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1 Introduction

Since the integral inequalities are considered to be important, therefore the research has
been proceeded to extend the investigation for such type of inequalities. Such inequalities
and its applications are extensively described in many articles (see, for instance, [1-5]).
Among such types of inequalities, Griiss inequality is considered to be more interesting,
perhaps. Griiss inequality could be defined as follows.

Definition 1 Let f,g: [a,b] — R be integrable functions such that
p<f(x)<® and Y <gx)<W¥ forallxel[a,b].

Then

b b b
‘ﬁ / f(x)g(x)dx—ﬁ f F)dx / @) dx

=

(P -9)(V =), 1)

N

where the constant i is sharp and ¢, ®, vy, ¥ € R.

The integral inequality (1) (Griiss inequality) as described above, actually connects the
integral of the product of two functions with the product of their integrals.
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Definition 2 A function f () is said to be in L, [a, b] if

; ;
</ [f(t)|pt’dt) <00, l<p<oo,r=0.

Definition 3 If f € L;[a, b]. Then Riemann-Liouville fractional integral of order « > 0 is
defined by

F () = ﬁ f (-2 @ dr telabl

where I' is the Euler gamma function.

Definition 4 If f € L, ,[a, b], then the generalized Riemann-Liouville fractional integral
12" of order o > 0 and r > 0, introduced by is defined by

(r+ 1)«

I (t) = T)

t
/ (tr+1 _ xr+1)°‘_1x':f(x) dx, te€la,b],

where I' is the Euler gamma function.

Kagar and Yildirim [6] studied Griiss type inequality and provided useful results. Due to
the importance of such results and applications (see [6]), we study the existing results and
provide noval results. We introduce parameter k > 0 and generalize the results in such a
way that the existing results can be explored too. Thus, the results provided in this research

paper are more generalized as compared to the existing results.

1.1 Applications
Inequalities involving functions of two or more independent variables play fundamental
role in the continuous development of the theory, methods and applications of differen-
tial and integral equations. In view of the wider applications, integral inequalities have re-
ceived considerable attention. Recently, different versions of such inequalities have been
developed which are useful in the study of different classes of differential and integral
equations. These inequalities act as ready tools to study the classes of differential and in-
tegral equations [7].

It is well known that Griiss type inequalities in continuous and discrete cases play a
crucial role in studying the qualitative behavior of differential and difference equations,
respectively, as well as many other areas of mathematics. Motivated by Griiss [8], our pur-

pose is to prove more general versions of Griiss type inequalities.

1.2 Related work
Researchers focused in investigating such integrals and provided remarkable results for
inequalities involving Riemann-Liouville fractional integrals like the Griiss, Chebyshev
and Hermite-Hadamard type inequalities for integrable functions as well as for convex
functions (see [9-15]).

Recently, Diaz and Pariguan [16] have defined the generalization of the classical gamma
and beta functions in terms of a new parameter k > 0, called gamma and beta k-functions,
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respectively:
k" (k) %1
Fe() = tim UOE 0 xeC\ Kz
n—>o0 (X)nk
where

@) = x(x + k)X +2K) - (x + (n—1k), n=1,

is called the Pochhammer k-symbol. The integral representation of the gamma k-function

is
oo tk
Cr(x) = f e T dt, Re(x)>O0.
0

In 2010, Krasniqi [17] proved some inequalities and monotonicity for the ratio of gamma
k-function. Later, in 2012, using the above definitions, Mubeen and Habibullah [18] have
introduced the k-fractional integral of the Riemann-Liouville type as follows:

1
kT ()

t
I f(t) = / (t-x) () dx, tela,bl
a
where I'y is the Euler gamma k-function.

In 2013, Kokologiannaki and Krasniqi [19] gave completely monotonicity properties
and inequalities for functions involving the gamma and psi k-functions. They also in-
troduced the k-analogue of the Riemann Zeta function and obtained some inequalities
relating gamma and zeta k-functions. Romero et al. [20] introduced a new fractional op-
erator called the k-Riemann-Liouville fractional derivative by using gamma k-function.
They also proved some properties of this newly defined fractional operator and found its
relationship with the Riemann-Liouville k-fractional integral.

