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Abstract 

Typically, crash frequency is modelled as Poison where the variation is the 
square root of the expected number. If the expected number of crashes is small, 
the variation is a large percentage of the expected number of crashes, and the 
observed number of crashes provides a crude estimate for the expected number. 
A better estimate is obtained when the expected number is large. For a specific 
location, there are two approaches for performing measurements where the 
expected number of crashes is large. One approach is to measure over a long 
period of time. However, data are not often available for long periods. Even if 
available, changes in conditions over time, such as increase in traffic volumes or 
improvement in infrastructure, may limit the useful time frame.  Another 
approach is to perform measurements over a large number of similar locations, 
providing a relatively precise estimate for the distribution. Then, one can use the 
Empirical Bayes (EB) approach to combine the relatively precise estimate for the 
distribution with the less precise estimate for the expected number at the location 
of interest, resulting is an improved estimate for the expected number at that 
location. This paper explores the two approaches. It uses multiple years of data 
from the Highway Safety Information System for California intersections and 
highway links from the State of Iowa. Data from a single year is used to estimate 
the expected number of crashes at locations, following the EB approach. Data 
from multiple years at each location is then used to estimate the expected number 
of crashes at those locations, and the results from the two approaches are 
compared.  No such large scale validation has yet been performed. The effect of 
a priori segmentation of the highway system is also explored. Longer, 
homogeneous sections are found both to improve the statistical validity of 
models and to improve the EB correction of one-year section crash estimates. 
Keywords:  count models, Empirical Bayes, crash frequency estimations, 
segmentation for crash sampling. 
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1 Introduction 

The traditional methods for determining the benefit of roadway safety 
improvements can be divided into three types; before-after studies, cross-
sectional studies, and regression studies.  By far the most commonly used 
technique is before and after studies where one physical change is made to a 
location or locations and the analyst waits to see if crash trends at the location(s) 
are improved.   The problem with this method is that it requires data for several 
years before and after the change and does not take into account temporal 
changes that occur in the after period (changes in stream composition, changes in 
automobile design, climate changes, etc.)   Another traditional method is to use 
cross-sectional studies where one group of similar locations is treated with and 
another group of similar locations are not treated (sometimes called case/control 
studies).   The problems with cross-sectional studies are that they ignore spatial 
differences (e.g., changes in land use, changes in traffic volumes, changes in 
enforcement policies, etc.) and place the safety engineer in the moral dilemma of 
specifically not applying a treatment to a control group where the engineer may 
believe the changes will improve safety. 
     To increase the number of data cases, cross-sectional data can be combined 
with case/control data, however, controlling for similarities in intersection 
geometry and volume is particularly critical.   Often time there are a small 
number of very similar sites or a large number of sites with variations (traffic 
volume and geometry) which compromise the comparison.   
     Another common method is to model crash performance, typically using 
Poisson or Negative Binominal regression (commonly called a count model) to 
create Safety Performance Functions (SPFs).  SPFs commonly include traffic 
volumes, traffic characteristics and patterns (e.g., percent trucks) and geometric 
differences in the highway.   The regression model cannot take into account 
every variable that is responsible for a crash and there is a good deal of multi co-
linearity between variables.  As a result, typically regression models account for 
only a minority of the variance in crash counts and making them relatively 
inaccurate when it comes to estimating the benefits of a treatment.   
     The Empirical Bayes (EB) approach combines the strengths of before-after 
studies, cross-sectional studies, and regression methods when estimating the 
safety related benefits of an improvement.   EB uses data from a group of similar 
control sites and pre-treatment data from the case site to determine the crash 
performance before the improvement is made.   This allows comparison of the 
after treatment safety performance at a site to estimate the expected safety 
performance had the improvement not been made.   The difference during this 
period is the “safety benefit” of the treatment.   In other words, EB bases the 
expected safety performance (without the treatment at the site) on the 
performance observed at the site prior to treatment, and the performance at 
similar sites.  EB reduces the variability of estimates of safety performance 
beyond traditional methods. (1) 
     EB also helps to diminish the impact of regression to the mean. Regression to 
the mean impacts estimates when treatments are applied to roadway segments or 
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intersections that may be randomly experiencing poor safety performance.   Even 
without the treatment, the safety performance is likely to improve.  Because EB 
estimates rely on untreated locations, use of a safety performance sample from 
similar untreated sites tends to reduce the impact of regression to the mean. 

