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Case report: a novel KERA mutation
associated with cornea plana and its
predicted effect on protein function
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Abstract

Background: Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced
corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is
associated with homozygous or compound heterozygous mutations of the keratocan gene (KERA) on chromosome
12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have
been described.

Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea
plana. In some of the affected individuals, hypotrichosis was found. KERA was screened for mutations using Sanger
sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous
form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense
variation is predicted to destabilize the structure of keratocan, leading to the classical ocular phenotype in the
affected individuals. All the four known missense mutations, including the variation found in this family, affect the
conserved residues of the leucine rich repeat domain of keratocan. These mutations are predicted to result in
destabilization of the protein.

Conclusion: We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in
predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain
for the protein function, and this knowledge will ease the interpretation of future findings of mutations in these
areas in other families with cornea plana.

Keywords: Cornea plana 2, Hypotrichosis, KERA protein, Missense mutation, Protein modelling, Leucin rich repeat
domain
Background
Cornea plana is a rare hereditary congenital abnormality
of the cornea characterized by reduced corneal curva-
ture, extreme hypermetropia, corneal clouding and hazy
corneal limbus. There is an autosomal dominant (CNA1;
OMIM 121400) and a more severe autosomal recessive
form (CNA2; OMIM 217300) of the disorder. The reces-
sive form is more frequently associated with additional
ocular manifestations, such as iris malformation and
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adhesions between cornea and iris [1–4]. The gene de-
fective in CNA1 has not been identified yet, while
homozygous or compound heterozygous mutations in
the keratocan gene (KERA) on chromosome 12q22 are
shown to cause CNA2 [5]. The protein encoded by
KERA, keratocan, is a keratan sulfate proteoglycan with
a core of leucine-rich repeats (LRR), flanked by clusters
of cystein, essential to maintain the three-dimensional
structure of the protein. Keratocan is an extracellular
matrix molecule of the corneal stroma that is important
for normal cornea morphogenesis and involved in main-
taining corneal transparency [6]. Studies with mice show
expression of this gene during eye development and in
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adult mice, it is exclusively expressed in the cornea
[7]. To date, only nine different disease-associated
KERA mutations have been reported in various popu-
lations [5, 8–11]: Three nonsense mutations, four mis-
sense mutations, one splice-site mutation, and one
frameshift (single-nucleotide deletion) mutation. All
the reported missense mutations are within the LRR
domain, which is considered to be essential for the
binding between keratocan and the collagen fibrils in
the corneal matrix during development. A disruption
of the protein affects both the structure and the trans-
parency of the cornea [12].
In this report, we present the clinical data and de-

scribe a new KERA mutation in a Turkish family with
autosomal recessive cornea plana. We suggest the gen-
etic variation to result in destabilization of the protein
structure. We furthermore apply protein modelling to
predict the effect of the missense mutations on the
structure of keratocan.
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Fig. 1 Family with cornea plana. a. The pedigree is consistent with autoso
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Case presentation
Clinical studies
A pedigree of the family is shown in Fig. 1a. The index
individuals (IV:4 and IV:5) are dizygotic male twins, who
were 11 years old at the time of clinical examination.
They were born at gestational age 36 to healthy and un-
related parents. Birth weights were 2300 g (IV:4) and
2352 g (IV:5). Shortly after birth, IV:4 and IV:5 were
found to be excessive hypermetropic (+11,75D/+11,75D
and 12,75D/+13,75D) and both had corneal clouding
and flat corneas. The boys have been wearing glasses
since the age of 3 months, and have been monitored fre-
quently. The clouding of the corneas decreased over the
first 8 months of life. Clinical and eye examinations were
carried out at the age of 10 years showing hazy corneal
limbi with vessels were noticed (Fig. 1c). IV:4 has a small
temporal iridocorneal synechi. Axial lengths were within
normal range (A-scan using Hiscan opticon). ERG, mo-
tility, pupillary reaction, funduscopy and intraocular
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pressure were normal. Keratometry (Zeiss keratometer)
showed bilateral flat corneas and high astigmatism in
both boys (Additional file 1: Table S1).
The boys’ general development has been in the lower

range of normal. They attend a normal school at normal
age level, but perform in the low end of their class. They
both have slight behavioural problems and motor tics,
which are also found in their unaffected younger
brother. From the age of 9 years IV:4 has experienced
progressive frontal hair loss on vertex, the hair being
lighter in colour and lusterless (Fig. 1d). Hair micros-
copy was normal without any signs of hair shaft dis-
order. IV:5 has slight general hypermobility and pes
planus.

Family history
There were several affected individuals in the family, and
the pedigree was suggestive of autosomal recessive in-
heritance (Fig. 1a). Clinical information of the individ-
uals III:10, III:11, IV:3, IV:9, V:1 and V:2 was extracted
from charts of previous examinations. For individuals
III:12, IV:1, IV:2 and IV:8 clinical information was ob-
tained from family members. Clinical details on family
members are found in Table 1, Fig. 1b and Additional
file 1: Table S1.

