
Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11
http://bsb.eurasipjournals.com/content/2013/1/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
RESEARCH Open Access
Inferring Boolean network states from partial
information
Guy Karlebach
Abstract

Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality
is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks
mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the
interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a
more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network
trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy
using simulation and microarray expression data.

Keywords: Boolean network; Inference; Conditional entropy; Gradient descent
Introduction
Boolean networks were introduced by Kauffman [1] sev-
eral decades ago as a model for gene regulatory net-
works. In this model, every gene corresponds to a node
in the network. Every node is assigned an initial Boolean
value, which is its value at time 0. A Boolean value of 1
means that the gene is active; in other words, its product
is present in the cell and can perform its designated role.
A Boolean value of 0 means exactly the opposite - a gene
is not active and its product is absent from the cell.
Since the activity or inactivity of genes affects the activity
or inactivity of other genes, the Boolean value of a node at
time point T + 1 is determined by the Boolean values of
other nodes at time T. More specifically, the Boolean value
of a node is determined by a time-invariant Boolean func-
tion that takes as input the Boolean values of a set of net-
work nodes at the preceding time point. The set of nodes
that constitute the input to the Boolean function is called
its regulators, and the output node is referred to as target.
The vector of the Boolean values of all the network nodes
is called the network state. A sequence of states that
evolves from some initial state according to the Boolean
functions is called a trajectory. The trajectories of network
states can be complex, displaying chaos or order depend-
ing on the network structure and the initial state [2].
Correspondence: g.karlebach@dkfz-heidelberg.de
German Cancer Research Institute (DKFZ), Im Neuenheimer Feld 280,
Heidelberg 69121, Germany

© 2013 Karlebach; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
When the outputs of all the Boolean functions at state S
produce the state S itself, S is called a steady state. Since
in every state every node is set to one of two Boolean
values, the number of possible network states is expo-
nential to the number of nodes. Figure 1 illustrates a
simple Boolean network.
In recent years, new experimental technologies in mo-

lecular biology enabled a broader examination of gene
activity in cells [3-5] and consequently, significant efforts
have been invested in the application of gene regulatory
networks modeling [6]. However, experimental procedures
produce continuous values that do not determine conclu-
sively the activity or inactivity of a gene. Hence, these values
cannot be mapped into states of Boolean networks unam-
biguously, and the resulting picture of the cell state con-
tains errors. Computational methods address this problem
in various ways, for example, by using additional data such
as the genomic sequences of gene promoters [7], by map-
ping the continuous measurements into discrete values and
then optimally fitting the transformed dataset to a network
model [8,9], or by using a prior distribution on states [10].
It is well recognized that an improved ability to probe the
state of a cell can lead to improvement in our understand-
ing of a broad range of biological processes.
With this motivation in mind, we propose a novel al-

gorithm for inferring the state of a Boolean network
using a continuous noisy expression dataset and the net-
work structure, i.e., the genes and their regulators. The
Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

https://core.ac.uk/display/192908035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:g.karlebach@dkfz-heidelberg.de
http://creativecommons.org/licenses/by/2.0

Figure 1 A simple Boolean network. The network has three nodes, denoted as A, B, and C. Nodes A and B can change the Boolean value of
node C, according to the rules given at the right side of the figure. Similarly, node C can change the value of node A. At the left side of the
figure, a trajectory of length 3 is illustrated. In the initial state (T = 1), all the nodes receive a Boolean 1. According to the logical rule by which
C changes the value of A, the value of A changes to 0 at time T = 2. At time point T = 3, the node C changes its value, since the input to the
logical rule that determines its value has changed.

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 2 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
algorithm is based on the following idea: High expres-
sion values are more likely to correspond to a Boolean 1,
while low to a Boolean 0. By combining the network
structure and the expression dataset, we can estimate
the likelihood of each continuous value to correspond
to a Boolean value of 1 or 0. We can then update the
likelihood (equivalently the expression value) of each
gene accordingly and repeat the process until any further
change would either (a) change a gene towards a Boolean
value that is less likely for it or (b) change a gene towards
a Boolean value that is as likely as the opposite Boolean
value (i.e., make an arbitrary guess). The update scheme
should be such that if enough updates were possible, the
final probability distribution will describe the states of a
Boolean network.
The next section explains how to implement this idea

using the conditional entropy [11] of the network. It will
be shown that changing the gene probabilities in the
opposite direction of the conditional entropy gradient
is equivalent to executing the inference algorithm that
we outlined above. The section begins by analyzing a
simple network and then extends the results to general
networks.
In the ‘Testing’ section, we use simulation and real

data in order to test the performance of the algorithm.
We generate noisy datasets for several Boolean network
structures and use a microarray time-series dataset from
a study of the Saccharomyces cerevisiae cell cycle. We
find that using the simulated datasets, the algorithm
infers a large proportion of the Boolean states correctly;
and using the yeast dataset, it infers Boolean states that
agree with the conclusion of the study. We conclude by
summarizing our results and suggesting research direc-
tions that can lead to further progress in this domain.

Main text
Analysis
Consider the following simple network: gene X negatively
regulates gene Y. In other words, when X is active Y is in-
active, and vice versa. X is also said to be a repressor of Y
or to repress Y. The Boolean function that controls the
value of Y is called NOT.

