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A high-concentrate diet induced colonic epithelial
barrier disruption is associated with the activating
of cell apoptosis in lactating goats
Shiyu Tao, Yongqian Duanmu, Haibo Dong, Jing Tian, Yingdong Ni* and Ruqian Zhao
Abstract

Background: In ruminants, lower ruminal pH causes massive disruption of ruminal epithelial structure during
periods of feeding high-concentrate diets. However, the influence of excessive organic fatty acids in the lumen of
hindgut on the epithelial structure is unclear. In this study, twelve mid-lactating goats were randomly assigned to
either a HC diet group (65% concentrate of dry matter; n = 6) or a LC diet group (35% concentrate of dry matter;
n = 6) for 10 weeks. The colonic epithelial structure was detected by HE staining and transmission electron microscopy
(TEM), and the apoptotic status of epithelial cells was estimated by TUNEL method and caspase activities.

Results: HC goats showed higher level of free lipopolysaccharide (LPS) in rumen fluid (p < 0.01) but not in colonic
digesta (p > 0.05), and higher total volatile fatty acid (VFA) concentrations in rumen fluid (p < 0.05) and in colonic
digesta (p < 0.01), and higher content of starch in colonic digesta (p < 0.05) compared to LC goats. HC goats
demonstrated profound alterations in the colonic epithelial structure and tight junctions (TJ), apparently due to
damage of the epithelium with widened TJs space and nuclear breakdown and mitochondrial swelling. HC goats
showed higher level of apoptosis in the colonic epithelium with higher proportion of TUNEL-positive apoptotic
cells and increases of caspase-3 and −3/7 activities, as well as the lower ratio of bcl-2/bax mRNA expression in the
colonic mucosa (p < 0.05). However, β-defense mRNA was significantly down-regulated in the colonic mucosa of
HC goats compared to LC (p < 0.05). HC goats showed higher level of TJ proteins including claudin-1 and claudin-4
in the colonic mucosa than LC (p < 0.05). Neither free LPS content in the colonic digesta nor NF-κ B protein
expression in tissues showed significant difference between HC and LC goats (p > 0.05).

Conclusions: Our results reveal that long-term feeding HC diet to lactating goats causes severe damages to the
colonic mucosa barrier associated with activating cells apoptosis.
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Background
In current intensive production system, large amounts of
cereal grains or easily degradable byproducts in diet are
fed to lactating cows to meet energy requirement for
supporting maintenance and high milk yields. Excessive
amounts of rapidly fermentable nonstructural carbohy-
drates increase the accumulation of organic acids and shift
of microbial population in gastrointestinal (GI) tract in ru-
minants [1,2]. It’s well documented that feeding high
amounts of concentrate diet to ruminants results in
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subacute ruminal acidosis (SARA), a common metabolic
disease especially occurred in high-producing animals.
Lower pH due to the increase of short-chain fatty acids in-
cluding lactic acid and volatile fatty acids (VFA) in rumen
and higher endotoxin production derived from Gram-
negative bacteria lead to the sever damages to rumen epi-
thelium during SARA or acute ruminal acidosis. Previous
studies mainly focused on the effects of feeding high-grain
diet on the histological structure and functions of ruminal
epithelium in dairy cows [3,4]. Compared to rumen epi-
thelium with a stratum corneum layer and multicellular
layers in the middle [5-7], the large intestine epithelium is
much more “leaky” due to the monolayer structure [8]. In
addition, the natural defense against ruminal acidosis such
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as saliva bicarbonate and Protoroa organisms with cap-
acity of slowing pH down is lacking in the hindgut [9].
Therefore, differences in buffering capacity and histo-
logical structure between the rumen and hindgut make
the hindgut less capable of maintaining digesta pH and
microbial population during times of increased VFA
production [10].
pH value is an extremely important factor to deter-

