly constrained by the environment or 19 

the genetic system. Otherwise, mobility and altruism will be entangled in joint evolution: costs 20 

and benefits of altruism depend on local spatial structures and thus on mobility (Ferrière and Le 21 

Galliard 2001; Perrin and Lehmann 2001), while costs and benefits of mobility depend on the 22 

amount of help on offer, as well as on habitat saturation, which are both affected by altruism 23 
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(Emlen 1997; Helms Cahan et al. 2002). The purpose of the present study is to develop a unifying 1 

approach to address this fundamental feedback in the evolution of sociality. 2 

Extending the framework used by Le Galliard et al. (2003), we study the joint evolution of 3 

altruism and mobility in a model in which individuals move and interact locally on a network of 4 

suitable sites (Matsuda et al. 1992; van Baalen 2000). The notion of fitness that is appropriate for 5 

characterizing frequency-dependent selection as it occurs in such a model is invasion fitness, that 6 

is, the per capita growth rate of a mutant when rare in the environment set by the wild-type popu-7 

lation (Metz et al. 1992). This notion has been found to extend to kin selection processes 8 

involving diallelic, haploid genetics (Frank 1998). Extending work by van Baalen and Rand 9 

(1998), we derive invasion fitness from a set of correlation equations describing the population’s 10 

spatial structure (Ferrière and Le Galliard 2001; Le Galliard et al. 2003). On this basis, we then 11 

(i) deduce the selective pressures acting on altruism and mobility traits, and relate these pressures 12 

to the model’s underlying parameters; (ii) analyze the trajectories of the joint evolution of these 13 

traits, and their interplay with the population’s spatial structure; and (iii) make predictions about 14 

the correlation patterns between altruism and mobility induced by evolution in response to varia-15 

tion of life history traits or to ecological constraints across species or populations. 16 

MODEL DESCRIPTION 17 

In this model, interactions and mobility are local processes, occurring between neighboring sites 18 

of a social network. Altruism and mobility are quantitative characters affecting the demographic 19 

parameters of individuals. The resulting individual-based dynamics mold the local population 20 

structure, from which the selective pressures on altruism and mobility arise. These pressures, in 21 
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turn, determine the evolutionary outcomes we aim to understand. All parameters and variables 1 

are listed in Table 1. 2 

Population dynamics on social networks 3 

Individuals are distributed over a network of sites. Each site may be empty or occupied by one 4 

individual, and is randomly connected to n other sites that define a neighborhood; n is a fixed 5 

parameter measuring the neighborhood size, or ‘habitat connectivity’. Such spatial structure is 6 

used classically to study social interactions (e.g., Rand 1998) and is typical of e.g. some verte-7 

brates that defend territories and move primarily among adjacent sites. We use a continuous-time 8 

model in which generations overlap. During any small time interval, an individual may move to 9 

an empty site within its neighborhood, or produce an offspring that is placed in an empty 10 

neighboring site, or die. The population is ‘viscous’ (Hamilton 1964a, b) in the sense that off-11 

spring may be laid only in sites neighboring a parent’s (not farther off); yet mobility is permitted 12 

at any age, unconditionally to the occurrence of birth events. Thus, our notion of mobility differs 13 

from that of ‘natal dispersal’ but is similar to ‘breeding dispersal’, which refers to an adult mov-14 

ing between different breeding sites. The per capita mobility rate m and death rate d are 15 

unaffected by local interactions. Mobility is costly to individuals, with a negative effect on the 16 

individual’s intrinsic birth rate (Cohen and Motro 1989). The cost of mobility linearly impacts the 17 

intrinsic birth rate such that the net per capita birth rate (in the absence of interaction) is given by 18 

b − ν m, where b measures the intrinsic per capita birth rate of sessile organisms, and ν measures 19 

the cost sensitivity to the mobility rate. 20 

Two types of local density-dependent factors affect movement and reproduction. First, both 21 

events are conditional on the availability of a neighboring empty site: consequently local crowd-22 

ing negatively affects the rates of mobility and birth. Second, reproduction is enhanced by 23 
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altruistic interactions with neighbors, inducing a positive effect of local crowding. Thus, an altru-1 

istic donor improves the quality of the neighboring sites at the expense of its own reproduction, 2 

as has been documented in some cooperatively breeding vertebrates (Cockburn 1998). In our 3 

model, the altruism rate u is defined by the per capita rate of energetic investment into altruistic 4 

interactions. Altruistic behavior is directed evenly towards all neighboring sites, regardless of the 5 

presence or phenotypes of neighbors. Consequently, every neighbor of a focal individual that 6 

invests at rate u into altruism sees her birth rate augmented by the amount u/n. We use the terms 7 

‘selfishness’ and ‘quasi-selfishness’ to describe, respectively, phenotypes whose investment in 8 

altruism is zero or nearly zero. 9 

Typically, altruism carries a physiological cost. For example, adult suricates Suricata suri-10 

catta lose significant body weight during baby-sitting activities (Clutton-Brock et al. 1998). In 11 

general, such a cost can depend on the level of altruistic investment in an accelerating, linear, or 12 

decelerating way. With an accelerating cost, the marginal costs of altruism increase with the level 13 

of altruism. Conversely, decelerating costs imply that increasing altruism at low levels is more 14 

costly than at high levels. In the limiting case of linear costs, marginal costs are independent of 15 

the level of altruism. These three patterns are captured by the expression κ uγ, where κ scales the 16 

cost sensitivity to the altruism rate, and γ determines whether costs are accelerating (γ > 1), linear 17 

(γ = 1), or decelerating (γ < 1). The combined cost of mobility and altruism diminishing the birth 18 

rate is given by γκν umumC +=),( . 19 

Evolutionary dynamics on social networks 20 

The two traits evolving in our model are the altruism rate u and the mobility rate m. Mutations, 21 

which occur with a fixed probability k per birth event, cause these rates to differ between off-22 
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spring and parent. Increments or decrements resulting from mutations are drawn randomly from a 1 

normal probability distribution with zero mean, variance σ2 (identical for both traits), and without 2 

genetic correlations. Like in Le Galliard et al. (2003), we used the minimal process method 3 

(Gillespie 1976) to simulate the evolutionary process on a social network of 900 sites, generated 4 

by randomizing the edges of a 30 × 30 regular lattice with von Neumann neighborhoods and pe-5 

riodic boundaries. 6 

In a large population in which mutations are rare and mutational steps are small, the sto-7 

chastic mutation-selection process described above can be approximated by a deterministic 8 

process whose trajectories are solution of the canonical equation of adaptive dynamics 9 

(Dieckmann and Law 1996) applied to this model, 10 
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where x = (mx, ux) denotes a resident phenotype, and y = (my, uy) a mutant phenotype. Nx is the 14 

resident population size at population dynamical equilibrium, and sx(y) denotes the invasion fit-15 

ness of a mutant phenotype y in a resident population of phenotype x. The selection gradient 16 

(bracketed term on right-hand side) is a vector determining the expected local direction of the 17 

adaptive process. Equation (1) extends the classical description of traits dynamics along fixed 18 

adaptive landscapes to models in which the eco-evolutionary feedback between individual traits 19 

and the selective environment is made explicit (Abrams 2001; Dieckmann and Law 1996). 20 
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The equilibria of equation (1) are the phenotypes for which both components of the selec-1 

tion gradient vanish, and are called evolutionarily singular phenotypes (Metz et al. 1992). A full 2 

stability analysis of these singularities requires examining independently their evolutionary at-3 

tractivity or convergence stability, and their non-invasibility or evolutionary stability (Eshel 4 