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 3 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
An experimental device can measure the states of X
and Y. If a gene is active, it measures a value from a normal
distribution with a large positive average μ and small
standard deviation σ. If a gene is inactive, the device
measures a value from a normal distribution with a
negative average − μ and standard deviation σ.
The input to our problem is a series of N i.i.d. mea-

surements of the genes X, Y (for example, under different
stimulations given to the cells). X can be active or inactive
in every measurement with equal probabilities. We are also
given the structure of the network. We do not know the
logic with which X regulates Y, but the values in the dataset
will reflect this logic.
Our goal is to find the states of X and Y in each meas-

urement. Clearly, we cannot always recover the ‘true’
states from every measurement, since there is a nonzero
probability that the device will measure a large value for
the inactive gene and, at the same time, a small value for
the active gene. Nevertheless, the best strategy is to
identify X as a repressor and then predict that in each
pair of values the larger one corresponds to an active gene
and the smaller to an inactive - the larger the difference,
the higher our confidence. The inference algorithm, which
we will shortly describe, will apply a generalization of this
strategy. We will show that in the case of the simple
network, the algorithm predicts the network states in
the optimal way. Then, we will explain how it generalizes to
more complex networks. Before we describe the algorithm,
we need to define several random variables.
Denote the N measurements by C1, C2,…,CN, and the

continuous values of X and Y in measurement Ci as xi and
yi, respectively. As a convention, we will use uppercase and
lowercase letters to define variables that assume discrete
values and continuous values, respectively. The terms
measurement i and Ci are used interchangeably.
We define the following continuous values:

λ xið Þ ¼ 1
1þ e−xi

the logistic function of xið Þ
�λ xið Þ ¼ 1−λ xið Þ ¼ 1−

1
1þ e−xi

:

The role of the logistic function is to map continuous
values to probabilities. For example, if xi is close to the
average of its distribution μ, it will have a high probability
to correspond to a Boolean 1, because μ is a large positive
number. The use of the logistic function will also enable us
to implement the update step in our algorithm, in which
we update the probabilities of the previous iteration.
Similarly we define

λ yið Þ ¼ 1
1þ e−yi

�λ yið Þ ¼ 1−
1

1þ e−yi
:

Using these values, we define the discrete random
variable [X;Y]i ∈ {00, 10, 01, 11}:

P X;Y½ �i ¼ 11
� � ¼ λ xið Þ⋅λ yið Þ

P X;Y½ �i ¼ 00
� � ¼ �λ xið Þ⋅�λ yið Þ

P X;Y½ �i ¼ 10
� � ¼ λ xið Þ⋅�λ yið Þ

P X;Y½ �i ¼ 01
� � ¼ �λ xið Þ⋅λ yið Þ:

The probability distribution of [X;Y]i is well defined,
since all probabilities are in (0,1) and sum to 1.
Since each of xi and yi is from one of the normal distri-

butions N(μ,σ2), N(−μ,σ2) with a small σ2, the probabilities
P([X;Y]i = 11) and P([X;Y]i = 00) will be small.
Similar to [X;Y]i, we can define the discrete random

variable Xi with probability function:

P Xi ¼ 1ð Þ ¼ λ xið Þ and P Xi ¼ 0ð Þ ¼ �λ xið Þ:

We define the discrete random variable Yi by replacing
λ xið Þ; �λ xið Þ with λ yið Þ; �λ yið Þ in the definition of Xi.
The discrete random variables that we defined so far

correspond to specific experiments. We also need to de-
fine discrete random variables that correspond to the set
of experiments as a whole. For example, such variables
would answer the question: What is the probability of
seeing X = 1 and Y = 0 in the whole dataset? In order to
do that, note that as σ2 becomes smaller and the number
of measurements N larger, by the law of large numbers:

∑N
i¼1P X;Y½ �i ¼ 10

� �
N

≈
1
2
;
∑N
i¼1P X;Y½ �i ¼ 01

� �
N

≈
1
2

∑N
i¼1P X;Y½ �i ¼ 11

� �
N

≈0;
∑N
i¼1P X;Y½ �i ¼ 00

� �
N

≈ 0;

which is what one expects intuitively - either X is active
and Y is inactive, or vice versa, but they cannot both be ac-
tive or inactive in the same measurement, because X re-
presses Y. Although it is possible to have a high probability
P([X;Y]i = 00) for some i, such deviations will have little
effect on the average of the N samples. Hence, we define a
variable [X;Y] ∈ {00, 01, 10, 11} with a distribution that is an
average of the probabilities of the variables [X;Y]i.
Since X can be inactive or active in any measurement

with equal probabilities, similarly to [X;Y] we define the
variable X using the distribution

∑N
i¼1P Xi ¼ 1ð Þ

N
≈
∑N
i¼1P Xi ¼ 0ð Þ

N
≈
1
2

and in a similar way a discrete random variable Y. Note
that the probability of [X;Y] is an estimation of the joint
probabilities of X and Y, P(X,Y).
How can we infer the probabilities of variables that do

not conform to the X→ Y network, for example, when

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 4 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
xi and yi are both positive? We can use the average of all
the samples, which is rather accurate, and estimate the
probabilities of Xi = 1 and Yi = 1. Then we will correct
the values of xi and yi accordingly. This estimation and
correction process is in fact equivalent to changing xi
and yi in the opposite direction of the gradient of the
conditional entropy H(Y|X). We have defined the prob-
ability distributions P(X), P(Y), P(X,Y) as functions of the
continuous values xi, yi. We can therefore partially derive
the conditional entropy H(Y|X) according to each con-
tinuous value and obtain the gradient ∇H(Y|X). This leads
to the following algorithm:

