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Abstract

Let A be an Artinian Gorenstein algebra over a field k of characteristic zero with
dimk A > 1. To every such algebra and a linear projection π on its maximal idealmwith
range equal to the socle Soc(A) of A, one can associate a certain algebraic hypersurface
Sπ ⊂ m, which is the graph of a polynomial map Pπ : kerπ → Soc(A) � k. Recently,
the following surprising criterion has been obtained: two Artinian Gorenstein algebras
A and Ã are isomorphic if and only if any two hypersurfaces Sπ and Sπ̃ arising from A
and Ã, respectively, are affinely equivalent. In the present paper, we focus on the cases
k = R and k = C and explain how in these situations the above criterion can be
derived by complex-analytic methods. The complex-analytic proof for k = R has not
previously appeared in print but is foundational for the general result. The purpose of
our paper is to present this proof and compare it with that for k = C, thus highlighting
a curious connection between complex analysis and commutative algebra.
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1 Introduction
This paper concerns a result in commutative algebra but is intended mainly for experts
in complex analysis and CR-geometry. The background required for understanding the
algebraic content is rather minimal and is given in Section 2.
We consider Artinian local commutative associative algebras over a field k. Such an

algebra A is Gorenstein if and only if the socle Soc(A) of A is a one-dimensional vector
space over k. Gorenstein algebras frequently occur in various areas of mathematics and its
applications to physics (see, e.g., [1],[12]). In the case when the field k has characteristic
zero, in articles [6],[11], a surprising criterion for isomorphism of Artinian Gorenstein
algebras was found. The criterion is given in terms of a certain algebraic hypersurface Sπ

in the maximal ideal m of A associated to a linear projection π on m with range Soc(A),
where we assume that dimk A > 1. The hypersurface Sπ passes through the origin and is
the graph of a polynomial map Pπ : kerπ → Soc(A) � k. It is shown in [6],[11] that two
Artinian Gorenstein algebras A and Ã are isomorphic if and only if any two hypersurfaces
Sπ and Sπ̃ arising from A and Ã, respectively, are affinely equivalent, that is, there exists a
bijective affine map f : m → m̃ such that f (Sπ ) = Sπ̃ .
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Currently, there are two different proofs of the above criterion. The one given in [11]
is purely algebraic, whereas the one proposed in [6] reduces the case of an arbitrary
field to that of k = C. A proof of the criterion in the latter case is contained in our
earlier article [7] and, quite surprisingly, is based on a complex-analytic argument. It
turns out that one can give an independent complex-analytic proof of the criterion for
k = R as well. This proof has not been previously published and is derived from ideas
developed in paper [5], which never appeared in print (see Remark 4.1). However, the
argument utilized in the case k = R is rather important as it inspired our proof for the
case k = C in [7] and therefore laid the foundation of the general result for an arbi-
trary field. Thus, the purpose of the present article is to provide a complex-analytic proof
of the criterion for k = R and to compare it with that for k = C given in [7]. These
proofs emphasize an intriguing connection between complex analysis and commutative
algebra. In each of the two cases, the idea is to consider certain tube submanifolds in com-
plex space associated to the algebras in question and utilize their CR-automorphisms. In
fact, as stated in Remark 5.1, there is a deep relationship between Artinian Gorenstein
algebras for k = R, C and tube hypersurfaces locally CR-equivalent to Levi non-
degenerate hyperquadrics. We believe that this relationship has much to offer if fully
understood.
The paper is organized as follows. Section 2 contains algebraic preliminaries and the

precise statement of the criterion in Theorem 2.1. The proof of the necessity implica-
tion of Theorem 2.1 is given in Section 3. This part of the proof has no relation to
complex analysis and is only included for the completeness of our exposition. Further,
Sections 4 and 5 contain the complex-analytic proofs of the sufficiency implications for
k = R and k = C, respectively. Finally, in Section 6, we demonstrate how powerful our
criterion can be in applications. Namely, we apply it to a one-parameter family At of 15-
dimensional Gorenstein algebras. While directly finding all pairwise isomorphic algebras
in the family At seems to be quite hard, this problem is easily solved with the help of
Theorem 2.1.