1983; Geritz et al. 1998). Local evolutionary attractivity of a singularity (m*, u*) means that tra-5 

jectories starting in its vicinity converge to the singularity. This is guaranteed when the 6 

eigenvalues of the Jacobian matrix of equation (1) have negative real parts. The local non-7 

invasibility of a singularity means that all mutants in its vicinity are unable to invade. This is 8 

guaranteed when the eigenvalues of the Hessian matrix of invasion fitness (containing the second 9 

derivatives with respect to the mutant phenotype) are negative (Marrow et al. 1996). Conver-10 

gence and evolutionary stability can also be characterized globally, respectively, through plotting 11 

phase portraits of adaptive trajectories, and through pairwise invasibility plots (showing the sign 12 

of invasion fitness sx(y) as a function of x and y, Geritz et al. 1998). 13 

Spatial invasion fitness 14 

The invasion fitness of a mutant is defined as the per capita growth rate of its population when 15 

rare in the environment set by the resident population (Metz et al. 1992). In Appendix A, we pre-16 

sent the construction of the population dynamics model for a single phenotype (x) inhabiting the 17 

network; then we extend the model to describe the interaction between x and a mutant phenotype, 18 

y (see also Ferrière and Le Galliard 2001, and Le Galliard et al. 2003). Since all density depend-19 

ence occurs between neighboring sites, the mutant’s growth over the network depends upon the 20 

expected frequencies yxq  and yyq  of sites occupied respectively by a resident (x) and a mutant 21 
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(y) in the neighborhood of any focal mutant (Matsuda et al. 1992). Accordingly, the deterministic 1 

dynamics of mutant population size yN  are given by 2 

 3 
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where n1=φ  is the probability to draw any one of the connections at random within a given 6 

neighborhood (see eq. [A2C] in Appendix A). The invasion fitness sx(y) is then given by the term 7 

in square brackets. 8 

Equation (2) can be understood as follows. The per capita growth rate of mutants (square 9 

brackets) is obtained as the difference between their birth rate and their death rate d . To deter-10 

mine the former, the mutant’s effective birth rate (large parentheses) is discounted by the 11 

frequency yq0  at which mutants find empty sites in their neighborhood. The effective birth rate is 12 

given by the intrinsic birth rate b, enhanced by the benefits of altruism, and diminished by the 13 

mutant’s cost ),( yy umC  of mobility and altruism. The benefits of altruism derive from interac-14 

tions between mutants and residents, yxx qu)1( φ− , and between mutants and mutants, 15 

yyy qu)1( φ− . In both cases, the altruism rates xu  and yu  of the mutant’s neighbors are 16 

weighted by the frequencies yxq  and yyq  at which these neighbors occur in the mutant’s 17 

neighborhood. The factor φ−1  accounts for the fact that empty and occupied sites surrounding 18 

the mutant cannot be chosen independently, since their numbers must sum to n. 19 

Even though the invasion fitness in equation (2) depends only on probabilities of finding 20 

sites neighboring a mutant in certain states, the dynamics of these neighbors in turn depend on 21 
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their neighbors. Therefore, a complete description of the mutant’s population dynamics – and 1 

thus of the probabilities yxq , yyq , and yq0  in equation (2) – requires an infinite hierarchy of cor-2 

relation equations, each one describing the spatial structure at a particular scale in relation to that 3 

at the next-larger one (Dieckmann et al. 2000). Here, we use the method of pair approximation to 4 

close this exact system of equations at the scale of pairs (Matsuda et al. 1992; Morris 1997; see 5 

Appendix A). This method is accurate for random networks featuring randomly assigned connec-6 

tions between sites, as is assumed here. Regular habitat geometry, where interactions take place 7 

among the geographically closest sites, would compromise the use of the standard pair approxi-8 

mation and require more refined approximations (Ellner et al. 1998; Harada and Iwasa 1994; van 9 

Baalen 2000). However, a limited set of selected individual-based simulations indicates that our 10 

qualitative findings obtained from a random network model extend to regular networks when 11 

using a regular square lattice (results not shown). 12 

The initial population dynamics of a rare mutant involve two distinct phases (van Baalen 13 

2000). First, a single mutant individual either dies without leaving any descendants, or begins to 14 

invade locally until its neighborhood structure stabilizes at a pseudo-equilibrium state character-15 

ized by yxq~ , 
yy

q~ , and yq0
~ . Conditional on non-extinction during this first phase, the mutant 16 

population expands or contracts while retaining its pseudo-equilibrium correlation structure. Spa-17 

tial invasion fitness is then calculated as the mutant population’s growth rate during the second 18 

stage, thus ignoring the first stage dominated by drift (van Baalen and Rand 1998), 19 

 20 
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A positive fitness implies that the invasion process enters a third phase during which a mutant 1 

phenotype that is sufficiently similar to the resident generically displaces the resident (Geritz et 2 

al. 1998). 3 

The pseudo-equilibrium correlation structure of the mutant population is affected by the 4 

equilibrium correlation structure of the resident population, characterized by xxq  and 0xq . The 5 

latter is obtained from a model of the monomorphic resident population (Appendix A), while the 6 

former can be derived from the dynamics of a dimorphic population, when the mutant phenotype 7 

is rare and the resident phenotype is at equilibrium (Appendix B). The spatial statistics 
xx

q  and 8 

0xq  refine the empirical notion of habitat saturation, as originally introduced by (Brown 1978; 9 

Emlen 1982). The probability 
xx

q  measures ‘local aggregation’, i.e., the level of crowding felt 10 

locally by any given individual. By contrast, the probability 0xq  measures ‘local contention’, i.e., 11 

the level of crowding around any vacant site, in which each neighbor might lay an offspring. 12 

Since the crowding around individuals can markedly differ from the crowding around empty sites 13 

it is important to strictly distinguish between these two complementary dimensions of habitat 14 

saturation. 15 

SELECTIVE PRESSURES ON MOBILITY AND ALTRUISM 16 

An analysis of the components of the selection gradient, as defined by equations (1) and (3), 17 

yields a full description of the selective pressures operating on altruism and mobility. This analy-18 

sis is expounded in Appendix B and reveals important general insights, which we describe next. 19 

The first component of the selection gradient is the derivative of the spatial invasion fitness 20 

with respect to m and measures the total selective pressure on the mobility rate m, 21 
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where m∂  denotes a derivative with respect to my evaluated at y = x (see eq. [B2] in Appendix B). 4 

The equation’s right-hand side identifies the two competing components of this selective pres-5 

sure: the marginal physiological cost of mobility, Cm∂  (here ν=∂ Cm ); and the marginal gain (or 6 

loss) in open space resulting from altered mobility in the neighborhood of a mutant, ymq0
~∂ , 7 

translated into a fitness change via a conversion coefficient (large parentheses) depending on 8 

death rate, habitat connectivity, altruism rate, and local aggregation xxx qq 01 −= . This conver-9 

sion coefficient decreases with decreasing local aggregation xxq . Accordingly, the evolution of 10 

mobility is partially driven by the advantage conferred during invasion to mutants that are sur-11 

rounded by more open space than residents. The marginal gain in open space ymq0
~∂  is a complex 12 

function of resident mobility and local contention; numerical analysis shows that it is little influ-13 

enced by local aggregation (Appendix B). 14 

The second component of the selection gradient is the derivative of spatial invasion fitness 15 

with respect to u, which measures the total selective pressure on the altruism rate u (see eq. [B1] 16 

in Appendix B). Extensive numerical simulations show that the marginal gain (or loss) in open 17 

space resulting from altered altruism in the neighborhood of a mutant can be neglected (see Fig-18 

ure 4 in Le Galliard et al. 2003), which yields 19 

 20 
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 1 

The equation’s right-hand side highlights the two competing components of this selective pres-2 