Algorithm 1: State Inference
We now show that the algorithm obtains the desired
solution for our simple network. More specifically, if yi > xi,
then λ (xi) will approach 0 and λ(yi) will approach 1 and
vice versa.
First, in order to compute the gradient, we use the chain

rule for conditional entropy: H(Y|X) = H(Y,X) −H(X).
It is easy to see [12] that

∂H Y ;Xð Þ
∂xi

¼
X

X;Yð Þ∈ 00;01;10;11f g

∂P X;Yð Þ
∂xi

⋅log P X;Yð Þ−1� �
−

X
X;Yð Þ∈ 00;01;10;11f g

∂P X;Yð Þ
∂xi

¼
X

X;Yð Þ∈ 00;01;10;11f g

∂P X;Yð Þ
∂xi

⋅log
P X;Yð Þ−1

e

 !
for loge
� �

:
Expanding the partial derivative we have
1
N

λ xið Þ⋅ 1−λ xið Þð Þ⋅λ yið Þð Þ⋅logP X;Yð Þ ¼ 1; 1ð Þð Þ−1
e

þ

λ xið Þ⋅ 1−λ xið Þð Þ⋅ 1−λ yið Þð Þ½ �⋅log P X;Yð Þ ¼ 1; 0ð Þð Þ−1
e

− λ xið Þ⋅ 1−λ xið Þð Þ⋅λ yið Þð Þ⋅log P X;Yð Þ ¼ 0; 1ð Þð Þ−1
e

− λ xið Þ⋅ 1−λ xið Þð Þ⋅ 1−λ yið Þð Þ½ �⋅logP X;Yð Þ ¼ 0; 0ð Þð Þ−1
e

266666666664

377777777775
¼ 1

N
λ xið Þ⋅ 1−λ xið Þð Þ½ �⋅ log

Y
X¼1;Y∈ 0;1f g

P X;Yð Þ
e

� �−P Y i¼Yð
0@24

¼ 1
N

λ xið Þ⋅ 1−λ xið Þð Þ½ �⋅log
Y

X¼0;Y∈ 0;1f gP X;Yð ÞP Y i¼Yð ÞY
X¼1;Y∈ 0;1f gP X;Yð ÞP Y i¼Yð Þ

0@ 1A24
The direction of change in xi (positive or negative, i.e.,
towards Boolean 1 or Boolean 0) will be determined by
the ratio within the log. If this ratio is greater than 1, the
direction of change will be negative (because the change is
in the opposite direction of the gradient). If it is smaller
than 1, the change will be positive.
The expression (*) expresses three properties of the data:

1. How certain we are in xi. If xi is very high or very
low, the whole expression, and the change it implies
to xi, will be small. This is a result of the factor
[λ(xi) ⋅ (1 − λ(xi))] that has its maximum at λ(xi) = 0.5
and approaches 0 when λ(xi) approaches 1 or 0.

2. The more likely Boolean value to assign to yi. The
exponent of P(X,Y)P(Yi = Y)) will decrease the weight
of the probability P(X,Y) in the ratio if P(Yi = Y) is
low, and vice versa.

3. The more likely Boolean (X,Y) vectors. For example,
if P(Yi = 0) ≈ 0, we will have within the log a ratio
between P(X = 0, Y = 1) and P(X = 1, Y = 1). If
P(X = 0, Y = 1) is more likely, the ratio will be
greater than 1; and if P(X = 1, Y = 1) is more likely,
it will be smaller than 1.

A symmetric expression can be developed for yi. Note
that since all regulator values are equally likely, the term
∂H Xð Þ
∂xi

is 0 (otherwise it negates the bias).

Now assume that P((X,Y) = (1,0)) = P((X,Y) = (0,1)) = 0.49;
and P((X,Y) = (0,0)) = P((X,Y) = (1,1)) = 0.01. We look at
measurement i in which xi = 2 and yi = 1 and plot the
changes to xi, yi in eight consecutive steps of the algorithm
(Figure 2). We choose δ = N and therefore the constant 1/N
is canceled out. As can be seen in the figure, xi does not
change significantly, while yi is reduced sharply to a negative
value. This is in agreement with our optimal solution
scheme for the simple X→Y network.
We used a very simple network in order to explain the

principles of our algorithm, and we now turn to more
Þ
−log

Y
X¼0;Y∈ 0;1f g

P X;Yð Þ
e

� �−P Y i¼Yð Þ
1A35

35 �ð Þ:

Figure 2 Changes in xi, yi in eight consecutive gradient descent steps. We set P(XY = 01) = P(XY = 10) = 0.49; and P(XY = 11) = P(XY = 00) = 0.01.
Since xi is larger than yi in the beginning, it is hardly reduced. In contrast, yi is reduced sharply to a negative value. The inferred states for measurement
i are gene X is active gene Y is inactive.