2 Preliminaries
Let A be a commutative associative algebra over a field k. We assume that A is unital and
denote by 1 its multiplicative identity element. Further, we assume that A is local, that is,
(i) A has a unique maximal ideal (which we denote by m), and (ii) the natural injective
homomorphism k → A/m is in fact an isomorphism. In this case, one has the vector
space decomposition A = 〈1〉 ⊕ m, where 〈 · 〉 denotes linear span. Furthermore, A is
isomorphic to the unital extension of its maximal ideal m, which is the direct sum k ⊕ m

endowed with an operation of multiplication in the obvious way. For example, the algebra
O2

0 of germs of holomorphic functions at the origin inC
2 is a complex local algebra whose

maximal ideal consists of all germs vanishing at 0. Clearly, every element ofO2
0 is the sum

of the germ of a constant function and a germ vanishing at the origin.
Next, we suppose that dimk A > 1 and that A is Artinian, i.e., dimk A < ∞. In addi-

tion, we let A to be Gorenstein, which means that the socle of A, defined as Soc(A) :=
{x ∈ m : xm = 0}, is a one-dimensional vector space over k (see, e.g., [9]). For exam-
ple, if I is the ideal in O2

0 generated by the germs of z21, z
2
2, then A := O2

0/I is a complex
Artinian Gorenstein algebra with dimCA = 4 and Soc(A) spanned by the element of A
represented by the germ of z1z2.
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We now assume that the field k has characteristic zero and consider the exponential
map exp : m → 1 + m

exp(x) :=
∞∑

m=0

1
m!

xm,

where x0 := 1. By Nakayama’s lemma (see, e.g., Theorem 2.2 on p. 8 in [13]), m is a
nilpotent algebra, and therefore the above sum is in fact finite, with the highest-order
term corresponding tom = ν, where ν ≥ 1 is the socle degree of A, i.e., the largest among
all integersμ for whichmμ �= 0. Observe that Soc(A) = mν . The map exp is bijective with
the inverse given by the polynomial transformation

log(1 + x) :=
ν∑

m=1

(−1)m+1

m
xm, x ∈ m. (2.1)

Fix a linear projection π on A with range Soc(A) and kernel containing 1 (we call such
projections admissible). Set K := kerπ ∩ m and let Sπ be the hypersurface in m given as
the graph of the polynomial map Pπ : K → Soc(A) of degree ν defined as follows:

Pπ (x) := π(exp(x)) = π

(
ν∑

m=2

1
m!

xm
)
, x ∈ K (2.2)

(note that for dimk A = 2, one has Pπ = 0). Observe that the Soc(A)-valued quadratic
part of Pπ is non-degenerate on K since the Soc(A)-valued bilinear form

bπ (a, c) := π(ac), a, c ∈ A (2.3)

is non-degenerate on A (see, e.g., p. 11 in [8]). Numerous examples of hypersurfaces Sπ

explicitly computed for particular algebras can be found in [2],[6],[7] (see also Section 6
below).
We will now state the criterion for isomorphism of Artinian Gorenstein algebras

obtained in [6],[11].

Theorem 2.1. Let A and Ã be Gorenstein algebras of finite vector space dimension
greater than 1 over a field of characteristic zero and π and π̃ admissible projections on A
and Ã, respectively. Then A and Ã are isomorphic if and only if the hypersurfaces Sπ and
Sπ̃ are affinely equivalent.

Remark 2.2. For every hypersurface Sπ , we let Sπ be the graph over K of the
polynomial map −Pπ (see (2.2)). Observe that

Sπ = {x ∈ m : π(exp(x)) = 0}. (2.4)

Clearly, Sπ and Sπ̃ are affinely equivalent if and only if Sπ and Sπ̃ are affinely equivalent.
Therefore, in order to prove Theorem 2.1, it is sufficient to obtain its statement with Sπ

and Sπ̃ in place of Sπ and Sπ̃ , respectively. The hypersurfaces Sπ and Sπ̃ are easier to
work with, and we utilize them instead of Sπ and Sπ̃ in our proofs below.