sure: the marginal, physiological cost of altruism, Cu∂ ; and the benefit of increased altruism 3 

among mutants, measured by 
yy

q  diminished by the discounting factor 1−φ, which solely de-4 

pends on habitat connectivity n. The term yyq  measures the probability that the recipient of an 5 

action performed by a mutant individual is a mutant itself, and thus provides a measure of relat-6 

edness (Day and Taylor 1998). Consequently, equation (5) emphasizes the role of kin selection in 7 

the evolution of altruism. In Appendix B, relatedness yyq  is derived analytically: 8 
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This expression shows that relatedness among mutants, and thus the marginal gain resulting from 12 

altruistic interactions between relatives, is higher in populations with an elevated local aggrega-13 

tion xxx qq 01 −=  of the residents. Equation (6) also shows that the benefits of altruism rise with 14 

reduced mobility, lower habitat connectivity, or reduced mortality. 15 

These results demonstrate that, besides the physiological costs associated with each trait, 16 

the evolutionary dynamics of altruism and mobility are mediated by two factors: eco-17 

evolutionary feedback loops and selective interactions (fig. 1). Eco-evolutionary feedback loops 18 

result from the interplay between ecological variables and adaptive traits: in particular, such 19 

loops occur when the change in a trait value affects the population’s spatial structure, which in 20 

turn modifies the selective pressures on that trait. Selective interactions in our model result from 21 

the interplay between altruism and mobility. Figure 1 offers a comprehensive overview of all eco-22 
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evolutionary feedbacks and selective interactions we have identified in the joint evolution of al-1 

truism and mobility. In this map, habitat saturation, specified both in terms of local aggregation 2 

and local contention, plays a central role. 3 

Feedback between habitat saturation and mobility. Habitat saturation is entangled with 4 

mobility through a negative feedback loop that operates along two separate pathways. First, ac-5 

cording to our exhaustive numerical tests (Appendix B), increased mobility reduces the marginal 6 

gain of open space in equation (4). Second, increased mobility decreases local aggregation 7 

(through its costs on birth rate, Appendix A), which reduces the conversion coefficient in equa-8 

tion (4). Thus, effects along the two pathways identified here are acting synergistically to reduce 9 

the selective benefits of mobility as mobility increases in the population. 10 

Feedback between habitat saturation and altruism. Understanding this second feedback 11 

loop starts out from the fact that altruism generally increases local aggregation (through its posi-12 

tive effect on birth rates, Appendix A). Local aggregation, in turn, increases relatedness and, 13 

therefore, the benefits of kin cooperation described in equation (6), which favors the evolution of 14 

even more altruism according to equation (5). This results in positive feedback between local 15 

aggregation and altruism. In addition to the eco-evolutionary feedback, the evolution of altruism 16 

is also controlled by a physiological feedback (not represented in fig. 1) whenever the cost of 17 

altruism is nonlinear: for a decelerating (accelerating) cost, the marginal cost of altruism de-18 

creases (increases) with the level of altruism. This physiological feedback is thus positive for 19 

decelerating costs of altruism and negative for accelerating costs. 20 

Selective interactions between altruism and mobility. Figure 1 also allows deciphering the 21 

selective interactions between altruism and mobility, in which local aggregation is crucial. On the 22 

one hand, increasing mobility reduces local aggregation, which lowers relatedness according to 23 

equation (6), and therefore weakens the selective pressure in favor of altruism according to equa-24 
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tion (5). On the other hand, increasing altruism strengthens local aggregation, which increases the 1 

conversion factor in equation (4) and therefore the selective pressure in favor of mobility: open-2 

ing space by moving around is more beneficial when local aggregation is high. However, 3 

equation (4) shows that increasing altruism also has a direct, negative effect on this conversion 4 

coefficient: there is an increasing “benefit of philopatry” when neighbors are altruistic (Stacey 5 

and Ligon 1991). The net effect on the evolution of mobility thus depends on the balance be-6 

tween these two counteracting effects, which varies with the level of altruism: our numerical 7 

simulations reveal a net effect where the conversion coefficient is generically weakened for low-8 

est rates of altruism, and enhanced for intermediate and high altruism. Moreover, in species with 9 

accelerating costs, the physiological feedback described above implies that a rise of altruism se-10 

verely diminishes fecundity, which results in reduced local aggregation, a diminished conversion 11 

coefficient, hence a negative effect on the intensity of selection for opening space. 12 

SEPARATE EVOLUTION OF ALTRUISM AND MOBILITY 13 

In general, the evolutionary dynamics of single traits are monotonous and converge to a point 14 

attractor (which, under certain circumstances, depends on the population ancestral state). Any 15 

small mutation arising around these singularities is selected against and fails to invade. 16 

Altruism 17 

The evolutionary dynamics of altruism primarily depends upon the pattern of physiological cost 18 

of altruism (see Le Galliard et al. (2003) for more details). Under the assumption of decelerating 19 

costs, ancestral selfishness can only be displaced as a result of rare, large mutations. There is a 20 

‘waiting time’ for the adaptive rise of altruism that increases with the mobility rate. Only in the 21 

limiting case of a linear cost of altruism may pure selfishness remain unbeatable. This occurs in 22 
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species with a ‘strong’ linear cost, for which κ > φ (1 − φ), and a mobility rate larger than the 1 

threshold (see eq. [8] in Le Galliard et al. 2003) 2 
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Thus, the evolution of altruism is hindered only when the most unfavorable conditions are en-6 

forced, combining a high cost sensitivity to altruism, high mobility, and high habitat connectivity. 7 

In species with accelerating costs of altruism, the altruism rate evolving is lower in more 8 

mobile organisms. Under ‘rapidly’ accelerating costs (high κ and/or γ much larger than 1), the 9 

relationship between mobility and selected altruism is smooth, and the selected rate of altruism is 10 

always low. In contrast, under ‘slowly’ accelerating costs (low κ and γ close to 1) the relationship 11 

between mobility and selected altruism shows a sharp discontinuity: high levels of altruism 12 

evolve in species with low mobility, whereas quasi-selfishness evolves at high mobility. When 13 

mobility is low, the high level of altruism that evolves can be approximated as 14 

)1(1])1([* −−= γγκφφu  (see eq. [9] in Le Galliard et al. 2003), which depends only on habitat 15 

connectivity and the parameters affecting the physiological cost of altruism. At intermediate mo-16 

bility, the evolutionary outcome depends on the ancestral state of the population: if the ancestral 17 

altruism is low, quasi-selfishness evolves; otherwise, a high level of altruism is selected. 18 

Mobility 19 

Mobility as a single adaptive trait always evolves toward a globally attractive and uninvadable 20 

singularity (figs. 2A, B). In general, there is no analytical expression for the resulting ES mobility 21 
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rate m*, yet in the special case of a purely selfish species (u = 0), solving for the zeros of the first-1 

order Taylor expansion of spatial invasion fitness with respect to m (see eq. [4]) yields 2 
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Thus, in purely selfish species, the ES mobility rate decreases with an increasing cost of mobility 6 

ν, and equals zero when φν ≥  (fig. 2C); it also decreases with increasing habitat connectivity (n 7 

= 1/φ, fig. 2C) and increases with the birth rate, but is independent of the mortality rate. Further-8 

more, the value m* given by eq. (8) possesses the remarkable property of maximizing the local 9 

contention 0xq ; thus, in purely selfish species, evolution of mobility alone maximizes habitat 10 

saturation around empty sites. Numerical simulations suggest that the same patterns persist at any 11 

level of altruism u > 0, except that higher mortality then results in a lower ES mobility rate. 12 