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 5 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
complex networks. Any network can be described by a
directed graph G(V,E), where the set of nodes V contains
a node for every gene, and the set of edges E contains
edges from every regulator to each of its targets. The
entropy of every node Yi is conditional on its set of regula-
tors XYi. The conditional entropy of the network becomesX Vj j

i¼1
H Y i XY iÞ:jð

The dataset of more complex networks may contain
steady states, like in the case of the simple network, but
it may also include longer trajectories. In the latter case, if
two measurements i, i + 1 correspond to two consecutive
states in a trajectory, the value of yi + 1 should be taken
from Ci + 1 and the values xi of its regulators from Ci.
In the simple network that we discussed so far, V contains

two nodes, one for gene X and one for gene Y, and E
contains one directed edge from the node of X to the
node of Y. Each measurement is a vector of size 2, (xi, yi).
For calculating (*), we needed to find the probability P(X,Y)
of vectors of size 2.
In the general case, in order to derive the conditional

entropy of the network by the value xi of one of the regula-
tors X at the measurement i, we need to find the probability
of a Boolean assignment to vectors of arbitrary size. We
can do this in the same way as we did for P([X;Y]i) - by
multiplying the individual probabilities of the vector entries.
The probability of seeing a Boolean vector in the dataset
as a whole is again an average of its probabilities in the
N measurements.
Denote by Mx the number of targets that X regulates.

Denote by Z
→

j
, a Boolean assignment to XYj ∪ {Yj}/ X,

where Yj is the jth target of X, and XYj is the set of regula-

tors of Yj, at the ith measurement. Denote as Z
→
any Boolean

vector of size Z
→

j

���� ����. We generalize the derivative by xi given

by (*) as follows:

1
N
⋅ λ xið Þ⋅ 1−λ xið Þð Þð Þ⋅log

Y
X¼0;Z ⃗ ∈ 0;1f g

Z
⃗
j

��� ���
;1≤j≤MX

P X;Z ⃗
� �P Z ⃗

j¼Z ⃗
� �

Y
X¼1;Z ⃗ ∈ 0;1f g

Z ⃗
j

��� ���
;1≤j≤MX

P X;Z ⃗
� �P Z ⃗

j¼Z ⃗
� �

0BBBBB@

1CCCCCA

2666664

3777775
��ð Þ

:

The expression (**) determines the change to xi in the
same way as (*), taking into account all the targets of gene X
in the network. If X is itself a target of other regulators, then

Mx increases by 1, and Z
→

Mxþ1 will correspond to a Boolean
assignment to the regulators of X at measurement i.
Note that if we decrease the step size of the gra-

dient descent δ by a factor C, the change in the xi

Figure 3 The structure of the Boolean network used in the
simulation. For example, the regulator set of node A contains
nodes B and E. The figure was generated using Cytoscape [13].

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 6 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
values −δ⋅∇∑ Vj j
i¼1H Y i XY iÞjð will decrease by a factor

of C. However, since the logistic function maps the
xi values to the finite interval (0,1), equal probabilities
λ(xi) = P(Xi = 1) may not change by the same factor. For
a ratio within the log in (**) that is very large for some
xi, and smaller for another xj, the change in P(Xj) as a
result of decreasing δ can remain large while the change
in P(Xi) becomes small. In addition, if the change in the
total entropy becomes very small as a result of decreasing
δ, the algorithm will proceed to step 4.
It may be the case that the dataset is not sufficiently

informative for inferring all the states. For example, if in
the simple X→ Y network xi = yi, the algorithm will
change both values to 0. On the other hand, if all xi and
yi are different, there are always parameters τ, δ for
which the algorithm will change all xi and yi to have
opposite signs, and H(Y|X) will approach 0. A situation
as the former can also occur in more complex networks.
We would like to prove that if it does not occur, i.e., if the
dataset is informative enough, our algorithm will infer
the states of a Boolean network. This is shown by the
following theorem:

Theorem 1: Let G = (V,E) be a graph that describes the
structure of a Boolean network and D a dataset of N
measurements.
Let XY be a set of nodes that regulate some node Y, i.e.,

∀ X′ ∈ XY, (X′→ Y) ∈ E

Denote by X
→

Y i

an assignment of Boolean values to the

nodes in XY at measurement i. Similarly, Yi is a Boolean
assignment to Y at measurement i.
If the algorithm converges to a global minimum and

updates dataset D to become D′, then for any two mea-

surements i,j in D′: P X
→

Yi

¼ X
→

Yj

∧Y i≠Y j

� �
¼ 0:

Proof The conditional entropy of the network is a sum
of conditional entropies. Since conditional entropy is al-
ways nonnegative, the global minimum is reached when
the conditional entropy of the network is 0, and every
term in the sum is also 0.
The conditional entropy of gene Y and its set of regulators

XY can be written as

HðY jXY Þ ¼ −
X

Y∈ 0;1f g;X ⃗
Y ∈ 0;1f g XYj j

P X⃗
Y

� �
⋅P Y jX⃗

Y

� �
⋅log P Y jX⃗

Y

� �� �
:

Since the log is non-positive and the probabilities
are non-negative, H(Y|XY) reaches its minimum when

for every Y ;X
→

Y

� �
either P X⃗

Y

� �
¼ 0, P Y jX⃗

Y

� �
¼ 0, or

P Y jX⃗
Y

� �
¼ 1.
If P X⃗
Y

� �
¼ 0, the value X⃗

Y of the regulators never oc-

curs in the data.