3 Proof of the necessity implication
First of all, we explain how the necessity implication of Theorem 2.1 is derived. As stated
in the introduction, this part of the proof has no relation to complex analysis and is only
included in the paper for the completeness of our exposition. The proof below works
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for any field of characteristic zero. The idea is to show that if π1 and π2 are admissible
projections on A, then Sπ1

= Sπ2
+ x0 for some x0 ∈ m. Clearly, the necessity implication

is a consequence of this fact (cf. [7]).
For every y ∈ m, let My be the multiplication operator from A to m defined by a → ya

and set K1 := kerπ1 ∩ m. The correspondence y → π1 ◦ My|K1 defines a linear map L
from K1 into the space L(K1, Soc(A)) of linear maps from K1 to Soc(A). Since for every
admissible projection π the form bπ defined in (2.3) is non-degenerate on A and since
dimk L(K1, Soc(A)) = dimk K1, it follows that L is an isomorphism.
Next, let λ := π2 − π1 and observe that λ(1) = 0, λ(Soc(A)) = 0. Clearly, λ|K1 lies in

L(K1, Soc(A)), and therefore there exists y0 ∈ K1 such that λ|K1 = π1 ◦ My0 |K1 . We then
have λ = π1 ◦ My0 everywhere on A, hence

π2(exp(x)) = π1 ( (1 + y0) exp(x))) = π1(exp(x + x0))

for x0 := log(1 + y0), which implies Sπ1
= Sπ2

+ x0 as claimed.

4 Proof of the sufficiency implication for k = R

By assumption, dimR A = dimR Ã, and we denote this common dimension byN. IfN = 2,
then A and Ã are clearly isomorphic, and thus, from now on, we suppose that N > 2.
Let AC = A ⊕ iA be the complexification of the real algebra A. Then dimC AC = N ,

and AC is a complex Artinian Gorenstein algebra with maximal idealmC = m⊕ im. Next,
we denote by πC the complex-linear extension of π to AC and by z → z̄ := x − iy the
conjugation on AC defining the real form A, for all z = x + iy ∈ AC, with x, y ∈ A. Then
h(z, z′) := πC(zz̄′) is a Soc(AC)-valued Hermitian form on AC that coincides with bπ on
A (see (2.3)). Since the bilinear form bπ is non-degenerate on A, the Hermitian form h is
non-degenerate on AC.
Consider the following real Levi non-degenerate hyperquadric in the complex projec-

tive space P(AC):

Q :=
{
[ z]∈ P

(
AC

)
: h(z, z) = 0

}
,

where [ z] denotes the point of P(AC) represented by z ∈ AC. We think of 1 + mC as the
affine part of P(AC) and of

Q′ := Q ∩
(
1 + mC

)
as the affine part of the hyperquadric Q. One can choose complex coordinates
w1, . . . ,wN−1 in mC so that, upon identification of 1+mC with mC, the affine quadricQ′

is given by the equation

RewN−1 = H(w,w), (4.1)

where w := (w1, . . . ,wN−2) and H is a non-degenerate Hermitian form on C
N−2.

Next, consider the following real tube hypersurface in mC:

T := Sπ + im. (4.2)

Let expC : mC → 1 + mC be the exponential map associated to AC. It is straightforward
to check that the biholomorphic transformation from mC to 1 + mC given by

z → expC
( z
2

)
maps T ontoQ′.
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Analogously, for the algebra Ã, we obtain a Hermitian Soc
(
ÃC