The ES mobility rate m* varies also with the species’ degree of altruism u. The empirical 13 

expectation is that more altruistic species are less mobile, but the typical pattern is more complex. 14 

Zero mobility is selected for if the mobility cost is too high (ν > φ), irrespective of the degree of 15 

altruism. Otherwise, there may be a slight decrease of m* as u increases through very small val-16 

ues, but m* increases with u over a wide range of degrees of altruism (see fig. 3A for the case of 17 

a decelerating altruism cost, fig. 4 for a linear cost, and figs. 2A and 5 for accelerating costs). At 18 

very high values of u, m* can decrease again with larger values of u in species with accelerating 19 

costs of altruism. 20 

This pattern can be understood from the selective pressures that operate on m (see eq. [4] 21 

and fig. 1). Equation (4) shows that local aggregation and the altruism rate have opposite effects 22 
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on the intensity of the selective pressure to open space. Furthermore, local aggregation itself de-1 

pends on the altruism rate. At extremely low values of m, the dependency of local aggregation on 2 

u is weak. Therefore, as u increases, its direct, negative effect predominates, and m* tends to de-3 

crease. Over a range of larger u, local aggregation rises rapidly with u, so that the indirect effect 4 

of u via local aggregation dominates: more mobility is selected for. A further increase of u causes 5 

a substantial reduction in birth rate for an accelerating cost of altruism, hence a decrease of local 6 

aggregation; this drives the evolution of less mobility. 7 

JOINT EVOLUTION OF ALTRUISM AND MOBILITY 8 

Our analysis of the joint evolutionary dynamics of mobility and altruism develops from equation 9 

(1). The two corresponding isoclines generally cross at a single attractive and evolutionarily sta-10 

ble singularity (ESS), denoted by (m*, u*). The main conclusions of our analysis are tested 11 

against numerical simulations of an individual-based model in which all approximations involved 12 

in the deterministic model (1) are avoided. 13 

Origin of altruism 14 

To investigate the origin of altruism, we assume a decelerating cost of altruism. Our previous 15 

analysis showed that in species characterized by such costs the conditions under which altruism 16 

can evolve are the most stringent (Le Galliard et al. 2003). Also, in agreement with the classical 17 

empirical view, we assume that the selfish, ancestral state involves highly mobile individuals. 18 

Starting from selfishness associated with high mobility, mobility first decreases toward the criti-19 

cal value m* given by equation (8) (see figs. 3A, B). The trait pair (m*, 0) is an endpoint of the 20 

deterministic dynamics in trait space. However, a different pattern applies when the stochasticity 21 

of the underlying individual-based process is taken into account. In a population where mutations 22 
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may be large occasionally, mutants characterized by a significant degree of altruism will eventu-1 

ally arise by chance, and displace the selfish resident (figs. 3C, D). Therefore, the evolutionary 2 

trajectory will sooner or later take off from (m*, 0). It can be seen numerically that the minimum 3 

value of mutant altruism required for invading the selfish resident increases as m* increases. 4 

Thus, according to equation (8), the waiting time for altruism to evolve is shorter as the cost of 5 

mobility or habitat connectivity increases, or in species with a smaller birth rate (figs. 3C, D). 6 

Only in the case of a linear pattern of altruism cost may selfishness be always uninvadable 7 

(fig. 4A), provided that the altruism cost parameter κ is large (fig. 4B), or that both κ and the mo-8 

bility cost ν are small (figs. 4C, 4D). Under such conditions, altruism may initially rise through 9 

small mutational steps, if the ancestral state is not too mobile. Yet at some point in the popula-10 

tion’s evolutionary history the trajectory of altruism reverts and eventually heads back to the 11 

selfish state, homing in at the mobility ESS m* where no mutant can invade (results not shown). 12 

In contrast, if κ is small and ν is large enough, selfishness is readily displaced by altruism even 13 

through infinitesimal mutations, as a result of selection for lower mobility (figs. 4E, F). Thus, the 14 

cost of mobility has a major impact on the origin of altruism, either determining whether the dis-15 

placement of selfishness is possible (linear costs of altruism), or affecting the timescale over 16 

altruism evolves (decelerating costs of altruism). 17 

Evolutionary trajectories of social traits 18 

Once the evolutionary rise of altruism from a selfish and highly mobile ancestor is initiated, the 19 

assumption of an accelerating cost of altruism becomes more realistic (Le Galliard et al. 2003). 20 

Then all possible evolutionary dynamics unfold along a continuum bounded by two archetypal 21 

templates, each involving two distinctive evolutionary phases. 22 
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One evolutionary template applies to species with a slowly accelerating cost of altruism 1 

(low κ and γ close to 1). This template involves a first evolutionary phase characterized by the 2 

evolutionary reduction of mobility, while altruism shows little change; at the same time, local 3 

aggregation is enhanced (figs. 5A, B, C). During the second phase, altruism rises along with 4 

some increase in mobility (fig. 5C). How this second phase ends depends on the cost of mobility. 5 

In the case of a high cost of mobility, the evolutionary trajectory simply heads to the ESS (which 6 

is a stable-node equilibrium). In the case of a moderate cost of mobility, the eco-evolutionary 7 

feedback causes damped oscillations of the adaptive traits around the ESS (a stable-focus equilib-8 

rium, figs. 5A, B). Notice that evolution to the extinction boundary can preclude convergence to 9 

the ESS (fig. 5B). 10 

The other evolutionary template applies to species with rapidly accelerating costs of altru-11 

ism (figs. 5E, F). During the first phase of the evolutionary dynamics, the degree of altruism rises 12 

while mobility and the level of local aggregation remain essentially constant. The second phase 13 

drives the system to the ESS, and is characterized by a marked decrease in mobility, possibly 14 

along with a further increase in altruism, while local aggregation is enhanced significantly (fig. 15 

5F). In this scenario, the ES altruism rate is usually low. 16 

Evolutionarily induced correlations between altruism and mobility 17 

Physiological, life history, or environmental change can cause the ES traits to covary. The con-18 

ventional wisdom is that selected altruism and selected mobility should correlate negatively 19 

across populations or species. Here, we analyze patterns of altruism and mobility covariation in 20 

species characterized by accelerating costs of altruism, in response to underlying changes in life 21 

history (birth and death rates), or in constraints on mobility (habitat connectivity and cost of mo-22 

bility). 23 
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Univariate changes in life history traits (b or d) lead to a negative correlation between the 1 

two adaptive traits at evolutionary equilibrium: less altruism and more mobility are selected for in 2 

longer-lived, or less fecund species (fig. 6A and B). However, except in species that are charac-3 

terized by low fecundity (small b) and low cost of altruism (small κ), the quantitative effect is 4 

weak and unlikely to be amenable to empirical detection. In contrast, changes in constraints on 5 

mobility (n and ν) can result in an unexpected positive correlation between selected altruism and 6 

selected mobility (fig. 6C and D). This correlation pattern is more pronounced for species with 7 

slowly accelerating costs of altruism, and with costs of mobility spanning a range that excludes 8 

extremely high and low values (fig. 6D, continuous curve). 9 

These qualitative patterns can be understood by considering the selective feedbacks and in-10 

teractions governing the evolution of both adaptive traits (fig. 1). The intrinsic birth rate b 11 

influences the evolution of mobility and altruism via an effect on local aggregation (Appendix B). 12 

As b increases, local aggregation increases, selecting for higher mobility and altruism. The intrin-13 

sic death rate d has a direct positive effect on relatedness and a negative effect via local 14 

aggregation (eq. [6]): in total, as d increases, relatedness decreases, selecting for less altruism. 15 