Otherwise, if P Y ¼ 1jX⃗
Y

� �
¼ 0, then since

X
Y∈ 0;1f g

P Y jX⃗
Y

� �
¼ 1 it must hold that P Y ¼ 0jX⃗

Y

� �
¼ 1 .

Similarly, if P Y ¼ 1jX⃗
Y

� �
¼ 1 then P Y ¼ 0jX⃗

Y

� �
¼ 0.

Hence, for a specific assignment X⃗
Y of the regulators,

the target Y is either 0 or 1 but never both. □

To summarize the analysis section, we showed that
the algorithm infers the states of a simple network opti-
mally if the dataset is informative enough. We then gen-
eralized the inference process to general networks, and
showed that if the algorithm converges it will infer the
states of a Boolean network.
In the ‘Testing’ section, we test the algorithm using

simulation and real microarray expression data.

Testing
Boolean networks with two regulators per node
We can evaluate the accuracy of the algorithm without bias
by using a known Boolean network structure. We use the
Boolean network that is illustrated in Figure 3 and generate
our dataset according to the following procedure:

1. Assign logic rules to all the nodes. We use the same
logic function for all the nodes - XOR in the first
experiment and NOR in the second experiment.
XOR's output is 1 if and only if the values of the

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 7 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
regulator nodes differ. NOR's output is 1 if and only
if the values of the regulator nodes are both 0

2. Randomly choose an initial state
3. Generate a trajectory of length 400 states
4. Convert the Boolean trajectory to a continuous

trajectory as follows:
(a)Replace every Boolean 1 by a value from a normal

distribution with an average of 1 and a standard
deviation of 1.1

(b)Replace every Boolean 0 by a value from a normal
distribution with an average of −1 and a standard
deviation of 1.1

We use a C implementation of the algorithm as described
in [12], without normalizing the continuous values. The
process is illustrated in Figure 4. A trajectory of length
400 corresponds to the size of biological datasets that
are available in public databases [14].
In [15] Shmulevich and Zhang describe a mapping of

continuous values to Boolean values that maps every value
Figure 4 The process by which datasets are generated in the simulat
set of logical rules (top). The Boolean values are translated into normally di
reconstructed into Boolean values that are then compared to the original B
above some threshold to 1 and below that threshold to 0.
We will compare the results of our inference process to this
method, which we will refer to as ‘maximal probability
reconstruction.’ The threshold that we will use is 0. Figure 5
illustrates this comparison. As can be seen in the figure,
the gradient descent makes significantly less mistakes in
its reconstructed trajectory. Its mistakes tend to cluster
at consecutive time points, since if it makes a mistake in
a regulator at time T, it is more likely to make mistakes
in its target at time T + 1.

Boolean networks with imperfect structure
In the previous experiment, we assumed that we know
the regulator set of each node. However, it is often the
case that the network structure is not perfectly known,
for example, some regulator set may contain incorrect
nodes. Therefore, we now use the same continuous dataset,
but give the algorithm an incorrect structure as input.
We perform two experiments. In the first we add an in-
correct node to one of the regulator sets, and in the
ion. A Boolean trajectory is generated using a Boolean network and a
stributed continuous values (middle). The continuous values are
oolean trajectory (bottom).

Figure 5 Maximal probability reconstruction vs. gradient descent reconstruction. Maximal probability reconstruction vs. gradient descent
reconstruction of trajectories of the Boolean XOR (left) and Boolean NOR (right) networks. Rows correspond to the time points and columns to network
nodes. For display purposes, only a prefix of the trajectory is shown. The yellow color represents mistakes, i.e., values which are different than the real
Boolean values, and orange represents a correct value. In each of the two comparisons, the maximal probability reconstruction is presented to the left of the
gradient descent reconstruction. Overall, the gradient descent is more accurate than the maximal probability reconstruction. The percentages of incorrect
reconstructed values for the latter method are 17.6% (XOR) and 18% (NOR), and for the gradient descent reconstruction, 6.7% (XOR) and 2.2% (NOR).

Figure 6 Incorrect structures that were given to the algorithm as input. Incorrect structures that were given to the algorithm as input with
the dataset generated by the network in Figure 2. The wrong structure on the left was given as input with the dataset generated for the XOR
network (see text). The wrong structure on the right was given as input with the dataset generated for the NOR network (see text). Edges that
were removed (regulator sets that were changed) are colored in faded red and marked ‘deleted’. Edges that were added are colored in green
and marked ‘added’. The figure was generated using Cytoscape [13].

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 8 of 13
http://bsb.eurasipjournals.com/content/2013/1/11

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 9 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
second experiment we replace a node in a regulator set
by a node that does not belong to that set. These
changes are illustrated in Figure 6. As can be seen in
Figure 7 when using a wrong structure, the algorithm
can make more mistakes in the reconstruction of the
network trajectories. However, even with an imperfect
network structure, the trajectories reconstructed by
the algorithm are more accurate than the maximal
probability trajectories.