)
-valued form h̃ on

ÃC, a real Levi non-degenerate hyperquadric Q̃ in P
(
ÃC

)
, the corresponding affine

hyperquadric Q̃′ in 1̃ + m̃C, and a tube hypersurface T̃ in m̃C.
Now, let f : m → m̃ be a bijective affine map that establishes equivalence between Sπ

and Sπ̃ . We extend it to a complex affine map f C : mC → m̃C. Clearly, f C transforms T
into T̃ . Consider the biholomorphism from 1 + mC to 1̃ + m̃C defined as follows:

� := ẽxpC ◦
(
z → z

2

)
◦ f C ◦ (z → 2z) ◦ logC, (4.3)

where logC := (
expC

)−1 and ẽxpC is the exponential map associated to ÃC. Observe that
� mapsQ′ onto Q̃′.
We will now show that, upon identification of 1 + mC with mC and 1̃ + m̃C with m̃C,

the map � is affine. Indeed, since Q′ and Q̃′ are biholomorphically equivalent, the sig-
natures of their Levi forms coincide. Therefore, one can choose complex coordinates
w̃1, . . . , w̃N−1 in m̃C so that, upon identification of 1̃+ m̃C with m̃C, the affine quadric Q̃′

is given by the equation

Rew̃N−1 = H(w̃, w̃),

where w̃ := (w̃1, . . . , w̃N−2) (cf. (4.1)). Thus, when written in the coordinates (w,wN−1),
(w̃, w̃N−1), the map � becomes an automorphism of CN−1 preserving quadric (4.1). It is
well-known that every such transformation has the form

w̃ = λUw + a,
w̃N−1 = σλ2wN−1 + 2λH(Uw, a) + H(a, a) + ib,

where U ∈ GL(N − 2,C) satisfies H(Uw,Uw) ≡ σH(w,w), a ∈ C
N−2, b ∈ R

N−2,
λ > 0, σ = ±1, and σ may be equal to −1 only if the numbers of positive and negative
eigenvalues of H are equal. In particular, � is an affine map as claimed.
By formulas (2.1) and (4.3), for x ∈ m we have

�(1 + x) = ẽxp
(x0
2

) (̃
1 + g(x) + 1

2
(
g(x)2 − g(x2)

) + (4.4)

higher-order terms
)
,

where x0 := f (0), g := f − x0 is the linear part of f, and ẽxp is the exponential map
associated to Ã. Since � is affine, formula (4.4) implies g(x)2 = g(x2) for all x ∈ m, which
is equivalent to the statement that g : m → m̃ is an algebra isomorphism. Therefore, m
and m̃ are isomorphic, hence A and Ã are also isomorphic as required.

Remark 4.1. The method utilized in the above proof can be extracted, in principle,
from ideas contained in paper [5] (which should be read in conjunction with [4]), but is
by no means explicitly articulated there.

5 Proof of the sufficiency implication for k = C

The argument that follows is contained in [7] and is included in this paper for comparison
with the proof in the case k = R given in Section 4.
By assumption, dimC A = dimC Ã, and we denote this common dimension by N. If

N = 2, then A and Ã are isomorphic, and thus, from now on, we suppose that N > 2.
Consider the maximal ideal m of A. We will now forget the complex structure on m

and treat it as a real algebra. Let A be the (real) unital extension of m (see Section 2)
and 1 the multiplicative identity element in A. Observe that A is not Gorenstein since
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dimR Soc(A) = 2. We now consider the complexification AC = A ⊕ iA of A. Then
dimCAC = 2N − 1, and AC is a complex Artinian local algebra with maximal ideal
mC = m ⊕ im. The complex algebraAC is not Gorenstein since dimC Soc(AC) = 2.
Next, let π̂ be the extension of π |m toA defined by the condition π̂(1) = 0 and denote

by πC the complex-linear extension of π̂ to AC. Further, denote by z → z̄ := x − iy the
conjugation onAC defining the real formA, for all z = x + iy ∈ AC, with x, y ∈ A. Then
h(z, z′) := πC(zz̄′) is a Soc(AC)-valued Hermitian form on AC that coincides on A with
the Soc(A)-valued bilinear form bπ̂ defined analogously to (2.3).
Consider the following subset of the complex projective space P(AC):