Increasing the intrinsic death rate d has also a negative effect on mobility via local aggregation 16 

and the conversion factor of the selective pressure for mobility (eq. [4])), thus selecting for less 17 

mobility. However, as b and d increase, the change in mobility affects local aggregation, oppos-18 

ing the change in altruism. The negative correlation between u* and m* represents the net effect 19 

of these influences acting altogether when b or d vary independently. 20 

Variation in n or ν may reflect different environmental constraints on individual mobility. A 21 

larger value of n causes a rise in the discounting factor of kin cooperation benefits (eq. [5]), and 22 

reduces habitat saturation, which decreases both relatedness and the marginal gain in open space 23 
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from mobility (eq. [4]). Increasing habitat connectivity n therefore weakens the selective pressure 1 

for both traits, and causes their joint adaptive decline. Increasing the cost of mobility ν over a 2 

range that excludes very high and very low values promotes the evolution of significantly higher 3 

altruism (for the cost of mobility is not too low), which causes a marked increase of local aggre-4 

gation. Higher local saturation in turn exerts a selective pressure for mobility, which exceeds the 5 

accrued cost of mobility (for the cost of mobility is not too high). Thus, the selective interaction 6 

between altruism and mobility underlies the joint rise of altruism and mobility at the ESS (fig. 7 

6D). 8 

DISCUSSION 9 

We have used spatial invasion fitness to analyze the joint evolutionary dynamics of altruism and 10 

mobility, thereby introducing a unifying framework for investigating the evolution of social 11 

traits. Following on Perrin and Lehmann (2001), this allowed us to integrate two previously sepa-12 

rate lines of research that are focusing, respectively, on altruism evolution under fixed mobility 13 

and on mobility evolution under fixed altruism. 14 

Joint evolution versus single-trait evolution 15 

Our analysis has revealed a variety of phenomena that are obscured from recognition unless altru-16 

ism and mobility are permitted to evolve jointly. First, evolutionary trajectories on higher-17 

dimensional adaptive landscape can bypass fitness valleys that are insuperable by single-trait 18 

evolution. In our study this general finding applies to the repelling evolutionary isoclines of altru-19 

ism in figs. 4C, 4D, 5A, and 5B: ancestral states below these isoclines could never evolve 20 

towards higher degrees of altruism, were it not for the concomitant evolution of mobility. For 21 

example, when costs of altruism are linear and low, a selfish and sufficiently mobile ancestor will 22 
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always be uninvadable if mobility is fixed (fig. 4C and 4D; see also Le Galliard et al. 2003). In 1 

contrast, if mobility is allowed to evolve and its cost is high enough, selfishness will be readily 2 

displaced, even through infinitesimal mutational steps. A similar conclusion applies in fig. 5A 3 

and 5B. Joint evolution, however, may sometimes also obstruct the evolution of altruism. When 4 

costs of mobility and altruism are low, and the latter is linear, altruism will increase if mobility is 5 

fixed at low levels, whereas joint evolution concomitantly increases mobility, which eventually 6 

drives the population back to selfishness. 7 

The joint evolution also affects the evolution of mobility. Mobility is favored by the selec-8 

tive pressure to open space for mutants during invasion, and opposed by physiological costs. The 9 

strength of the former pressure is directly and indirectly (through local aggregation) modulated 10 

by the degree of altruism. More altruism weakens that selective pressure, as expected from the 11 

benefits of philopatry in social species (Stacey and Ligon 1991). However, and less intuitively, 12 

selection for more mobility occurs as a result of more altruism enhancing local aggregation. 13 

When both traits evolve, this synergistic selective interaction between mobility and altruism af-14 

fects species with slowly accelerating costs of altruism and moderate costs of mobility (see fig. 15 

5A). In such species, mobility selected through the joint evolutionary process can be considerably 16 

higher than that predicted in a selfish species, and considerably lower than that predicted in a 17 

highly altruistic species. Thus, neglecting the propensity for altruism to co-evolve with mobility 18 

can lead to underestimating or overestimating the level of mobility favored by natural selection. 19 

The bi-dimensionality of the trait space also has a marked effect on the evolutionary dy-20 

namics of altruism when the physiological cost is slowly accelerating. In this case, the strong 21 

evolutionary attractiveness of the mobility rate that maximizes fitness for intermediate degrees of 22 

altruism suffices to transform evolutionary singularities that are repelling with respect to altruism 23 

into attractive singularities. The joint ESS for altruism and mobility still bears the footprint of the 24 
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one-dimensional instability for altruism: this ESS behaves as a focus, causing evolutionary trajec-1 

tories to spiral around it. Hence, even if populations originate in the same ancestral state and 2 

share the same physiological, demographic, and ecological features, they will display high and 3 

low levels of mobility and altruism (in all four possible combinations) should they be observed at 4 

different epochs of their evolutionary history. This is yet another historical effect that could elu-5 

cidate comparative analyses confronting a lack of regularity in patterns of social traits and 6 

potential correlates (Arnold and Owens 1999). 7 

Correlative patterns of social traits 8 

Habitat saturation models predict that, at evolutionary equilibrium, altruism and mobility should 9 

correlate negatively, and more altruism, hence less mobility, should be observed in populations 10 

characterized by stronger constraints on dispersal or by lower mortality (Perrin and Lehmann 11 

2001). Our analysis, however, clearly shows that evolutionary outcomes cannot be predicted 12 

solely from the effect of habitat saturation and its hypothesized underlying ecological or demo-13 

graphic determinants. This is because habitat saturation is a dynamic variable entangled in the 14 

eco-evolutionary feedbacks involving altruism and mobility; the adaptive change of either trait 15 

also has a direct effect on the selective pressure influencing the other trait; and life history traits 16 

(birth and death rates) have effects on the evolutionary dynamics independently of their influence 17 

on habitat saturation. 18 

We find that selected altruism correlates positively with the cost of mobility and negatively 19 

with habitat connectivity. We also predict a positive correlation between selected altruism and 20 

mobility in response to changes in habitat connectivity or in the cost of mobility within a range 21 

that excludes extremely low and high values. These results can be compared to those obtained by 22 

Perrin and Lehmann (2001), who investigated the joint evolution of altruism and natal dispersal. 23 
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Their kin selection model differs from ours in three crucial aspects: the habitat is structured into 1 

saturated patches of given size; time is discrete and generations do not overlap; individual behav-2 

ior is influenced by kin discrimination. Irrespective of the kin discrimination mechanism, their 3 

model predicts a negative correlation across populations differing in dispersal cost, and a positive 4 

correlation across populations differing in patch size. The latter is a consequence of higher relat-5 

edness when patches are smaller, which favors both more altruism and more dispersal in their 6 

model; exactly the same effects arise in our model when the neighborhood size shrinks. In con-7 

trast, our results depart from their finding of a negative correlation in response to increasing the 8 

dispersal cost; in our model, such a negative correlation arises only for very low (and very high) 9 

values of the mobility cost. This discrepancy might underline a qualitative consequence of the 10 

discrimination mechanisms that Perrin and Lehmann (2001) considered (whereas altruism is un-11 

conditional in our model), which affects how altruistic benefits are distributed. 12 

Our finding that low habitat connectivity or high cost of mobility selects for more altruism 13 

suggests that comparative studies should find consistent relationships between physiological and 14 

habitat constraints on dispersal, and levels of cooperation. Some recent intra-specific compari-15 

sons in vertebrates reported a negative effect of habitat connectivity on investment in helping 16 