The cell cycle network of Li et al.
The cell cycle is a process by which cells grow and
multiply. It constitutes several distinct phases through
which the cell grows and divides. Its daughter cells start
the cycle from the first phase and so on. A gene regula-
tory network controls this process. Li et al. [16] created
a Boolean network model of the yeast cell cycle. In their
model, every node in the regulator set is assigned a
repressing or an activating role and is referred to as a re-
pressor or an activator, respectively. A node is activated
by its regulator set if the sum of active activators is
Figure 7 Maximal probability reconstruction vs. gradient descent reco
reconstruction of trajectories of the Boolean XOR (left) and Boolean NOR (r
structure. The rows correspond to the time points and columns to the net
shown. The yellow color represents mistakes, i.e., values different than the
the two comparisons, the maximal probability reconstruction is presented
descent is more accurate than the maximal probability reconstruction desp
network's trajectory reconstruction is not affected by the error in structure,
percentages of incorrect reconstructed values for maximal probability reco
descent reconstruction, 6.7% (XOR) and 3% (NOR).
greater than the sum of active repressors and repressed
if the former sum is lesser than the latter sum. If the
sums are equal, a node either remains unchanged or is
assigned a Boolean 0, meaning that without sufficient ac-
tivation the gene product is degraded. Li et al. showed
that the trajectories of their model converge to the first
phase of the yeast cell cycle, and given an external trig-
ger the network resumes the cycle. The network is illus-
trated in Figure 8.
We repeated our data generation procedure for the

cell cycle network of Li et al. Since this network con-
verges to the first phase of the cell cycle and awaits a
trigger to continue cycling, we provided that trigger re-
peatedly and generated a trajectory of length 400. The
results of reconstructing the Boolean states are illus-
trated in Figure 9. As in the previous experiments, the
reconstructed trajectory is more accurate than the max-
imal probability trajectory. The mistakes in this case
were mainly concentrated to the node Cln3 and its dir-
ect target MBF. The reason is that when we generated
the dataset, we repeatedly changed Cln3 to provide a
nstruction. Maximal probability reconstruction vs. gradient descent
ight) networks. The gradient descent algorithm is given an inaccurate
work nodes. For display purposes, only a prefix of the trajectory is
real Boolean values, and orange represents a correct value. In each of
to the left of the gradient descent reconstruction. Overall, the gradient
ite the imperfect structures that are given to it as input. The XOR
while the NOR network's reconstruction is slightly less accurate. The
nstruction are 17.6% (XOR) and 18% (NOR), and for the gradient

Figure 8 The structure of the yeast cell cycle network of Li et al. [16]. Edges in green correspond to activators (see text), and red edges to
repressors (see text). The node Cln3 has no regulators but receives an external signal that causes the network to go through the phases of the
cell cycle. The figure was generated using Cytoscape [13].

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 10 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
trigger for cycling, but we did not include any regulators
for Cln3 in the network structure. This creates a discrep-
ancy between the input that we provided to the algorithm
and the network behavior - the algorithm does not expect
Cln3 to change its value along the trajectory if it does not
have regulators.

Conway's game of life
Conway's game of life is composed of a square grid of
cells in which each cell's Boolean value is controlled by
the values of neighboring cells, and changes over time
[17]. The grid can generate complex patterns that may
vary significantly depending on the initial values. We
modeled the game of life with grid size 7×7 as a Boolean
network. Each node has 3 to 8 regulators, depending on
the number of grid neighbors, and the initial state is
chosen randomly. The results of reconstructing a trajectory
of length 100 with the same level of noise as in previous
experiments are displayed in Additional file 1: Movie 1.
The left frame is the real trajectory, the middle frame is
a maximal probability reconstruction, and the right
frame is the gradient descent reconstruction. Boolean 1
is represented by a black cell and Boolean 0 by a white
cell. As can be observed in the movie, the reconstruc-
tion algorithm makes more mistakes in the early states
than in the later states. The reason for this is most likely
the fact that at later states, the network enters a 3-cycle,
i.e., a trajectory in which three states occur in the same
order repeatedly. Since the relationships between the
nodes occur more than once, the algorithm can learn
these relationships and use them in reconstruction. The
algorithm also identifies the existence of a 3-cycle, in
the sense that it predicts a repetitive sequence of three
patterns that are similar to the real patterns of the 3-cycle.
In contrast, in the early time points, the states vary and do
not reoccur, which makes it harder to learn some of the
dependencies that play a role in generating these states.
Note that most nodes have eight regulators, which means
that their logic function has 256 different inputs. The
number of possible network states is 249.

Figure 9 Maximal probability reconstruction vs. gradient
descent reconstruction. Maximal probability reconstruction vs.
gradient descent reconstruction of the trajectory of the yeast cell
cycle network of Li et al. [16]. Rows correspond to the time points
and columns to network nodes. For display purposes only a prefix of
the trajectory is shown. The yellow color represents mistakes, i.e.,
values different than the real Boolean values, and orange represents
a correct value. The maximal probability reconstruction is presented
to the left of the gradient descent reconstruction. Overall, the
gradient descent is more accurate than the maximal probability
reconstruction. The percentages of wrongly reconstructed values for
the latter method are 17.9%, and for the gradient descent
reconstruction, 7.4%. The gradient descent algorithm makes more
mistakes for the node Cln3 that has no regulators and receives an
external input (red arrow) and for the MBF that has Cln3 in its
regulator set (green arrow).