Molecular studies
The clinical features and family history prompted us to
sequence KERA. Genomic DNA was isolated from per-
ipheral blood lymphocytes using Chemagnic Magnetic
Separation Modile 1 (Chemagen, Baesweiler, Germany).
Coding exons (exon 2 and 3) of KERA were amplified
from genomic DNA of the investigated family members
using PCR. Purified PCR products were sequenced using
Table 1 Clinical features of the affected individuals

Individual Present age
(years)

Cornea
plana

Hazy corneal
limbus

Irido-corneal
synechi

Other eye ab

III:10 40 Yes Yes No Corneal cloud
corneal thinn

III:11 39 Yes Yes No Corneal cloud
Slight lentico

IV:3 22 Yes Yes Yes Corneal cloud
Small, eccent

IV:4 11 Yes Yes Yes Corneal cloud

IV:5 11 Yes Yes No Corneal cloud

IV:9 35 Yes No No Corneal cloud
of pupillary m

V:1 6 Yes Yes No Corneal cloud
Ectopia of pu

V:2 7 Yes No Yes Slight cornea
year. Small, m
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, Foster City, CA). Sequencing products were
purified and run on an ABI 3130 XL genetic analyzer
(AppliedBiosystems). Sequences of the coding exons and
10 bp of the flanking introns were analyzed using SeqS-
cape software (AppliedBiosystems). Primer sequences
and PCR conditions are available on request.
A novel missense mutation was detected in exon 2 of

KERA, c.674T>C, which is predicted to result in sub-
stitution of isoleucine at position 225 with threonine,
p.(Ile225Thr). All affected family members investigated
for the mutation (IV:3, IV:4 and IV:5) were homozygous,
while the clinically unaffected parents (III: 3 and III:4),
the brother (IV:6), a maternal aunt (III:7) and a maternal
uncle (III:5) were all heterozygous for the mutation. .
The mutation is absent from the 1000 Human Genome
[13] and NHLBI Exome Sequencing [14] databases. The
Ile225 lies within the LRR domain and is a highly con-
served amino acid. The in silico prediction programs
SIFT [15] and Polyphen2 [16] predict the substitution to
be pathogenic (SIFT score 0.00 and Polyphen2 score
0.999).

Protein modelling
We modelled the three-dimensional structure of the
keratocan protein to predict the effect of the present
mutation and the three previously published missense
mutations on protein structure/function.
The LRR protein core of decorin (PDB entry 1xku_A)

[17] was used as template. The template was chosen
using BLASTp[18] to search against the protein data
bank. ClustalW [19] was used to align the two sequences
and SWISS-MODEL [20] was used to change the amino
acids. Finally, the structure was investigated using Pymol
normalities Other systemic abnormalities

ing has not decreased. Central
ing, suspicion of posterior lenticonus

Hair loss in early adulthood

ing decreased within the first year.
nus

Hair loss in early adulthood

ing decreased within the first year.
ric malformed pupil (right) (Fig. 2a)

None

ing decreased within the first year. Hair loss. Motor tics. Slight
learning disability

ing decreased within the first year. Slight learning disability. Soft
cartilage, hypermobility. Motor
tics

ing, anterior pole cataract, remnants
embrane

None

ing decreased within the first year.
pils, left pupil irregular

None

l clouding, decreased within the first
alformed and ectopic pupil (left)

None
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[21]. The number of LRR repeats were predicted using
LRRfinder [22]. Keratocan has a LRR structure, where the
leucine rich motif is repeated several times. It has the
shape of a curved solenoid, where the concave side of the
structure is made up of a parallel beta-sheet and the con-
vex side is made up of a more diverse number of struc-
tural elements (Fig. 2d and e). The leucine-rich motif
LXXLXLXXNXL at the concave side of the tandem is
highly conserved: The L may be leucine or a hydrophobic
amino acid, N may be asparagine or cysteine, and X may
be any amino acid (Fig. 2c). The interior of the LRR do-
main is made up of hydrophobic residues – with the ex-
ception of the conserved asparagines (Asn, N) which
create an Asn-ladder stabilizing the structure as seen in
Fig. 2e [23–25]. Previously, 10 LRR repeats were suggested
for keratocan [5], but the LRRfinder [22] suggests pres-
ence of an 11th LRR repeat starting at amino acid position
322 (Fig. 2c).
Fig. 2 The KERA mutations associated with cornea plana. a. Schematic repr
the positions of the disease causing mutations identified until now. The p.(
isoleucine (Ile, I) to a threonine (Thr, T) at amino acid position 225 (shown
mutation, are predicted to affect the leucine-rich repeat region, LRR. c. Alig
motifs LXXLXLXXNXL (shaded with gray) and the positions of the five miss
and p.(Asn247Ser) that are underlined (I,N, T, I, and N, respectively). d. The
made around the 7th repeat and amino acids Thr215 (T215), Ile225 (I225) a
of these aminoacids are shown in 2B. e. A side view of the structure show
Asn-ladder. The structure is made from homology modelling and the side
show the hydrogen bonds
We found that the p.(Asn131Asp) and p.(Asn247Ser)
mutations affect the conserved Asn131 and Asn247 resi-
dues of the 3rd and 7th LRR-repeat. The substitution of
an Asn with an Aspartic acid or a Serine will change a
hydrogen bond donor to a hydrogen bond acceptor or to
neutral. The important stabilizing structure of the Asn-
ladder, which is seen in Fig. 2e, is likely to be destroyed.
The p.(Thr215Lys) mutation affects the Thr215 in the