During the past few years, many researchers investigated a large number of inequali-
ties involving the fractional g-integral operators. In 2014, Baleanu and Agarwal [21] es-
tablished some inequalities involving Saigo fractional g-integral operator in the theory of
quantum calculus by using the two parameters of deformation. They also presented the
corresponding inequalities involving Riemann-Liouville and Kober fractional g-integral
operators respectively as special cases. Choi and Agarwal [22] established some new
Saigo type fractional integral inequalities and their g-analogue. As their special cases, they
proved the corresponding inequalities involving Riemann-Liouville and Erdélyi-Kober
type fractional integral operators.

Agarwal et al. [23] proved some new fractional integral inequalities involving general-
ized Erdélyi-Kober fractional g-integral operator. They also considered the cases of syn-
chronous functions as well as the functions bounded by integrable functions. Sarikaya
and Karaca [24] gave a generalization of the Riemann-Liouville k-fractional integral with
some properties. Also they proved some new integral inequalities involving this general-
ized Riemann-Liouville k-fractional integral.

In 2015, Choi et al. [25] established some new inequalities involving generalized Erdélyi-
Kober fractional g-integral operator of the two parameters of deformation. Liu ez al. [26]
proved some new integral inequalities of Gronwall-Bellman-Bihari type with delay for
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discontinuous functions which generalize and improve some former famous results about
inequalities and which is helpful to discuss the qualitative and quantitative properties for
solutions to some nonlinear differential and integral equations.

Sarikaya et al. [27] have introduced (k, r)-fractional integral of the Riemann type as

-9
%f(tm F ) Y f ) dx, e labl, @

I7f(t) =

where I'; is the Euler gamma k-function.

2 Results and discussion
In this section, we prove some Griiss type inequalities involving the generalized Riemann-
Liouville k-fractional integral I} defined in (2).

Theorem 2.1 For k >0, let f € Ly,[a,b] and r > 0, a, B > 0. Suppose that there exist two
integrable functions ¢y, ¢ on |a, b] such that

o (0) =f(0) =g(8), Vi€ [a,b]. 3)

Then the inequality

oI5 (8) + I oo (O£ (2)

> X)L () + L OIf (0)
holds true.
Proof From inequality (3), for all x,y € [a, b], we have
(@2(0) —f ) (f0) - 1) = 0.
This implies that
P ®)f () + o1 (%) = 1 ()2 (%) +f (x)f (7).

By multiplying both sides of above inequality with

(r+ 1)27%7§(tr+1 _xr+1)%fl(tr+1 _yr+1)%flxryr
KT i(e)Ti(B)

and then integrating it with respect to x and y from a to ¢, we obtain the required inequal-
ity. g

Lemma 2.2 Put r =0 in Theorem 2.1, we get
I o1 (I f (8) + Ipa (D15 f (6) = Ioa (D15 o1 (8) + IS f DIE £ (2).

Theorem 2.3 For k >0, let f € Ly ,[a, b]. Suppose that m < f(t) < M, for all t € [a,b] and
m, M € R. Then, forr >0, a, B >0, we have
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- a - i
(r+ )% "k, r+1)* " Vx
L)+ m————— 1%
Ti(a + k) Cv(B +k)
(x+B) (r+1)( oi+ﬁ)

(r+1) % ¢
>m
- Ci(o + K)Tr(B + k)

+ IO ().
Proof Since m <f(t) <M forall t € [a,b], for all x,y € [a, b], we have

(M—f@®)(f() —m) =0

The required inequality can be proved by using the above inequality and following the
steps of Theorem 2.1. O

Lemma 2.4 Put r =0 in Theorem 2.3, we get

M tt I £k P
Te@ k) kf(“mr(ﬂ @
- £ B
S o OB+ k) L f (01, KPS (2).

Theorem 2.5 Fork >0, let f and g be two integrable functions on [a,b]l andr > 0,«, 8 > 0.
Suppose that (3) holds and, moreover, assume that there exist integrable functions v, and
Yy on |a, b] such that

Vi(t) =g(t) < ¥(?), Viela,b]. (4)