mine the status of epithelial barrier. Lan et al. reported
that in HT-29 human colon adenocarcinoma cell line,
short-chain fatty acids (SCFA) treatment in the pH range
of 6.0 to 7.0 induced cell apoptosis rather than necrosis,
while SCFA treatment at pH 5.5 caused cell necrosis
[11]. Higher acidity induces apoptosis and inhibits cell
proliferation in colorectal carcinoma cell lines [12]. In
ruminants, high-grain diet led to an increase of acidity
in intestinal tract, and the detrimental intestinal tract
environment may cause apoptosis in the gut epithelium
[10]. It’s well documented that several pathways are in-
volved in cell apoptotic programs. One is mediated by
the formation of the death-inducing signaling complex
and activation of caspase-8 and caspase-10, two initiator
caspases that in turn activate downstream effector of
caspase-3 [13]. Another is mediated by proapoptotic sig-
nals at the mitochondria level including B-cell lymph-
oma 2 (Bcl-2) family and caspase-9 [14]. In epithelial
tissues, tight junction damage or disruption is usually
thought of as a downstream consequence of caspase cleav-
age during the apoptotic process [15].
As a physical barrier, intestinal epithelial mucosa sepa-

rates the toxic compounds from the deeper intestinal
layers [16,17]. Toll-like receptors (TLRs) in the gut epi-
thelium play a key role in maintaining the homeostasis
by recognizing ligands known as microbial-associated
molecular patterns (MAMPs) derived from both patho-
genic and non-pathogenic bacteria [18-20]. After com-
bining with TLR-4 on the host cell surface, LPS activates
myeloid differentiating factor 88 (MyD88), and then elicits
a pro-inflammatory NF-κ B-dependent signaling cascade
[21,22]. As a major transcription factor and a first re-
sponder to harmful cellular stimuli, NF-κB plays a central
role in inflammation through its ability to induce tran-
scription of pro-inflammatory genes [23]. Diverse stimuli
(e.g., microbial products, microbes, pro-inflammatory cy-
tokines, and oxidative stress) can activate NF-κB, and the
downstream cytokines have been used to assess inflamma-
tion [24,25]. NF-κB activation has been detected in the
mucosa of patients with inflammatory bowel disease (IBD)
and in murine colitis model, and inhibition of NF-κB with
a specific p65 antisense oligonucleotide is effective in
preventing experimental models of IBD and efficiently
down-regulates cytokine production [26]. It’s reported that
the accumulation of free LPS in epithelial lumen will dam-
age the integrity and permeability of epithelial barrier in
rumen as well as in large intestine [8]. However, to our
knowledge, after feeding high-grain diet for a long-term
the changes of LPS signaling cascade in the hindgut mu-
cosa of ruminants are still unknown.
Tight junctions (TJs) play an important role in main-

taining the polarity of epithelial cells, regulating the per-
meability of the epithelial barrier and preventing the
translocation of LPS and other toxic compounds from
intestinal tract into circulating system [5,6]. To date,
information regarding the effect of feeding ruminants
with diet enriched high level of concentrate on epithelial
structure in the hindgut is not available. Therefore, the
objectives of this study were to investigate the changes
of histological structure and ultrastructure of the co-
lonic mucosa, and the status of epithelial cells apoptosis
in mid-lactating goats fed a high concentrate diet for a
long period.

Methods
Animals and experimental procedures
Twelve mid-lactating goats with approximately 49.7 ±
5.5 kg body weight were used in this study. Two weeks
before the start of this experiment, goats were offered
free access to a diet containing a forage-to-concentrate
ratio (F: C) of 65:35 to ensure adaptation to the diet.
After dietary adaptation, goats were randomly allocated
to two groups. One group was fed a control diet com-
prising 65% forage and 35% mixed concentrate (low con-
centrate group, LC), while the other group received a
high-grain diet containing 65% mixed concentrate and
35% forage (high concentrate group, HC). The details of
the diet components and nutrient compositions were
shown in Table 1. The animals were fed the respective
diets for 10 weeks, and had free access to water during
the experimental period.
The protocol for the care, handling and use of animals

followed the ARRIVE guidelines and was approved by Ani-
mal Ethics Committee at Nanjing Agricultural University,
China. The sampling procedures complied with the “Guide-
lines on Ethical Treatment of Experimental Animals” (2006)
No. 398 set by the Ministry of Science and Technology,
China and “the Regulation regarding the Management
and Treatment of Experimental Animals” (2008) No. 45
set by the Jiangsu Provincial People’s Government.
The ARRIVE guidelines was provided as Additional

file 1.