Q :=
{
[ z]∈ P(AC) : h(z, z) = 0

}
,

where [ z] denotes the point of P(AC) represented by z ∈ AC. We think of 1 + mC as the
affine part of P(AC) and of

Q′ := Q ∩ (1 + mC)

as the affine part of Q. Observe that Q′ is a real-analytic Levi non-degenerate CR-
submanifold of 1+mC of real codimension 2. In fact, one can choose complex coordinates
w1, . . . ,w2N−2 inmC so that, upon identification of 1+mC withmC, the affine quadricQ′

is given by the equations

Rew2N−3 =
N−2∑
j=1

(|wj|2 − |wj+N−2|2
)
,

Rew2N−2 =
N−2∑
j=1

(
wjwj+N−2 + wj+N−2wj

)
.

(5.1)

This can be seen by choosing coordinates in m (regarded as a complex algebra) in which
the restriction of the Soc(A)-valued bilinear form bπ to K = kerπ ∩ m is given by the
identity matrix.
Next, consider the following real tube codimension 2 submanifold in mC:

T := Sπ + im.

Let expC : mC → 1 + mC be the exponential map associated to AC. It is straightforward
to check that the biholomorphic transformation from mC to 1 + mC given by

z → expC
( z
2

)
maps T ontoQ′.
Analogously, for the algebra Ã, we obtain algebras Ã and ÃC, a Hermitian Soc

(
ÃC

)
-

valued form h̃ on ÃC, a real Levi non-degenerate codimension 2 affine quadric Q̃′ in
1̃ + m̃C, the corresponding coordinates w̃1, . . . , w̃2N−2 in m̃C, and a tube hypersurface T̃
in m̃C.
Now, let f : m → m̃ be a bijective affine map that establishes equivalence between Sπ

and Sπ̃ . We treat f as a real affine map and extend it to a complex affine map f C : mC →
m̃C. Notice that f C transforms T into T̃ . Consider the biholomorphism from 1 + mC to
1̃ + m̃C defined as follows:

� := ẽxpC ◦
(
z → z

2

)
◦ f C ◦ (z → 2z) ◦ logC, (5.2)

where logC := (
expC

)−1 and ẽxpC is the exponential map associated to ÃC. Observe that
� mapsQ′ onto Q̃′.
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We claim that, upon identification of 1 + mC with mC and 1̃ + m̃C with m̃C, the map �

is affine. Indeed, when written in the coordinates w1, . . . ,w2N−2, w̃1, . . . , w̃2N−2, the map
� becomes an automorphism of C2N−2 preserving quadric (5.1). The fact that � is affine
now follows from a description of CR-automorphism of this quadric (see the elliptic case
on pp. 37–38 in [3]).
By formulas (2.1) and (5.2), for x ∈ m we have

�(1 + x) = ẽxp
(x0
2

) (̃
1 + g(x) + 1

2
(
g(x)2 − g(x2)

) + (5.3)

higher-order terms
)
,

where x0 := f (0), g := f − x0 is the linear part of f, and ẽxp is the exponential map
associated to Ã. Since � is affine, formula (5.3) implies g(x)2 = g(x2) for all x ∈ m,
i.e., g : m → m̃ is an algebra isomorphism. Therefore, m and m̃ are isomorphic, hence A
and Ã are also isomorphic as required.

Remark 5.1. The proofs of Theorem 2.1 for the cases k = R, C presented in this paper
are based on considering real tube submanifolds in complex space CR-equivalent to Levi
non-degenerate affine quadrics. For k = R, we utilized hypersurfaces, whereas for k = C,
codimension 2 submanifolds were required. The former are called spherical tube hyper-
surfaces (see [10]), and there is in fact an intriguing relationship between them and real
and complex Artinian Gorenstein algebras. This relationship was outlined in [5] (see also
Section 9.2 in [10] for a brief survey). It turns out that

• to every real Artinian Gorenstein algebra of dimension greater than 2 and to every
complex Artinian Gorenstein algebra one can associate a (closed) spherical tube
hypersurface, where in the real case one obtains exactly hypersurfaces with bases
(2.4) as in (4.2);

• any two such hypersurfaces are affinely equivalent if and only if the corresponding
algebras are isomorphic (one way to obtain the necessity implication in the real case
is to proceed as in Section 4);

• in a certain sense, all spherical tube hypersurfaces can be obtained by combining
hypersurfaces of these two types.