Then the following inequalities hold:
(i) I OLf (&) + Lron () g(t) > k’ (O ea(2) +I"kf (B g(®),
(i) Py oI 7g (@) + Ig,fxﬂz(t)lf[f(t) > I o1 (L (8) + Lrg (DI f (8),
(i) I:k’goz(t)zf Vot) + IO rg(t) = I“k’goz(t)lf‘ g(t) + 1" w2<r)1;‘ (2),
(iv) I“If%(t)lak%(t) + I f (O, kg(t) > 1% ()12 g(t) +1ak¢1(t) 17:f(6).
Proof (i): From (3) and (4) for all ¢t € [a, b], we have
(p2(x) —f (%)) (€») — ¥ () = O,

then
@)g) + Y1) (%) = Y12 (x) + f(x)g ).
By multiplying both sides of above inequality with

(r+ I)Z—Q—%(twl _xr+l)%—l(tr+l _yr+1)§—lxryr
k>*Ti(e)Tk(B)

and then integrating with respect to x and y over (4, t), we obtain (i).
To prove (ii)-(iv), we use the following inequalities

(i) (¥ (x) g ) - @) =0,
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(i) (2(x) —f(*) W) - ¥2(») <0,
(iv) (p1(x) —f(*)EW) - ¥1 () <0. O

By following the steps of the above theorem, the following lemma can be proved.

Lemma 2.6 For k >0, let f and g be two integrable functions on [a,b) andr > 0, o, 8 > 0.
Suppose that there exist m, M,n,N € R such that

m<f(t) <M, n<g(t)<N, Vtela,b).
Then we have
DT sk 1) e
r+1)*¢t r+1)*¢ P

(1*) nwls’}:f(t) +M Fk(a ; k) Ia,’kg(t)

(r+ 1)~ F g0

>n
- Ci(o + KTr(B + k)

(r+ 1)% £

+IEF (O g(8),

(r+ 1) trg

oy DTk ,r
(i) g Lake®) + N s Lo 0
a+f
(r+1)~ & {07 b .
IO g(2),
=N L o p R+ ek (OLaig)

(r+ 1)% D%
Tl + k)

(r+ 1)% £

(i) M e+ N TR

(r+ 1)‘# gt

S]VINF/((Ot+/<)I“k(,3 k) + 1O, kg(t)

- o - ﬁ

. (r+1)* &% L (r+1)=x E e
* — 1" gt — (¢
(1v ) " Ci(o + k) ak8D) +n T(B+k) @k ®
(r+ 1)~ T 0

= (@ + T (B + k)

+ (O g ().

Theorem 2.7 Fork >0, let f € Ly ,[a, b] and let 1, ¢, be two integrable functions on [a, b]
and r >0, o > 0. Suppose that condition (3) holds. Then

1 -« (r+1) @
%akf 0 -
= (I 02(0) = I () (17 (8) = 27 1 (8))

2 re) %
D (1t L) (5470~ 2 0)

Ti(a +k)
=2 (r+1)%
%[;’kr(‘”l(ty(’f)) AN A 1)
H£ ()%
9L¥%%£:?Ef_ilzi(¢2(ﬂf(ﬂ) oI 0)

(r+1)% £7V%

Tk (0 000) + Lin O e, (5)
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Proof For any x,y € [a,b] and r > 0, we have

(020) =fO)) (f®) — 1(®) + (22(x) —f &) (f») — 1))
= (0260 —f @) (&) = 1) = (020) = 0)) (f0) - 1)
=) +£20) = 2 X O) + 920 (%) + @r () ()
—o1(x)p2(y) + () () + 21 ) (%) — @1 (V)2 ()
— @2(x)f (x) + 1 (x) 2 (x) — @1 (x)f () — P2 (V) ()
+ @1 (0)e2(0) - 1 f )

=

(020) = f )21 ) = L5 (®) + (Lrpa(®) = 12 ) (FB) — 1))
~Lil(e:0) - fO) (O - 1 0)] - (020) =fO) (FO) - 1)) —F ik
r + 1) r+1)% S o,
=I5 () + fZ(Y)W WIS () + @2 f (8) + 02 (&
+ O 02 (E) + FOLT01(8) + @r DI () — pr 702 (8) = L7 (@2(O)f (£))
(r+ 1) T g%
(o + k)

(r+1)7 (0% (r+1)% (0%
Til@+k) @0y 0) Ci(o + k)

I (@002(0) = I3 (@1 (1) = 20 )
+ 1 (e2(y)
Multiplying both sides of the above equation by

(r+ 1)1—§ (tr+1 _yr+l)%—1yr

kT«(B)

and integrating with respect to y over (g, t), we obtain the required equality (5).