Samples collection
After 10 weeks feeding, goats were slaughtered after
overnight fasting. Immediately after slaughter, the ab-
dominal cavity was opened by midline incision, after that
the rumen and intestinal tract were carefully removed.
The rumen was opened from the dorsal side and rumen
fluid was collected and strained through four layers of



Table 1 Ingredients and composition of the experimental
diets (%)

Items The ratio of concentrate to forage

35:65 65:35

Ingredients (% of DM)

Leymus chinensis 52.0 28.0

Medicago sativa hay 13.0 7.0

Corn 25.6 25.0

Wheat bran 0 30.7

Soybean meal 7.4 2.2

Rape seed meal 0 4.0

Limestone meal 0.5 1.5

Calcium phosphate dibasic 0.8 0.7

Salt 0.4 0.4

Premix1 0.4 0.5

Total 100 100

Nutrient levels2 (%)

Net energy(MJ/kg) 5.16 5.78

Digestible crude protein 7.31 8.05

Crude protein 12.17 13.42

Neutral detergent fiber 34.76 39.06

Acid detergent fiber 22.85 21.99

Calcium 0.72 1.04

Phosphorus 0.35 0.53
1Provided per kg of premix: Vitamin A 6 000U; Vitamin D2 500U; Vitamin E
80 mg; Cu 6.25 mg; Fe 62.5 mg; Zn 62.5 mg; Mn 50 mg; I 0.125 mg; Co
0.125 mg; Mo 0.125 mg.
2Nutrient levels were estimated from the current goat foods.
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cheesecloth and kept on ice until processing. Digesta
from the proximal colon was aseptically collected and
kept on ice until being stored at −20°C. Within 20 min
after slaughter, a segment of the colon wall from the
same position of each animal was collected and the con-
lonic epithelium was separated from the muscular layers
by blunt dissection and immediately washed three times
in ice-cold phosphate buffered saline (PBS buffer). The
tissue samples were frozen immediately in liquid nitro-
gen, and then used for extracting RNA and proteins.

Rumen fluid sampling and assay
The rumen fluid was collected and divided into 2 por-
tions. The first portion of each sample was transferred
into a 50-mL sterile tube and kept on ice until trans-
ported to the laboratory for the initial processing before
LPS determination as described by [27]. Briefly, rumen
fluid samples were centrifuged at 10,000 × g for 45 min
at 4°C and the supernatant was aspirated gently to prevent
its mixing with the pellet and passed through a disposable
0.22-μm LPS-free filter. The filtrate was collected in a
sterile glass tube (previously heated at 180°C for 4 h) and
heated at 100°C for 30 min. Samples were cooled at room
temperature (25°C) for 10 min and stored at −20°C for
LPS analysis. The second portion of each rumen fluid
sample was centrifuged at 3,000 × g for 15 min at 4°C im-
mediately after collection and the supernatant was col-
lected. To analyze VFA in ruminal fluid, a 5-mL aliquot
was deproteinized with 1 mL of 25% metaphosphoric acid.
These samples were stored at −20°C until analysis.
The concentration of LPS in rumen fluid was measured

by a Chromogenic End-point Tachypleus Amebocyte Lys-
ate Assay Kit (Chinese Horseshoe Crab Reagent Manufac-
tory Co. Ltd, Xiamen, China). Pretreated rumen fluid
samples were diluted until their LPS concentrations were
in the range of 0.1 to 1 endotoxin units (EU)/mL relative
to the reference endotoxin, and assayed as described by
[27]. VFA were measured using capillary column gas
chromatography (GC-14B, Shimadzu, Japan; Capillary
Column: 30 m × 0.32 mm × 0.25 mm film thickness;
Column temperature = 110°C, injector temperature =
180°C, detector temperature = 180°C).

Colonic digesta sampling and assay
Colonic digesta samples were mixed thoroughly with an
equal amount of physiological saline (0.90% wt/vol of
NaCl). The mixtures were immediately centrifuged at
3,000 × g for 15 min and the supernatants were stored
at −20°C until analyzed for LPS and VFA detection. 10 g
of sample was transferred into a pyrogen-free tube with
10 mL of physiological saline and mixed vigorously.
Samples were then processed and analyzed for LPS and
VFA using the same procedure described earlier for
rumen fluid samples. The LPS concentration in colonic
digesta samples was expressed as endotoxin units (EU)
per gram of wet sample.
Colonic digesta samples were dried at 60°C for 48 h.

Dried samples were subsequently ground using a Wiley
mill through a 1-mm screen (Thomas-Wiley, Philadel-phia,
PA) and stored at −20°C until analyzed for starch using a
Total Starch assay kit (Comin Biotechnology Co. Ltd,
suzhou, China).