We note that no higher-codimensional analogues of spherical tube hypersurfaces were
considered in [5]. However, as the proof of Theorem 2.1 for k = C suggests, analogues of
this kind are related to Artinian Gorenstein algebras as well. We believe that the curious
connection between complex analysis and commutative algebra manifested through tube
submanifolds CR-equivalent to affine quadrics deserves further investigation.

6 Example of application of Theorem 2.1
Theorem 2.1 is particularly useful when at least one of the hypersurfaces Sπ and Sπ̃ is
affinely homogeneous (recall that a subset S of a vector space V is called affinely homo-
geneous if for every pair of points p, q ∈ S there exists a bijective affine map g of V
such that g(S) = S and g(p) = q). In this case, the hypersurfaces Sπ and Sπ̃ are affinely
equivalent if and only if they are linearly equivalent. Indeed, if, for instance, Sπ is affinely
homogeneous and f : m → m̃ is an affine equivalence between Sπ and Sπ̃ , then f ◦ g is a
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linear equivalence between Sπ and Sπ̃ , where g is an affine automorphism of Sπ such that
g(0) = f −1(0). Clearly, in this case, Sπ̃ is affinely homogeneous as well.
The proof of Theorem 2.1 in [11] shows that every linear equivalence f between Sπ and

Sπ̃ has the block-diagonal form with respect to the decompositions m = K ⊕ Soc(A)

and m̃ = K̃ ⊕ Soc(Ã), where K̃ := ker π̃ ∩ m̃, that is, there exist linear isomorphisms
f1 : K → K̃ and f2 : Soc(A) → Soc(Ã) such that f (x + y) = f1(x) + f2(y), with x ∈ K,
y ∈ Soc(A). Therefore, for the corresponding polynomial maps Pπ and Pπ̃ (see (2.2)), we
have

f2 ◦ P[m]
π = P[m]

π̃ ◦ f1 for allm ≥ 2, (6.1)

where P[m]
π and P[m]

π̃ are the homogeneous components of degree m of Pπ and Pπ̃ ,
respectively.
Thus, Theorem 2.1 yields the following corollary (cf. Theorem 2.11 in [7]) .

Corollary 6.1. Let A and Ã be Gorenstein algebras of finite vector space dimension
greater than 1 over a field of characteristic zero and π and π̃ admissible projections on A
and Ã, respectively.
(i) If A and Ã are isomorphic and at least one of Sπ and Sπ̃ is affinely homogeneous,

then for some linear isomorphisms f1 : K → K̃ and f2 : Soc(A) → Soc(Ã) identity (6.1)
holds. In this case, both Sπ and Sπ̃ are affinely homogeneous.
(ii) If for some linear isomorphisms f1 : K → K̃ and f2 : Soc(A) → Soc(Ã) identity

(6.1) holds, then the hypersurfaces Sπ and Sπ̃ are linearly equivalent, and therefore the
algebras A and Ã are isomorphic.