beginning of the 7th repeat where the threonine is point-
ing into the structure. Substitution of this residue with ly-
sine is likely to destroy the structure in this area due to
steric hindrance of the large lysine side chain.
The p.(Ile107Arg) and the current mutation,

p.(Ile225Thr) affects the 11th residue within the 2nd and
the 7th repeat (the end of the beta-strain) where the iso-
leucine is pointing into the structure, stabilizing the
hydrophobic core. Substitution of the hydrophobic isoleu-
cine with the hydrophilic and bulky arginine or the
esentation of the KERA gene and b. the predicted protein, including
Ile225Thr) missense mutation, identified in this study, changes an
in bold). Seven out of nine mutations, including the p.(Ile225Thr)
nment of the leucine rich repeat domains show the 11 consensus
ense mutations p.(Ile107Arg), p.(Asn131Asp), p.(Thr215Lys), p.(Ile225Thr)
transverse section of the protein model through the solenoid has been
nd Asn247 (N247) is indicated. The mutations leading to substitution
s the hydrogen bonding network of the asparagines which form the
chain rotamers may be different in the human protein. The dotted lines
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hydrophilic threonine will most likely destabilize the
structure. It is interesting that the two mutations
p.(Ile107Arg) and p.(Asn131Asp) have the same special
orientation with respect to each other as the two muta-
tions p.(Ile225Thr) and p.(Asn247Ser).

Discussion
This family, with a novel missense mutation KERA
[p.(Ile225Thr)], exhibits the classical ocular phenotype
of autosomal recessive cornea plana, with excessive
hypermetropia, hazy corneal limbus, and (although vari-
able) iris malformation and iridocorneal adhesions.
Only nine different disease-associated mutations have

been previously reported in KERA [4;5;8–11] (Fig. 2a, b,
c). There are several lines of evidence suggesting that
p.(Ile225Thr) is causative: The mutation segregates with
the disease in the family and it affects a conserved resi-
due located within the LRR domain which is predicted
to be important for protein function. In silico analysis
predicts the mutation to be damaging and protein mod-
elling suggests that substitution of isoleucine at position
225 of the 7th LRR repeat will result in destabilization of
the protein structure. We therefore consider this muta-
tion the most likely cause of cornea plana in this family.
Three affected family members were homozygous for

the mutation. The parents of patient IV:3 are consan-
guineous. The parents of the index patients IV:4 and
IV:5 are not, to their own knowledge, consanguineous,
but descend from the same area. Since they are both
heterozygous for the same mutation, we speculate that
they are distantly related. If the mutation is found in
other Turkish families, however, a founder effect could
be considered.
Several family members have sparse scalp hair, and

one of the twins exhibits severe frontal hypotrichosis.
Although keratocan has not been linked to abnormalities
of the hair, another protein member of the small LRR
proteoglycan family, called Tsukushi (TSK), is found to
be expressed at the restricted areas of hair follicles dur-
ing the morphogenesis, and targeted disruption of TSK
causes the hair cycle to be delayed in mice [17]. How-
ever, the expression pattern of keratocan in the hair fol-
licle has not been examined. Hair loss has not previously
been described in connection with cornea plana. Pedi-
gree analysis does not show a clear connection between
hair loss and the mutation - family members not homo-
zygous for the mutation also show some thinning of the
hair, which might be androgenetic. If more cases of hair
loss in cornea plana patients emerge, expression studies
of keratocan in the hair follicle should be considered.

Conclusions
KERA mutations are very rare and we present the 10th
pathogenic mutation identified so far. Protein modelling
is a useful tool in predicting the effect of missense muta-
tions. Our studies suggest that the five amino acid sub-
stitutions associated with cornea plana are likely to
exercise their effect by destabilizing the structure of the
keratocan protein, underlining the importance of this
domain for the protein function. This is valuable know-
ledge when interpreting the clinical significance of future
KERA mutations.
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