Caspase-3 and −3/7 activity assay
Caspase-3 enzyme activity of the colonic mucosa tissue
was measured by caspase activity Assay Kit (Jiancheng
Bioengineering Institute, nanjing, China). And caspase-
3/7 enzyme activity Assay Kit was purchased from Sigma
(St. Louis, MO, USA). The procedures were performed
according to the manufacture’s instruction.

Histopathology, transmission electron microscopy and
TUNEL
Specimens of the intestinal wall of the colonic mucosa
were prepared for histological examination by fixing in 4%
formaldehyde-buffered solution, embedding in paraffin,



Table 2 PCR primer sequences of the target genes

Target
genes

Reference/
Genbank
accession

PCR products
(bp)

Primer sequences

GAPDH HM043737.1 180 F: 5’-GGGTCATCATCTCTGC
ACCT -3’

R: 5’-GGTCATAAGTCCCTCCA
CGA -3’

Occludin BC133617.1 200 F: 5’-GTTCGACCAATGCTCTC
TCAG -3’

R: 5’-CAGCTCCCATTAAGGTT
CCA -3’

Claudin-1 HM117762.1 216 F: 5’-CACCCTTGGCATGAAGT
GTA-3’

R: 5’-AGCCAATGAAGAGAGC
CTGA -3’

Claudin-4 HM117763.1 238 F: 5’-AAGGTGTACGACTCGCT
GCT-3’

R: 5’-GACGTTGTTAGCCGTCC
AG-3’

β-defensin HM593790.1 165 F: 5’- CTGCTGGGTCAGGAT
TTAC -3’

R: 5’- GCGTCTTCGCCTTCTG
TT -3’

Bcl-2 AY423861.1 208 F: 5’- TCGCCCAAGTCAAACAT
TA-3’

R: 5’- CACAGGTGAAACTGCC
AAGAT-3’

Bax AF163774.1 178 F: 5’-TGCTCACTGCCTCACTC
AC-3’

R: 5’-CCAAGACCACTCCTCC
CTA-3’
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and sectioning. Specimens were examined for injury
after hematoxylin and eosin (H&E) staining as described
by [28].
Colonic mucosa tissue samples were separated and fixed

immediately with 2% glutaraldehyde, post-fixed with 1%
osmium tetroxide, and embedded in resin. Ultrathin sec-
tions were cut and stained with uranyl acetate and lead
citrate. Epithelial tissues ultrastructure was determined
with a transmission electron microscope (Hitachi H-7650,
Hitachi Technologies, Tokyo, Japan).
Apoptotic epithelial cells in colonic tissue were ana-

lyzed using the terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP-biotin nick end labeling (TUNEL)
assay according to the manufacturer’s instruction. Apop-
tosis detection kit was supplied by Boster Bio-engineering
limited company (Wuhan, China). TUNEL-positive nuclei
were clearly identified as brown-stained nuclei, which in-
dicated the presence of DNA fragmentation due to apop-
tosis. TUNEL-positive cells were determined by observing
1000 cells in randomly selected fields.

RNA isolation, cDNA synthesis and real-time PCR
Colonic mucosa tissue was quickly collected and immedi-
ately frozen in liquid nitrogen, and stored at −80°C until
RNA isolation. Total RNA was extracted from colon
samples with Trizol Reagent (15596026, Invitrogen). Con-
centration and quality of the RNA were measured by
NanoDrop ND-1000 Spectrophotometer (Thermo, USA).
Then two micrograms of total RNA were treated with
RNase-Free DNase (M6101, Promega, USA) and reverse-
transcribed according to manufacturer’s instructions. Two
microliter of diluted cDNA (1:40, vol/vol) was used
for real-time PCR which was performed in Mx3000P
(Stratagene, USA). GAPDH, which is not affected by the
experimental factors, was chosen as the reference gene.
All the primers chosen to study the expression of genes
related to TJs and apoptosis, as listed in Table 2, were
synthesized by Generay Company (Shanghai, China).
The method of 2-△△Ct was used to analyze the real-time
PCR results and gene mRNA levels were expressed as
the fold change relative to the mean value of control
group.