In [11] (see also Corollary 4.10 in [6]), we found a criterion for the affine homogeneity
of some (hence every) hypersurface Sπ arising from an Artinian Gorenstein algebra A.
Namely, Sπ is affinely homogeneous if and only if the action of the automorphism group
of the algebra m on the set of all hyperplanes in m complementary to Soc(A) is transitive.
Furthermore, we showed (see also Corollary 4.11 in [6]) that this condition is satisfied if
A is non-negatively graded in the sense that it can be represented as a direct sum

A =
⊕
j≥0

Aj, AjA� ⊂ Aj+�,

whereAj are linear subspaces ofA, withA0 = k (in this casem = ⊕j>0Aj and Soc(A) = Ad

for d := max{j : Aj �= 0}). It then follows that part (i) of Corollary 6.1 applies in the
situation when one (hence the other) of the algebrasA and Ã is non-negatively graded (see
also [7] for the case k = C). Note, however, that the existence of a non-negative grading
on A is not a necessary condition for the affine homogeneity of Sπ (see, e.g., Remark
2.6 in [7]). Also, as shown in Section 8.2 in [6], the hypersurface Sπ need not be affinely
homogeneous in general.
To demonstrate how our method works, we will now apply Corollary 6.1 to a one-

parameter family of non-negatively graded Artinian Gorenstein algebras. As before, let k
be a field of characteristic zero. For t ∈ k, t �= ±2, define

At := k[ x, y] /
(
2x3 + txy3, tx2y2 + 2y5

)
.

It is straightforward to verify that every At is a Gorenstein algebra of dimension 15. We
will prove the following proposition.
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Proposition 6.2. Ar and As are isomorphic if and only if r = ±s.

Proof. The sufficiency implication is trivial (just replace y by −y). For the converse
implication, consider the following monomials in k[ x, y]:

1, x, y, x2, xy, y2, x2y, xy2, y3, xy3, x2y2, y4, x2y3, xy4, x2y4.

Let e0 = 1, e1, . . . , e14, respectively, be the vectors in At arising from these monomials (to
simplify the notation, we do not indicate the dependence of ej on t). They form a basis of
At . Define

A0
t := 〈e0〉, A1

t := 0, A2
t := 〈e2〉, A3

t := 〈e1〉, A4
t := 〈e5〉,

A5
t := 〈e4〉, A6

t := 〈e3, e8〉, A7
t := 〈e7〉, A8

t := 〈e6, e11〉, A9
t := 〈e9〉,

A10
t := 〈e10〉, A11

t := 〈e13〉, A12
t := 〈e12〉, A13

t := 0, A14
t := 〈e14〉,

Aj
t = 0 for j ≥ 15,

where, as before, 〈 · 〉 denotes linear span. It is straightforward to check that the subspaces
Aj
t form a non-negative grading on At .
Next, denote bymt the maximal ideal ofAt and let πt be the projection onAt with range

Soc(At) = A14
t and kernel 〈e0, . . . , e13〉. Denote by w1, . . . ,w14 the coordinates in mt with

respect to the basis e1, . . . , e14. In these coordinates the corresponding polynomial map
Pt := Pπt is written as

Pt = − t
10080

w7
2 + 1

48
w4
2

(
w2
1 − t

5
w2w5

)
− t

48
w4
1w2 + 1

4
w2
1w

2
2w5 +

1
6
w1w3

2w4 − t
24

w3
2w

2
5 − t

48
w4
2w8 + 1

24
w4
2w3 + terms of degree ≤ 4 .

Suppose that for some r �= s the algebras Ar and As are isomorphic. By part (i) of
Corollary 6.1, there exist C ∈ GL(13, k) and c ∈ k∗ such that

c Pr(w) ≡ Ps(Cw), (6.2)

where w := (w1, . . . ,w13). Since 0 is the only value of t for which Pt has degree 7, we have
r, s �= 0. Comparing the terms of order 7 in identity (6.2), we obtain that the second row
in the matrix C has the form (0,μ, 0, . . . , 0), and

c = s
r
μ7 . (6.3)

Next, comparing the terms of order 6 in (6.2), we see that the first row in the matrix C has
the form (σ , ρ, 0, . . . , 0), and

c = μ4σ 2 . (6.4)

Further, comparing the terms of order 5 in (6.2) that do not involve w2
2, we obtain

c = s
r
μσ 4 . (6.5)

Now, (6.3), (6.4), and (6.5) yield r2 = s2 as required.
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