Lemma 2.8 For k>0, let r =0 in Theorem 2.7, we get

[
Lk

o o 2
e s o s O L )]
= (L2 (6) = L f @) (I O — L1 (2)

»\Q

—Fk( o 7o Uane2 O = L O) (5 O - [511(0)

>R

* m ak((ol(t)f(t)) I (O f(2)
i

* mluk(wz(t)f(t)) 12 (D1 f (1)
123

" Tt 1 0 ek (01 0020) + L (DL o).

(r+ 1) %

Page 7 of 13
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Corollary 2.9 For k > 0, let f € [a, D). Suppose that m < f(t) < M for all t € [a,D] and
m, M € R. Then, for r > 0 and o > 0, we have

(r+1)% ¢r+0%
Fk(Ol + k)
(r+1)% ¢r+0%

k
i _W%[(M —F@O)(F©) - m)]

M(r+1)% (D%
T + k)

) - [ o)

-IZ‘,’k’f(t)]

m(r+1)% 7%

oo -

Proof This equality can be proved by using ¢;(¢) = m and ¢,(¢) = M in Theorem 2.7. O

Theorem 2.10 For k > 0, let f and g be two integrable functions on [a,b] and let @1, 3,
Y, and Yy be four integrable functions satisfying the conditions (3) and (4) on [a, b]. Then
foralltea,bl,r>0,and >0

r+1)7T t”D%
1—‘k(

< \/SZ(f, 01 @2)Si(€ Y, ¥), (6)

17 (F(0)g(0) - IS ()10 7g(0)

where

20, 3,2) = (170 2(8) = I (0)) (Ipx(e) — Iy(2)

= (r+)%
DT o (4 00(0) = E O 2(0)

Ciler + k)
% (r+1)—
(Hriza—fk) 1 (20)x(0) - Lz L7x(0)
% (r+1)%
) %Iﬂ (H(O=(0) + LyOL2(0).

Proof Since f and g are two integrable functions on [a, b] and satisfy the conditions (3)
and (4), we define

B(x,) = [fx) —f)][g®) - g0)]
= Fg() +f)g) - f X)) - (Mg() (7)

=

o
;/;rz(a) / / (¢ =) (e =y )y B, y) dxdy

(r+1)% 7%

Tl Lk ((080) =I5/ (OF (o) ©
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Now by using the value of B(x,y) from (7) to the left hand side of equality (8) and then
applying the Cauchy-Schwarz inequality, we have

r+12‘* M r+1 N I L 2
26T 2(ar) (t =) KXy Bx,y) dx dy

(r + 1)2‘*

= 2k2F2(a) / / r+1 r+1 e 1(tr+1 yr+1)k -1 r[f(x) f()/)] dxdy

D) et E
2rk+2r2<a)/ / Loar ) N et oy )y o) - g0)] dxdy. (9)

Now since

[F@) -] =£2®) +£20) - 2 ®)f (),

one can easily prove that

r,:z;z [ ey ey Py o) sy
= %Iz;f% o) 0
Similarly,
(r+ 1) F

2k21—~2 / / r+1 r+1 ——l(tr+1 yr+1) -1 r r[ x) g(y] dxdy

T )%
- % 158" () - (I57g®) . (11)

Using equations (10) and (11) into (9), we get

(r+1)*% PR iy 2
(Wf/ (¢ =) N (¢ -y ) Ny B, ) ddy
k

1 %t(}’-#l)%
< [B o @)
|:(r +1)% (%

Ty (e + k) I38"(0) - (IZ,/:g(t))z] (12)

Thus the equation (8) together with the inequality (12) implies that

= (r+) G 9
1 % (r+1)%
8 [%Ia"‘fk’ﬁ(ﬂ - (Is,mt))z]

2 () $
[%” &0~ (Ii’k’g(t))z}. (13)
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Now since

(02(6) = f () (f(£) - 1)) = O
and

(¥2(t) - (@) (g®) — (1)) = 0,
therefore,

(r+1) T £"V%

e k@ -fO)O-n0) =0, t<ab]
and

( 1) e t(r+1)% .

r}k(Tk)IfZ’k (020) —f@) (f®) —1(0)) = 0, € [a,b].
By Theorem 2.7, we have

(r+1)% (0%

k(O[ + k)