Western blotting analysis
100 mg frozen colonic mucosa tissue was minced and
homogenized in 1 mL of ice-cold homogenization buffer
RIPA containing the protease inhibitor cocktail Complete
EDTA-free (Roche, Penz-berg, Germany). The homoge-
nates were centrifuged at 12,000 rpm for 20 min at 4°C
and then collected the supernatant fraction. Protein con-
centration was determined using a BCA Protein Assay kit
(Pierce, Rockford, IL, USA). Eighty micrograms of protein
extract from each sample was then loaded onto 7.5% and
15% SDS-PAGE gels and the separated proteins were
transferred onto the nitrocellulose membranes (Bio Trace,
Pall Co, USA). After transfer, membranes were blocked
for 2 h at room temperature in blocking buffer and then
membranes were incubated with the following primary
antibodies: rb-anti-NF-κB p65 (1:500; sc-372, Santa cruz),
m-anti-occludin (1:500; 33–1500, Invitrogen), rb-anti-
claudin-1 (1:200; sc-28668, Santa cruz), m-anti-claudin-4
(1:500; 32–9400, Invitrogen), rb-anti-actived-caspase-3
(1:500; BS7004, Bioworld) and GAPDH (1:10000; AP0066,
Bioworld) in dilution buffer overnight at 4°C. After several
times washes in Tris-Buffered-Saline with Tween (TBST),
membranes were incubated with goat anti-rabbit or goat
anti-mouse horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies (1:10000; Bioworld, USA) in dilution
buffer for 2 h at room temperature. Finally, the blot was
washed and detected by enhanced chemiluminescence’s
(ECL) using the LumiGlo substrate (Super Signal West
Pico Trial Kit, Pierce, USA), and the signals were recorded
by an imaging System (Bio-Rad, USA), and analyzed with
Quantity One software (Bio-Rad, USA).
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Statistical analysis
Data are presented as means ± SE. Statistical significance
was assessed by the independent sample t-test using
SPSS (SPSS version 11.0 for Windows; SPSS Inc., Chicago,
IL, USA) software packages. Data was considered statisti-
cally significant when P < 0.05. Numbers of replicates used
for statistics are noted in the Tables and Figures.
Results
Volatile fatty acid (VFA) and LPS concentrations in rumen
fluid and colonic digesta
Concentrations of propionate (p < 0.01), butyrate (p < 0.01),
isobutyrate (p < 0.05), valerate (p < 0.01), isovalerate (p <
0.001) and total VFA (p < 0.05) in rumen fluid were signifi-
cantly increased in HC goats compared to LC. The level of
acetate (p < 0.01), propionate (p < 0.05), butyrate (p < 0.01)
and total VFA (p < 0.01) concentrations in colonic digesta
of HC goats was significantly higher than that of LC goats.
As shown in Table 3, HC goats showed markedly higher
level of free LPS concentration in rumen fluid than LC
goats (p < 0.01), while there was no significant difference of
free LPS concentration in colonic digesta between HC and
LC goats (p > 0.05). Additionally, starch content in colonic
Table 3 The effect of feeding LC or HC diet on rumen
fermentation and colonic digesta parameters in goats at
the time of slaughter

Item LC HC P-value

Rumen fluid

Free LPS, EU/mL 25201 ± 3398 48395 ± 4723 0.004

Total VFA, mM 90.20 ± 3.55 116.37 ± 8.14 0.023

Acetate, mM 58.28 ± 2.45 65.48 ± 5.45 0.291

Propionate, mM 16.14 ± 0.55 22.03 ± 1.24 0.003

Butyrate, mM 10.65 ± 0.77 21.36 ± 1.79 0.001

Isobutyrate, mM 1.73 ± 0.06 2.12 ± 0.14 0.044

Valerate, Mm 1.26 ± 0.08 1.92 ± 0.12 0.002

Isovalerate, mM 2.14 ± 0.06 2.95 ± 0.12 0.000

Acetate: Propionate 3.61 ± 0.12 2.96 ± 0.14 0.007

Colon digesta

Free LPS,EU/mL 22527 ± 5325 33613 ± 5390 0.182

Starch, mg/g mass 3.42 ± 0.51 4.56 ± 0.93 0.042

Total VFA, mM 44.68 ± 3.35 59.01 ± 2.51 0.007

Acetate, mM 26.54 ± 1.97 36.58 ± 2.08 0.007

Propionate, mM 10.79 ± 0.88 13.23 ± 0.55 0.037

Butyrate, mM 4.44 ± 0.54 6.26 ± 0.25 0.010

Isobutyrate, mM 2.37 ± 1.46 0.85 ± 0.04 0.280

Valerate, Mm 1.07 ± 0.04 1.21 ± 0.06 0.130

Isovalerate, mM 0.95 ± 0.03 0.88 ± 0.03 0.172

Acetate: Propionate 2.47 ± 0.04 2.78 ± 0.16 0.126

Values are mean ± SEM, n = 6.
digesta of HC goats was markedly higher than that in LC
goats (p < 0.05) (Table 3).