(e.g., Russell 2001; Spinks et al. 2000). Also, in the group of African mole rats (Bathyergidae), 17 

cooperative breeding has been linked to the scarce and heterogeneous distribution of resources in 18 

arid landscapes, which results in high costs of mobility (Jarvis et al. 1994). In agreement with our 19 

findings, the comparative analysis of sociality (as measured by reproductive skew) yields a rough 20 

correlation between costs of mobility and cooperation, with the eusocial species culminating in 21 

correspondence with the most arid environment (Faulkes and Bennett 2001). 22 

Empirical data relating altruism and mobility are scant, especially because quantitative as-23 

sessments of dispersal in social and asocial species are difficult to obtain. Comparative analyses 24 
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of social traits in birds are still insufficient to test our prediction that more cooperation could be 1 

associated with higher levels of mobility as an adaptive response to ecological constraints. How-2 

ever, the observation by (Arnold and Owens 1999) that the correlation patterns between dispersal 3 

and cooperative breeding depends on the taxonomic level warrants further analyses. The occur-4 

rence of a dispersing morph in the eusocial naked mole rat Heterocephalus glaber could also be 5 

the manifestation of an adaptive association between strong altruism and dispersal ability 6 

(O'Riain et al. 1996). The fact that this dispersing morph participates little in cooperative activi-7 

ties further suggests that constraints on mobility might lead to a stable genetic polymorphism of 8 

selfish-mobile and altruistic-sessile phenotypes, or to adaptive developmental plasticity. Al-9 

though the evolution of polymorphism was not observed in our study, it was first hypothesized by 10 

van Baalen and Rand (1998), and has been reported in cellular automaton models involving regu-11 

lar lattices (Koella 2000). 12 

We predict life history traits (birth and death rates) to have, in isolation, little influence on 13 

the selected combination of altruism and mobility. On the one hand, an increase in the intrinsic 14 

birth rate drives a decrease in altruism and an increase in mobility, although the predicted pattern 15 

is fairly flat and probably difficult to detect in real data. On the other hand, more altruism evolves 16 

among species with the highest mortality rates. This finding conflicts with the main conclusion of 17 

Taylor and Irwin (2000) and Irwin and Taylor (2001), that altruism is more strongly favored in 18 

response to lower mortality. In fact, the models by Taylor and Irwin show primarily that lower 19 

mortality increases relatedness between altruists, an effect that is also found in this model. Our 20 

analysis emphasizes, however, that net effect of decreasing mortality on the whole web of eco-21 

evolutionary feedback and selective interaction is to promote less altruism and more mobility. 22 

On the empirical end, comparative analyses in birds have attempted to relate social behav-23 

ior with nestling mortality and adult mortality (Hatchwell and Komdeur 2000). It was found that 24 
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nestling mortality had no detectable influence on the distribution of social characters (Poiani and 1 

Pagel 1997), in agreement with our prediction that the intrinsic birth rate (which can be seen as 2 

combining fecundity and offspring mortality) is likely to have undetectable effects. The analysis 3 

of the whole available phylogeny of birds yields a pattern of stronger cooperation along with 4 

lower adult mortality (Arnold and Owens 1998). This empirical pattern supports our finding of an 5 

effect of the death rate, but contradicts the direction that we predict. The pattern could be recov-6 

ered in our model, however, under the assumption that lower mortality trades off across species 7 

with lower fecundity, which is known to occur in birds (Arnold and Owens 1998). This suggests 8 

that covariation of life history traits are important to consider when investigating the determinants 9 

of patterns of social traits. 10 

The habitat saturation hypothesis 11 

Our analysis supports the view that habitat saturation is a critical nexus in the selective interac-12 

tion between altruism and mobility (Emlen 1982, 1994; Koenig et al. 1992). The ‘habitat 13 

saturation hypothesis’ states that constraints on independent breeding favors philopatry and help-14 

ing, and provides a fruitful approach to the evolution of social traits from the empirical end. Our 15 

theory leads to reexamining the basis and scope of this hypothesis, and clarifies the selective 16 

pathways whereby habitat saturation influences and becomes influenced by the evolution of so-17 

cial traits. 18 

Habitat saturation has long been regarded as a key to the evolution of social behavior. This 19 

hypothesis was originally put forward to explain the evolution of cooperative breeding in birds 20 

(Brown 1978; Emlen 1982), and is now underlying theories for the evolution of delayed dispersal 21 

and reproductive skew (Kokko and Lundberg 2001; Reeve et al. 1998). The general view is that 22 

habitat saturation drives the joint evolution of philopatry and altruism (Perrin and Lehmann 23 
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2001). By offering an explicit mathematical framework to deal with the interplay of social behav-1 

ior and population dynamics, our analysis deciphers the selective pathways whereby habitat 2 

saturation is involved in the evolution of social traits. 3 

The habitat saturation hypothesis assumes that sociality evolves in two steps — the evolu-4 

tion of philopatry at first, next the evolution of cooperation (Helms Cahan et al. 2002). As habitat 5 

saturation increases, floating and queuing before gaining access to a territory induce strong costs 6 

of dispersal. This favors delayed dispersal, which would set the condition for the cost of local 7 

crowding to be ameliorated by cooperating rather than simply competing (Kokko and Lundberg 8 

2001). What causes habitat saturation in the first place? The scenario of ‘ecological constraints’ 9 

asserts that environmental factors constrain mobility to low levels, hence local crowding. Such 10 

environmental factors may involve habitat structure, physical predicaments to movement, or a 11 

large physiological cost of moving (Jarvis et al. 1994; Russell 2001). The ‘life history hypothesis’ 12 

assumes that habitat saturation is more likely to occur in species with low mortality, in which the 13 

turnover of breeding sites would be slow (Arnold and Owens 1998). 14 

Our analysis highlights a rather different evolutionary scenario. First, there are two distinct 15 

components to habitat saturation, which play complementary roles in the evolution of social 16 

traits. ‘Local aggregation’ xxq  measures habitat saturation around individuals, in line with the 17 

original definition of habitat saturation by Emlen (1982). ‘Local contention’ 
0x

q  measures habi-18 

tat saturation around vacant sites; it is directly related to the degree of clustering of vacant sites 19 

( 000 1 xqq −= ), and thus measures how isolated groups of occupied sites are. Like in the ecologi-20 

cal constraints scenario, a high cost of dispersal and low habitat connectivity are important 21 

determinants of the evolution of local aggregation and local contention. However, our model em-22 

phasizes that habitat saturation is a consequence of the evolution of low mobility, rather than the 23 
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primary selective factor for that evolution. In other words, philopatry is an adaptive response to 1 

environmental constraints and physiological costs, rather than to habitat saturation per se. 2 

In fact, neither local aggregation nor local contention is maximized during the joint evolu-3 

tion of altruism and mobility. In single-trait evolution, however, the mobility rate evolves such as 4 

to maximize local contention — a prediction qualitatively similar to the finding that the number 5 

of competitors for territories (the limiting resource) is typically maximized by the evolution of 6 

habitat choice strategies (Kokko et al. 2001). Yet this remarkable principle evaporates when al-7 

truism evolves concomitantly with mobility. Furthermore, the evolution of low mobility and 8 

strong aggregation does not appear as an obligate evolutionary step toward sociality. The model 9 

presented here uncovers an alternative scenario according to which a population initiated in the 10 

selfish and highly mobile ancestral state first evolves a substantial degree of altruism, while ag-11 

gregation remains low, before adaptive evolution secondarily favors reduced mobility, which 12 

may in turn lead to strong aggregation. 13 

One key feature of our analysis is that habitat saturation is not treated as a fixed parameter, 14 

but as a pair of dynamical variables that close the eco-evolutionary feedback loops entangling 15 

altruism and mobility. Local aggregation and local contention, respectively, are the pivotal fac-16 

tors of the two eco-evolutionary feedback loops linking altruism and mobility. When both traits 17 