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 11 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
The maximal probability reconstruction makes an
error on 18.6% of the nodes. In the initial 50 states, it
errs on 18.2% of the nodes, and in the last 50 states, on
19% of the nodes. The gradient descent reconstruction
assigns the wrong values to 8.8% of the nodes. In the
initial 50 states, its error rate is 12.8%, and in the last
50 states, 4.8%.

Microarray expression data
Orlando et al. [18] compared gene expression patterns
in wild type yeast compared to a cyclin mutant strain.
They observed that many genes are expressed in a cyc-
lic pattern in both strains. In order to explain this ob-
servation, they suggested a Boolean network of nine
transcription factors and transcription complexes.
They showed that for logic functions of their choice
and most initial states, the network traverses the cell
cycle stages and, therefore, can explain their observa-
tion. We will use the expression data of the transcrip-
tion factors and the network structure from [18] and
infer the network states in wild type and mutant cells.
If the states represent the cell cycle in both strains,
then our analysis will support the conclusion of the
study.
For the MBF, SBF, and SFF complexes, we use the ex-

pression profiles of their members STB1, SWI4, and
FKH1, respectively. The dataset of [18] contains four
time series of 15 microarrays for time points from 30
to 260 min, two replicates for the wild type and two for
the mutant. Since all expression values are positive
values, we need to map them to a symmetric range
centered at 0, as the input of the simulations. However,
different arrays will typically contain biases; for ex-
ample, a gene can have a higher value in an array that
has a higher mean expression value. Therefore, map-
ping two identical values from two different arrays to
the same value may result in a bad estimation of the
initial probabilities.
Shmulevich and Zhang [15] showed that bias in diffe-

rent arrays can be eliminated by applying a normalization
process. We use the following normalization: The network
is expected to perform about two cell cycles during the
measured time points. The expression levels of a gene at
the 2 cycles should correlate. Based on this observation,
we normalize in every replicate the genes on the first
set of seven arrays and the second set of eight arrays to
average 0 and unit standard deviation. Using the resulting
initial probability estimates and the network structure, we
apply our inference process and compare the resulting set
of Boolean states with the pattern hypothesized in the
study (Figure 10). As can be seen in the figure, the net-
work performs a cyclic trajectory in both strains, while the
trajectory of the mutant corresponds to a slower cell cycle.
This finding is in agreement with a slower cell cycle for
the mutant as reported in [18]. It also indicates that the
network structure may not account for all the regulatory
interactions in the network, since both networks start
from the same initial state.

Figure 10 Inferred trajectories of the Boolean network for wild type and mutant strains. Inferred trajectories of the Boolean network from [18]
for the wild type and mutant strains (one replicate is shown for each). The network structure is displayed at the bottom. Black cells correspond to a
Boolean 1 and white cells to a Boolean 0. The corresponding cell cycle stages are marked at the left side of each trajectory. Both trajectories start with
active ACE2 and SWI5, which are the last active factors at the completion of the previous cycle, followed activation of CLN3 and an initiation of a new
cycle. The network seems to cycle a little faster in the wild type. The network structure was generated using Cytoscape [13].

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 12 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
Conclusions
In this study we presented a problem that arises in mo-
lecular biology, namely, that of inferring the activity of
cellular network components given noisy measurements,
and defined it as mapping continuous measurements to
Boolean network states. We developed an algorithm that
given a network structure infers its Boolean states from
a dataset of continuous measurements. Our results show
that the algorithm can successfully reconstruct Boolean
states from inaccurate continuous data. The algorithm
performs reasonably well even if the relations between
the nodes of the network contain errors. We also showed
that it can be used to interpret real microarray data and
examine experimental hypotheses.
Our approach is highly dependent on a network struc-

ture, and when that is not available, methods that rely
solely on expression should be used [15,19]. We did not
define a concept of prior knowledge, which has been used
in various works to integrate information into Bayesian
models [20,21]. While this makes our method arguably
less flexible, it also exempts us from the need to define
prior distributions. Finally, the algorithm is defined for
deterministic Boolean networks, in contrast to prob-
abilistic Boolean networks that may better express bio-
logical noise [22].
Further research could improve inference accuracy

and explore various aspects of the problem. One such
aspect is the amount of information about the network
trajectory that is lost due to noise. In the simple network
that we described in the analysis section, the proportion
of information that will be lost is the sum of probabilities
of two events:

P xieN μ; σ2ð Þ∧yieN −μ; σ2ð Þ∧xi≤yi
� �

þ P xieN −μ; σ2ð Þ∧yieN μ; σ2ð Þ∧xi≥yi
� �

:

When one of these two events occurs, it is impossible
to reconstruct the original states of X and Y. In more
complex networks, information loss is a more complex.
Determining an upper limit on the number of Boolean