Caspase activities in the colonic mucosa
As shown in Figure 1, HC goats showed a significant in-
crease of caspase-3 activity (p < 0.05) and a tendency in-
crease of caspase-3/7 activity (p = 0.07) in colonic mucosa
compared to LC.

Morphology, ultrastructure and TUNEL of the colon
epithelium
HE staining showed that indentations, severe cellular
damage and crypts necrosis were observed in the colonic
epithelium of HC but not LC goats (Figure 2A and B).
The TJ and epithelium apoptosis in the colonic epithe-
lium was detected by Transmission Electron Microscopy
(TEM) method. TJs in the colonic epithelium of HC goats
were damaged with wider intercellular space (Figure 3A
and D), while LC goats displayed integrity and normal TJs
structure. Moreover, LC goats showed normal cell nucleus
and mitochondria structure (Figure 3B and C), whereas
HC goats displayed apparent nuclear breakdown and mito-
chondrial swelling (Figure 3E and F). As shown in Figure 4,
the proportion of TUNEL-positive apoptotic cells in the
colonic epithelium of HC goats was markedly increased
compared to LC goats (p < 0.05).

Gene expression in the colonic mucosa
In the colonic mucosa, β-defensin and the ratio of bcl-2/
bax mRNA expression was significant decreased in HC
goats compared to control (p < 0.05). There was a ten-
dency increase in mRNA expression of claudin-1 in HC
goats (p = 0.084). However, the mRNA expression of
occludin and claudin-4 in the colonic mucosa did not
Figure 1 Caspase-3 and caspase-3/7 enzyme activity in the
colonic mucosa. The results were expressed as mean ± SEM. The
data were analyzed by Independent-Samples T test using the
Compare Means of SPASS 11.0 for Windows (StaSoft Inc, Tulsa, OK,
USA). *p < 0.05 vs. LC.



Figure 2 Comparisons of morphological of the colonic mucosa between HC and LC goats. Colonic mucosa epithelium (n = 6) from each
group were processed for morphological evaluation: colon section of the (A, scale bar = 100 μm) LC group; (B, scale bar = 100 μm) HC group.
Arrow indicates the damage of the colonic mucosa epithelium.
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show significant difference between HC and LC goats
(p > 0.05, Figure 5).

Protein expression in the colonic mucosa
The level of claudin-1 (p < 0.05), claudin-4 (p < 0.05) and
actived-caspase-3 (p < 0.05) proteins expression in the co-
lonic mucosa was significantly up-regulated in HC goats
compared to LC. However, occludin and NF-κB proteins
expression in the colonic mucosa was not altered by high
concentrate diet treatment (p > 0.05) Figure 6.

Discussion
Feeding high-grain diets to lactating ruminants causes a
high risk to damage the histological integrity and func-
tions of ruminal epithelium in dairy cows [3,4]. However,
information regarding the influence of high-concentrate
diet on the hindgut epithelial structure, and the molecu-
lar events especially the alterations in TJ proteins and
Figure 3 Comparisons of ultrastructure of the colonic mucosa betwee
group were processed for ultrastructure evaluation: colon section of the (A
group; (D) TJs of HC group; (E) nuclear of HC group; (F) mitochondria of H
the location of the TJs, nuclear or mitochondria (Scale bar = 500 nm).
epithelial cells apoptosis status is currently unavailable.
The present study reports for the first time that feeding
high proportion of concentrate diet to lactating goats for
10 wks increase VFA concentrations in both ruminal fluid
and colonic digesta. The severe damages of the colonic
mucosa barrier indicated by widen TJs space and nuclear
breakdown and mitochondrial swelling, which was asso-
ciated with the activating of epithelial cells apoptosis
showing by the significant increase of TUNEL-positive
apoptotic cells and caspases activities. These results may
provide new insights into the understanding the relation-
ship between abnormal fermentation in the hindgut lumen
and the damages to the intestinal mucosa barrier.
After 10 wks feeding, HC-fed goats showed a higher

level of total VFA content in ruminal fluid compared to
LC goats. As previous report [10], our results showed
that a significant increase of both total VFA and starch
content in the colonic digesta observed in HC goats. It’s
n HC and LC goats. Colonic mucosa epithelium (n = 6) from each
) TJs of LC group; (B) nuclear of LC group; (C) mitochondria of LC
C group (transmission electron microscopy, × 10000). Arrow indicates