evolve jointly, local aggregation turns out to be the dominant mediator of the selective interaction 18 

between them. Local aggregation responds antagonistically to evolutionary change of altruism 19 

and mobility, which in turn affects the selective pressures acting on both traits. Such essential 20 

eco-evolutionary feedbacks and selective interactions have been ignored in most previous models 21 

of social evolution (but see Kokko and Lundberg 2001). 22 

The dynamical nature of local aggregation and contention in our model results from the 23 

stochastic nature of the demographic process, and especially from the site opening process gener-24 
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ated by individual mortality. The numerical model of Mitteldorf and Wilson (2000) also showed 1 

that population elasticity, i.e. variable local density, can facilitate the evolution of altruism, even 2 

when generations do not overlap. In Nakamaru et al.’s (1997, 1998) models, the availability of 3 

empty space was also a critical feature for the spread of cooperation. These authors further em-4 

phasized the consequences of assuming survival altruism rather than reproduction altruism. In the 5 

latter case (that is considered here), the evolution of social traits affects the birth rate and, there-6 

fore, does not feedback on the site opening process, driven by mortality. If altruism impacts 7 

survival, such a feedback could exist. The adaptive increase of altruism would reduce the death 8 

rate, hence the rate of site opening: as a consequence, the selective pressure of local competition 9 

against altruism would be enhanced. Such a negative effect on the evolution of altruism might be 10 

offset, however, would some form of environmental stochasticity drive site opening, insensitive 11 

to the evolutionary change of altruism (Mitteldorf and Wilson 2000). 12 

Concluding remarks 13 

The ‘habitat saturation hypothesis’, the ‘ecological constraint model’, and the ‘life history hy-14 

pothesis’ represent varied attempts at singling out general factors of social evolution. By 15 

integrating some of their key ingredients, our model leads to the conclusion that no simple deter-16 

minism should be expected for the origin of social behavior or the evolution of strong cooperative 17 

interaction. Thus, inferences from studies based on univariate analyses are likely to be hindered 18 

by the complexity and diversity of factors involved in the evolution of social traits (Crespi and 19 

Choe 1997). However, some general principles hold: physiological or ecological constraints on 20 

mobility are essential to explain the origin of altruism; all evolutionary trajectories can be related 21 

to only two archetypal, contrasting routes to sociality; patterns of covariation among social traits 22 

can be understood as adaptive responses to multivariate changes in life history traits. 23 
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Eco-evolutionary feedbacks and selective interactions are central to the joint evolutionary 1 

dynamics of social traits. Taking them into account allowed us to address a hotly debated issue in 2 

the biology of social behavior: whether the high relatedness between interacting individuals of 3 

several social species predicted by Hamilton’s kin selection theory (1964a, b) is the direct conse-4 

quence of physiological or ecological constraints on dispersal, or the outcome of more involved 5 

mechanisms of active assortment, involving communication, cognition, and habitat choice 6 

(Hamilton 1975). We offer the alternative view that in some social systems, both limited mobility 7 

and strong altruism form the joint adaptive response to a web of multiple, interacting selective 8 

mechanisms; while in other systems, the spatial self-structuring of population leads to the evolu-9 

tion of high mobility without compromising the likelihood of passive assortment between 10 

altruistic partners. 11 
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ONLINE APPENDIX A – POPULATION DYNAMICS 1 

We consider a social network comprising a large number of homogeneous sites, occupied by a 2 

population of mutants, called y, and residents, denoted by x. A mutant y located at a site z on the 3 

network experiences the following birth, death, and movement rates, 4 
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To derive the dynamics of the mutant’s population size, we average birth and death rates de-10 

scribed in equation (A1) over all sites of the network occupied by the mutant, which gives 11 
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where ))(( 0 znE y  is the network average of the number of empty sites neighboring a site occu-15 

pied by a mutant. The third term in (A2a) is a product between random variables describing 16 

alternative neighborhoods of a mutant individual. Assuming a multinomial probability distribu-17 

tion of sites and independence between the neighborhoods of pairs of sites (Morris 1997), we 18 

have 19 

 20 
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where 
yk

q  is the average local frequency of type-k sites neighboring a mutant. The dynamics of 3 

the mutant’s population size is then given by 4 
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which involves the configurations of pairs of sites. A closed system describing the pair dynamics 8 

is obtained in Le Galliard et al. (2003) from the bookkeeping of all events affecting pairs of sites, 9 
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where iα  is the average per capita input rate of a type-i individual into a type-0j pair with ij ≠  15 

( 0' iii qαα = ), iβ  is the average per capita input rate of a type-i individual into a type-0i pair, and 16 

iδ  is the average per capita output rate of a type-i individual from a type-ij pair (following van 17 

Baalen and Rand 1999, see also Appendix 2 in Le Galliard et al. 2003). 18 

 19 
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In general, a resident population converges to a unique stable equilibrium spatial structure, 1 

described in the Appendix 3 of Le Galliard et al. (2003). The non-trivial population equilibrium is 2 

characterized by 
xx

q , which satisfies the quadratic equation 3 

0)1()),()1((( =−−−−+ dqmuCqub
xxxxxxx

φ , and by xxq '00 αδ= . If b is sufficiently larger 4 

than d, the resident population is non-viable when ∆ < 0, where ∆ denotes the discriminant of the 5 

quadratic equation. 6 

ONLINE APPENDIX B – EVOLUTIONARY DYNAMICS 7 

Pseudo-equilibrium frequencies. We use the accents ‘∼’ and ‘–’ to denote the pseudo-8 

equilibrium state of the mutant during invasion and the equilibrium state of the resident, respec-9 

tively. The pseudo-equilibrium frequencies yq0
~ , 

yx
q~ , and 

yy
q~  are the steady states of equation 10 

(A3) when x is a resident type at ecological equilibrium and y is a rare mutant type, which gives 11 
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Since 0~
0

≈
y

q  when the mutant is rare, this nonlinear system involves three unknowns (
y

q
0

~ , 16 

yx
q~ , and 

yy
q~ ) and two equations. Together with the constraint 

yyyxy
qqq ~~1~

0
−−= , equations 17 

(B1) can thus be used to evaluate the pseudo-equilibrium frequencies of the mutant, and hence 18 

the spatial invasion fitness defined by equation (3) in the main text. 19 
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Pseudo-equilibrium frequencies of a degenerate mutant. In general, there is no analytical 1 

solution for the pseudo-equilibrium frequencies of a mutant. However, assuming a degenerate 2 

mutant with the same phenotype as the resident, the non-linear system (B1) can be solved ana-3 

lytically. The solutions of equations (B1) in this case are 
xy

qq
00

~ =  and 
yyyy

qq =~  where the 4 

detailed analytical expression for yyq  (the relatedness in our model) is given by equation (6). 5 

Selective pressure on mobility. The first component of the selection gradient in equation (1) 6 

can be approximated by a first-order Taylor expansion of the spatial invasion fitness with respect 7 

to m. Considering a slightly different mobility phenotype ε+=
xy

mm , and the first-order ap-8 

proximations εaqq
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The analytical evaluation of a using equations (B1) yields a complicated term affected directly by 13 

the mobility and altruism rate, death rate, cost of mobility, and neighborhood size, but also indi-14 

rectly by the effects of all model parameters on the habitat saturation statistics 
xx

q  and 
00

q . 15 

Numerical sensitivity analyses of the selection components over a large range of parameter val-16 

ues indicate that a is primarily sensitive to changes in mobility rates through local contention 17 

0x
q , with a negative feedback of m on this selection component. For example, assuming a zero 18 

mobility cost, local aggregation becomes independent of mobility, whereas local contention in-19 

creases monotonically with the mobility rate; thus, in this case, the eco-evolutionary feedback on 20 

mobility is mediated entirely by local contention, and not by local aggregation. The conversion 21 
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term (bracketed expression in front of a) is primarily sensitive to changes in altruism rate, life 1 

history traits, and habitat structure. 2 

Selective pressure on altruism. The second component of the selection gradient can be ap-3 

proximated by a first-order Taylor expansion of the spatial invasion fitness with respect to u. 4 

Assuming a slightly deviant mutant ε+=
xy

uu , ε'~
00 aqq xy +=  and ε'~ bqq yyyy += , the first-5 

order approximation results in the following expression (see also eq. [3] in Le Galliard et al. 6 

2003): 7 
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Table 1. Notations used in this paper. 