Karlebach EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:11 Page 13 of 13
http://bsb.eurasipjournals.com/content/2013/1/11
values that can be recovered given a certain amount of
noise may prove insightful.
Another aspect that should be investigated is how to

choose parameters that optimize the performance of the
algorithm, such as the parameters of the logistic function
or the step size δ and threshold τ of the gradient descent.
As Boolean networks can generate a diverse range of

dynamic behaviors, the accuracy of reconstructing trajec-
tories that arise in different dynamic regimes should also be
characterized. For example, are chaotic trajectories harder
to reconstruct then those that display order? More simula-
tion tests can better define the relationships between the
quality of data and different classes of networks.
Current experimental techniques produce an ever-

greater number of measurements, and there is a pressing
need for methods that will enable researchers to inter-
pret it accurately and without bias. An accurate method
for inferring the state of a cell can translate this richness
of data into important discoveries.
Additional file

Additional file 1: Movie 1. Reconstruction of a trajectory of Conway’s
Game of Life. The left frame is the real trajectory, the middle frame is a
maximal probability reconstruction, and the right frame is the gradient
descent reconstruction. Boolean 1 is represented by a black cell and
Boolean 0 by a white cell.
Competing interests
The author declares that he has no competing interests.

Received: 30 May 2013 Accepted: 26 August 2013
Published: 5 September 2013

References
1. SA Kauffman, Metabolic stability and epigenesis in randomly constructed

genetic nets. J. Theor. Biol. 22, 437–467 (1969)
2. SA Kauffman, The Origins of Order, Self-Organization and Selection in Evolution

(Oxford University Press, Oxford, 1993)
3. X Yu, N Schneiderhan-Marra, TO Joos, Protein microarrays and personalized

medicine. Ann. Biol. Clin. 69(1), p17–p29 (2011)
4. F Liu, WPTK Kuo Jenssen, E Hovig, Performance comparison of multiple

microarray platforms for gene expression profiling. Methods Mol. Biol.
802, 141–155 (2012)

5. NC Roy, E Alterman, ZA Park, WC McNabb, A comparison of analog and
next-generation transcriptomic tools for mammalian studies. Brief. Funct.
Genomics 10(3), p135–p150 (2011)

6. G Karlebach, R Shamir, Modeling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008)

7. Y Pan, T Durfee, J Bockhorst, M Craven, Connecting quantitative
regulatory-network models to the genome. Bioinformatics 23,
p367–p376 (2007)

8. T Akutsu, S Miyano, S Kuhara, Identification of genetic networks from a
small number of gene expression patterns under the Boolean network
model. Pac. Symp. Biocomput. 1999, 17–28 (1999)

9. R Sharan, RM Karp, Reconstructing Boolean models of signaling. J. Comput.
Biol. 3, p1–p9 (2013)

10. I Gat-Viks, A Tanay, D Raijman, R Shamir, A probabilistic methodology for
integrating knowledge and experiments on biological networks. J. Comput.
Biol. 13, p165–p181 (2006)

11. CE Shannon, A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 623–656 (1948)
12. G Karlebach, R Shamir, Constructing logical models of gene regulatory networks
by integrating transcription factor-DNA interactions with expression data: an
entropy-based approach. J. Comput. Biol. 19, p30–p41 (2012)

13. P Shannon, A Markiel, O Ozier, NS Baliga, JT Wang, D Ramage, N Amin, B
Schwikowski, T Ideker, Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Res. 13, p2498–p2504 (2003)

14. R Edgar et al., Gene expression omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Res. 30(1), p207–p210 (2002)

15. I Shmulevich, W Zhang, Binary analysis and optimization-based
normalization of gene expression data. Bioinformatics 18(4), 555–565 (2002)

16. F Li, T Long, Y Lu, Q Ouyang, C Tang, The yeast cell-cycle network is
robustly designed. Proc. Natl. Acad. Sci. U. S. A. 101, p4781–p4786 (2004)

17. M Gardner, Mathematical games - the fantastic combinations of John
Conway's new solitaire game “life”. Scientific Am. 223, 120–123 (1970)

18. DA Orlando, CY Lin, A Bernard, JY Wang, JES Socolar, ES Iversen, AJ
Hartemink, SB Haase, Global control of cell-cycle transcription by coupled
CDK and network oscillators. Nature 453, 944–948 (2008)

19. X Zhou, X Wang, E Dougherty, Binarization of microarray data based on a
mixture model. Mol Cancer Therap 2(7), 679–684 (2003)

20. I Gat-Viks, A Tanay, D Raijman, R Shamir, A probabilistic methodology for
integrating knowledge and experiments on biological networks. J. Comput.
Biol. 13, 165–181 (2006)

21. N Friedman, M Linial, I Nachman, D Pe'er, Using Bayesian networks to
analyze expression data. J. Comput. Biol. 7, 601–620 (2000)

22. I Shmulevich, ER Dougherty, S Kim, W Zhang, Probabilistic Boolean
networks: a rule-based uncertainty model for gene regulatory networks.
Bioinformatics 18, 261–274 (2002)

doi:10.1186/1687-4153-2013-11
Cite this article as: Karlebach: Inferring Boolean network states from
partial information. EURASIP Journal on Bioinformatics and Systems Biology
2013 2013:11.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.biomedcentral.com/content/supplementary/1687-4153-2013-11-S1.mov

	Abstract
	Introduction
	Main text
	Analysis
	Testing
	Boolean networks with two regulators per node
	Boolean networks with imperfect structure
	The cell cycle network of Li et�al.
	Conway's game of life
	Microarray expression data

	Conclusions
	Additional file
	Competing interests
	References