Figure 4 Comparisons of TUNEL of the colonic mucosa between HC and LC goats. Colonic mucosa epithelium (n = 6) from each group
were processed for TUNEL-positive apoptotic cells evaluation: colon section of the (A, scale bar = 20 μm) LC group; (B, scale bar = 20 μm) HC
group. C: Analysis of the positive apoptotic cells. The results were expressed as mean ± SEM. The data were analyzed by Independent-Samples T
test using the Compare Means of SPASS 11.0 for Windows (StaSoft Inc, Tulsa, OK, USA). *p < 0.05 vs. LC.
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reported that a single mild episode of subacute ruminal
acidosis (SARA) does not affect ruminal barrier function
in the short term [29], and the author inferred that
increased acid insult severity might induce sustained
epithelial barrier dysfunction. In production practice,
impairment of intestinal epithelial barrier function is fre-
quently found in high-producing ruminants which are
usually fed a highly concentrated diet for relatively long
time. Paralleled the accumulation of VFA and starch in
colonic digesta, a profound structural disruptions in the
colonic mucosa was observed in HC goats with widen
TJs, cell nuclear breakdown and mitochondrial swelling.
In contrast, LC goats displayed the integrity of mucosa
barrier with normal histological structure and cellular
ultrastructure in the colonic epithelium. Our results
Figure 5 Gene expression in the colonic mucosa. GAPDH was
used as the reference gene for gene expression. The data were
analyzed by Independent-Samples T test using the Compare Means
of SPASS 11.0 for Windows (StaSoft Inc, Tulsa, OK, USA). Values are
mean ± SEM. #p < 0.1, *p < 0.05 vs. LC.
demonstrate that, as previous reports in ruminal epithe-
lial barrier [21,28], feeding high-concentrate diet to lac-
tating goats for long period resulted in the disruption of
epithelial structure in the colonic mucosa.
Luminal acidity is one of the most important factors to

determine the status of epithelial barrier. It’s reported that
acetic acid (0.1 M) showed a time- and pH-dependent
ability to damage colonic epithelium in pig [30]. In human
colon adenocarcinoma cell line, acetate treatment in the
pH range of 6.0 to 7.0 induced cell apoptosis rather than
necrosis, while acetate treatment at pH 5.5 caused cell ne-
crosis [11]. In addition, higher acidity induces apoptosis
and inhibits cell proliferation in colorectal carcinoma cell
lines [12]. In this study, the level of acetate and other VFA
components in the colonic digesta was markedly increased
in HC goats. TUNEL results showed that in parallel to the
obvious damages to the colonic mucosa, higher amount of
positive apoptotic cells were detected in the colonic mu-
cosa of HC goats than that of LC counterparts. Moreover,
HC goats demonstrated a marked appearance of dark
brown apoptotic cells and intercellular apoptotic frag-
ments compared to LC goats. Previous studies suggested
that the short-chain fatty acids increased localization
epithelial apoptosis and necrosis and these changes are
dependent on caspase activation [11]. In epithelial tissues,
tight junction damage is usually thought of as a down-
stream consequence of caspase cleavage during the apop-
totic process [15]. In the present study, the activities of
caspase-3 and caspase-3/7 were markedly enhanced in the
colonic epithelium of HC goats compared to control. In
addition, the level of activated-caspase-3 protein was also
enhanced in the colonic epithelium of HC goats. As the
previous report [31], our results showed that the ratio of
bcl-2/bax mRNA expression was significant decreased in
HC goats compared to control, which indicates the down-
regulation of the cellular anti-apoptotic ability in the
colonic mucosa. Based on these results, we conclude that
an increase of cellular apoptosis and a decrease in anti-