Model parameters 

n Neighborhood size (habitat connectivity) 

n1=φ  Probability to draw a connection at random within a given neighborhood 

b Intrinsic per capita birth rate 

d Intrinsic per capita death rate 

m Intrinsic per capita mobility rate (adaptive trait) 

u Intrinsic per capita rate of investment in altruism, or altruism rate (adaptive trait) 

),( umC  Cost of mobility and altruism diminishing the birth rate 

κ  Cost sensitivity with respect to the altruism rate 

γ  Cost acceleration with respect to the altruism rate 

ν  Cost sensitivity with respect to the mobility rate 

k Mutation probability per birth event 

2σ  Mutational step variance 

Model variables 

)(zn
ik

 Number of sites in state k neighboring a site in state i at location z 

)(zn
ijk

 Number of sites in state k neighboring a site in state i within a pair ij at location z 

i
N  Number of sites in state i 

ij
N  Number of pairs in state ij 

ji
q  Average local frequency of sites in state i neighboring a site in state j 

jki
q  Average local frequency of sites in state i neighboring a site in state j within a pair jk 

Note: Subscript x and y refer to a resident and a mutant phenotype, respectively. 



 46

FIGURE LEGENDS 1 

Figure 1. Selective pathways affecting altruism and mobility. All eco-evolutionary feedbacks and 2 

selective interactions can be traced on this diagram. Curved gray arrows indicate selective pres-3 

sures (see text for explanations). Plain arrows refer to positive or negative links established from 4 

the analysis of equations (4) to (6) (see also Appendix B). The dotted arrow indicates a complex 5 

combination of direct and indirect (via local contention) effects of mobility on the marginal gain 6 

in open space. * Relatedness and the marginal gain in open space are measured for a mutant dur-7 

ing invasion. 8 

Figure 2. Evolutionary dynamics of mobility. A, Singular mobility rates for an accelerating cost 9 

of altruism. Gray curve: mobility isocline. Arrows: selection gradients. Dashed curves: contour 10 

lines of the local contention 
0x

q . Dark area: population extinction domain. Parameter values: γ = 11 

3, κ = 0.001 and ν = 0.1. B, Average of ten independent stochastic simulations (continuous 12 

curves) and deterministic approximation (dashed curves) at ux = 0 (two lower curves), ux = 20  13 

(two intermediate curves), or ux = 10 (two upper curves). Mutation parameters: k = 0.01 and σ = 14 

0.01. C, Evolutionarily stable mobility rates with respect to the cost of mobility, for different val-15 

ues of habitat connectivity. Other parameters values as in A. 16 

Figure 3. Joint evolution of altruism and mobility with decelerating costs of altruism. A, Bistabil-17 

ity in the evolutionary dynamics of altruism. For any mobility rate, the population evolves toward 18 

selfishness if initial altruism is below a threshold; above that threshold, higher altruism evolves. 19 

Continuous gray curve: attractive mobility isocline. Continuous black curve: attractive altruism 20 

isocline. Dashed black curve: repelling altruism isocline. Arrows: selection gradients. Open cir-21 
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cle: repelling singularity. Filled circle: attractive singularity. Parameters values: γ = 0.5, κ = 0.2, 1 

and ν = 0.05. B, Average of ten stochastic simulations at four different initial conditions (con-2 

tinuous curve) and the deterministic predictions (dashed curves). Mutation parameters: k = 0.01, 3 

σ = 0.01. C, Threshold altruism rate for a mutant to invade a selfish resident at the ES mobility 4 

rate. Effect of the cost of mobility for different values of the cost acceleration. The limit case of a 5 

linear cost is indicated by a vertical dashed line. 6 

Figure 4. Joint evolution of altruism and mobility with a linear cost of altruism. A, Convergence 7 

to selfishness under low cost sensitivity to altruism, κ < φ (1 − φ), and low costs of mobility. Pa-8 

rameter values: κ = 0.15 and ν = 0.01. B, Stochastic trajectories. Average of ten stochastic 9 

simulations (continuous curve), and deterministic approximation (dashed curves). Parameter val-10 

ues as in A. C, Divergence to more altruism under low cost sensitivity to altruism, and high costs 11 

of mobility. Parameter values: κ = 0.1 and ν = 0.1. D, Stochastic trajectories. Parameter values as 12 

in C. Filled circles indicate attractive ESSs. Arrows give the direction of evolution. Mutation 13 

parameters: k = 0.01 and σ = 0.05 in B and σ = 0.01 in D. Other parameter values as in fig. 2. 14 

Figure 5. Joint evolution of altruism and mobility with an accelerating cost of altruism. A, Con-15 

vergence to a stable focus under slowly accelerating costs of altruism and intermediate costs of 16 

mobility. Parameter values: γ = 1.2, κ = 0.05, and ν = 0.05. B, Stochastic trajectories. Trajectories 17 

differ quantitatively from the deterministic approximation, but remain qualitatively similar in this 18 

case. Finite population size and random mutational steps induce contingency: starting from the 19 

same mobile, altruistic ancestor, trajectories can either converge to the focus or collide with the 20 

extinction boundary (triangle). C, Relationship between local aggregation and mobility (gray 21 

curve) or altruism (black curve) in the course of adaptive evolution (arrows) from stochastic tra-22 
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jectories. Parameter values as in A. D, Convergence to a stable node under rapidly accelerating 1 

costs of altruism. Parameter values: γ = 2, κ = 0.05, and ν = 0.1. E, Stochastic trajectories. Pa-2 

rameter values as in D. F, Relationship between local aggregation and mobility (gray curve) or 3 

altruism (black curve) in the course of adaptive evolution (arrows). Parameter values as in D, 4 

except κ = 0.5. Mutation parameters: k = 0.01 and σ = 0.01. Filled circles indicate attractive 5 

ESSs. Arrows show the selection gradients. Dark areas indicate population extinction. Other pa-6 

rameter values as in fig. 2. 7 

Figure 6. Correlations between altruism and mobility induced by evolution with accelerating 8 

costs of altruism. Arrows indicate the effect of increasing the parameter value. A, Effect of vary-9 

ing the birth rate, b, for different values of the cost parameter κ. Parameter values: γ = 2 and ν = 10 

0.1. B, Effect of varying the death rate, d, for different values of κ. Parameters: γ = 2, ν = 0.1, and 11 

b = 6. In A and B, κ = 0.01, κ = 0.02, κ = 0.05, κ = 0.1 from top to bottom. C, Effect of habitat 12 

connectivity, n, for different values of κ. Parameter values: γ = 2.5 and ν = 0.1. From top to bot-13 

tom: κ = 0.005, κ = 0.01, κ = 0.05, κ = 0.1. D, Effect of the cost of mobility, ν, for different 14 

levels of cost acceleration: γ = 1.2 (continuous curve, results from stochastic simulations), γ = 1.5 15 

(dashed curve), γ = 2 (dotted curve). Parameter values: κ = 0.05. Other parameters as in fig. 2. 16 
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