< (% @a(t) = L 0)) (127 (8) - L5 (1))

) - [12f 0]

(r+1)F (0%

* W[;X;(Wl(t)f t)) ak‘pl(t) a]:f(t)
2 (r+) G
%” ACIGHOIEAMIGIVAG
T D)
B %Ii’k’(wlu)wz(t)) I (O 0
= S/Z(f’ $1, (02).
Similarly,

r+1)% ”1)%

k(O[ + k)
< (I (t) - I8 (0)) (I%7g(8) = 147 ¥ (2))

(r+1)% (0%

17g%(8) - [14g(®))

¥ W[;}:(Vh(t)g(t)) _IZ}:%(t)IZ',fg(t)
1 = ()%
e A (208(0) ~ K025

Pk (Ov0) + L O

= 81(g V1, ¥2).

Equations (14) and (15) together with inequality (13) yield inequality (6).

Page 10 0of 13

(14)

(15)
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Lemma 2.11 Put r = 0, the inequality (6) reduces to

tk

T “FOg®) - 15 f DI g(0)| < v/ Sklfs 01, 02)Sk(f, 1, ¥2),

where

Sk 3, 2) = (IS2(8) — 121 x(2) ) (12 6(8) — 12, 9(2))

>R

t
*mfik(ﬂf)x(t)) I (0% x(2)

o

Lk

* mlgk(z(f)x(t)) 221 x(8)
£k
T Tro s R ek ((B)2(8)) + I YOI 2(2).

Example 2.12 For k > 0, let f and g be two functions satisfying £ < f(¢£) < £ + 1 and
—1<g(t) <t fort € [a,b]. Then for r >0, « > 0, we have

(r + 1) r+l)%

Fa i) Lok (080) = Lif (0L g ()

< \/S;(f, t5,65 +1)S; (g, — 1, £5).

Here,
W88 +1)
<(r+ DT VT (r+DE t(””k“r (5 +K) - f(t))
_ N ~
Ti(er +K) Tr(o + 2 + k)
1)7“tr+1 ST (sk + k) (V+1) r+1)%

x [ 1%7 t) — r+l " Jor AE
(a,kf() Fk(()l+—+k) > k(Ol+k) a,k(f() )
(r+1) * t(7+1)k+sr‘k( S+ +k) (r + 1)%15(”1)%

_ r o t+7]°‘r Pl ;

Tl + 75 +k) Leif® Tilo + k) ak(( )f( ))
1 TtHl _HF K+ k 2 ()
—(m ) KRk | e DT k)fz’k’ ®
File + fﬁ +h) T+ k) )™
+
Cilo + m + k)
((“f DT VI k) (e )T R )
X +
Tilor + 25 + k) (o + k)
(r+1)% ¢70% <(r+1) T D) k”F fCE k) ()T AT (2 +/<)>

B +

i + k) Tile + £ + k) il + 25 4+ )
and

Wt -1,1)

~ ((r + 1)%t(r+l)% (}" + 1) T t ) +srk(r+1 + k) Jor (t))

[y +k) Tl + 25 + k)
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(r+1)% (reD§+sp (r+1 k) wr (V+l)%t(”l)% ;
X( Tr(a + 2 + k) "%ﬂm)*_ﬁajg—ﬁA@—Uﬂm

(r+1) ,f‘tr+l T (r+ +k) (r_'_l)%t(wl)% wr
—< : >1£w

Tela + 2%+ k) T Tila+k)
(r+1)% 0% (r+ 1)%74‘(H1)’<+SF (& 7 +k)
o,r ts ¢ r+ a,r t
Fk(O[ +k) ak( g( )) Fk(Ol + +k) zz,kg( )

((,+ DE LT k) (4 1)%‘”1)%)
+

Tile + 25 + k) T Tila+k)

+

(@+D%AM%“roﬂ+k»
X
IMla + 2 + k)

r+1

(r+1)% ¢U*0% ((r + 1)%t(’+1)%”1”k($ +k) (r+ l)%t(’”)%ka(% + k))
Ti(er + k) k1 k) Tilor + 2K 4 k) ’

r+l

o + 25 r

+

Conclusions The present research is the generalizations and extensions of Griiss type
inequalities in the form of new symbol k > 0. Finally, if take k = 1, we have the classical

Griiss type inequalities.
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