Figure 6 Protein expression in the colonic mucosa. Results of protein levels expressed as arbitrary units relative to GAPDH protein, fold
change of Occludin (A), Claudin-1 (B), Claudin-4 (C), Actived-caspase-3 (D) and NF-κB p65 (E) protein content in the colonic mucosa. Values are
mean ± SEM. The data were analyzed by Independent-Samples T test using the Compare Means of SPASS 11.0 for Windows (StaSoft Inc, Tulsa,
OK, USA). #p < 0.1, *p < 0.05 vs. LC.
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apoptotic ability may contribute to the damages of the co-
lonic mucosa caused by HC diet.
TJ proteins defects or enrichment are causatively asso-

ciated with a variety of human diseases, demonstrating
that TJ proteins play important roles in human physi-
ology [16,32-34]. In this study, accompanied the disrup-
tion and expansion of intercellular TJs morphology, HC
goats demonstrated a marked up-regulation of TJ protein
expression including claudin-1 and −4 in the colonic mu-
cosa. There are several possible explanations for these
changes in TJ proteins. As previous reports [35,36], the
claudins comprise a multigene family, and the different
claudins have diverse functions depending on cell type
and the host organism. It’s reported that the claudin-1
does not localize to the TJ, which indicates no contribu-
tion of claudin-1 to the barrier function [37]. Moreover,
recent studies have revealed that claudins may be involved
in regulating cell proliferation and signaling [38-41].
Claudin-4 has been suggested as one of these unique
types of claudins, which strongly participated in mem-
brane permeation via paracellular pathway in both nor-
mal and disease condition [42,43]. Claudin-4 expression
was significantly increased in the intestinal mucosa
lesion [39]. Another kind of TJ protein, Occludin has a
transmembrane region and may play both a functional
and structural role defining the paracellular barrier [44].
High-grain diet caused a significant change of occludin
mRNA and protein expression in ruminal epithelium
[25]. However, our data showed that there was no signifi-
cant difference in the expression of occludin mRNA and
protein in the colonic mucosa between HC and LC goats.
Nevertheless, the true causal relationship between TJs dis-
ruption and the increase of claudins protein in the colonic
mucosa of HC goats needs to be further elucidated.
As one of the most potent inflammatory mediators and

a major structural component of Gram-negative bacteria,
LPS has been hypothesized to form an important risk
factor of intestinal bowel disease (IBD) [45]. It's widely ac-
cepted that Toll-like receptors (TLRs) in the intestine epi-
thelium play a key role in maintaining the homeostasis by
recognizing ligands known as microbial-associated mo-
lecular patterns derived from both pathogenic and non-
pathogenic bacteria [18,19]. MyD88-dependent pathway
is the downstream signals of TLR-4, and initiation of
MyD88-dependent pathway could lead to activation of
NF-κB and transcription of several pro-inflammatory
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genes [18]. NF-κB activation has been detected in the
mucosa of patients with IBD and in murine colitis
model, and inhibition of NF-κB with a specific p65 anti-
sense oligonucleotide is effective in preventing experi-
mental models of IBD and efficiently down-regulates
cytokine production [26]. In ruminants, the increase in
rumen LPS concentration due to increased starch feed-
ing is well documented [10,46]. The increase in LPS
concentration in the cecum in grain-based SARA chal-
lenges are due to increased growth of LPS-producing
bacteria in the hindgut but not in the rumen [43]. Van
Kessel et al. observed an increase of the gram-negative
bacteria in cecal digesta after postruminal infusion of
starch [47]. In this study, a significant increase of LPS in
ruminal fluid was observed in HC goats, and starch con-
tent in colonic digesta was also markedly increased
compared to LC goats. In a good agreement with previ-
ous studies, a significant increase of LPS in cecal digesta
was observed in the present study (data not shown).
However, LPS concentration in colonic digesta was not
altered after feeding HC diet for 10 wks. The differences
in adaptation time to diet and different hindgut location
between these studies may explain the discrepancy re-
sults of LPS production in hindgut digesta. In order to
further investigate the influence of LPS signal pathway
on the epithelial cellular function, NF-κ B protein ex-
pression in the colonic mucosa was detected by western
blot. No significant difference of NF-κ B protein was ob-
served in the colonic mucosa between HC and LC goats.
Taken together, these results suggested that LPS cascade
signal may not contribute to the damages of the colonic
mucosa induced by feeding HC diet for a long-term in
lactating goats.

Conclusion
In summary, we report herein for the first time that
long-term feeding HC diet to lactating goats caused the
accumulation of VFA in ruminal fluid and colonic digesta
and damages to the colonic mucosa barrier induced by ac-
tivating cells apoptosis. For HC goats, the increase of acid-
ity rather than LPS in colonic digesta is mostly responsible
for the disruption of the colonic epithelial barrier.
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