2 Overview of Empirical Bayes 

One of the challenges in working with traffic crash statistics is generating 
accurate estimates for the expected number of crashes per year at a location. The 
root of the difficulty is that the actual number of crashes follows a Poisson 
distribution with mean (λ) equal to the expected number of crashes, and this 
distribution is broad for the types of locations typically studied in transportation. 

As a rough estimate, the 95% confidence interval for λ is N
λλ 2± , where N 

is the number of years for which data are available. For a location where the 
expected number of crashes is 20, the 95% confidence interval has width 18 for a 
single year of crash data. A single year of data provides a very unreliable 
estimate for the expected number of crashes.  
     One way to improve the estimate for the expected number of crashes is to use 
multiple years of crash data. For five years of crash data, the width of the 95% 
confidence interval is 8. For ten years of crash data, the width is about 5.6. It is 
not practical to use longer periods because traffic conditions are likely to have 
changed so much over such long periods that the historical crashes are no longer 
good indicators of the number of crashes that would currently occur. 
     An alternate method for providing more accurate estimates for the expected 
number of crashes, would be to group together data from a large number of 
identical locations. Since the locations are identical, the expected number of 
crashes at each location would be the same, and the observations from these 
locations can be combined to estimate λ.  In essence, one replaces a long time-
series of crash data at a single location with crash data from a large number of 
identical locations.  
     While this is a good approach in theory, in the real world, there are no 
“identical locations”. In the real world, the expected number of crashes for a 
collection of similar locations will be close to each other, but not exactly the 
same. The Empirical Bayes approach takes this into consideration by combining 
the distribution in the observed number of crashes that comes about because of 
the Poisson nature of crashes with the distribution for the expected number of 
crashes at similar locations. The Empirical Bayesian formula is: 
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where λ0 is the average number of crashes per year for the entire collection of 
locations, n is the number of crashes observed at the location of interest during N 
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years of observations, and φ is a parameter that indicates how much variation 
exists in the expected number of crashes for the locations in the collection. If φ is 
large, the variation in the expected number of crashes is small; if φ is small, the 
variation is large. One can see this in the formula above. If φ is large, the 
expected number of crashes is close to λ0 for all the locations in the collection, so 
the formula weights the λ0 term more strongly. If φ is small, the opposite occurs.  
     One can think of the collection of similar locations as providing a model for 
the location of interest. Thought of in this way, the Empirical Bayes formula 
generates an improved estimate for the expected number of crashes for a location 
by taking a weighted average of an estimate based on crash data for that location 
and an estimate based on the model. The value for the weight changes to place 
more emphasis on the more accurate of the two approaches. 
     This thought process points to another way to improve estimates for the 
expected number of crashes. In the above formula, the simplest model was used 
to estimate the expected number of crashes for locations in the collection – the 
average for the collection. One could further improve the estimate for the 
expected number of crashes at the location of interest by using a better model for 
the expected number of crashes in the collection. An improved model will result 
in lower unexplained variance in the collection, a higher value for φ, and greater 
weight for the model term in the Empirical Bayesian formula. Because the EB 
formula places more weight on the more accurate model, the resulting estimates 
for the expected number of crashes at the location of interest should be more 
accurate. 

3 Research objective 

The objective of this research is to explore the relationship between the 
effectiveness of the Empirical Bayesian formula at correcting estimates for the 
expected number of crashes at a location and the accuracy of the model for the 
expected number of crashes in the comparison group. To meet this objective, 
crash data were collected for both a large number of similar locations and for a 
number of years at each location. Comparisons were made between estimates for 
the expected number of crashes using, 1) a single year of data with different 
models and the Empirical Bayesian formula, and 2) several years of crash data at 
specific locations. These comparisons verify the value of the Empirical Bayesian 
approach at improving estimates for the expected number of crashes and 
emphasize the importance of an accurate model for the expected number of 
crashes in the comparison group.  A second objective is to explore the 
relationship between segmentation and accuracy of estimates, as crash data must 
be aggregated to units of analysis prior to processing. 

4 Description of the data used 

Two types of data were used for this research. The first type of data was crash 
data and road inventory data from Iowa. Both the crash and road inventory data 
are maintained by the Iowa Department of Transportation (a USA state level 
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agency) and are available to support safety analysts. For this analysis, five years 
of crash data were compiled for more than 7,000 miles of Iowa roads. The roads 
were classified into three primary categories: 2-lane roads, multi-lane and 
divided roads, and freeways and Interstates. The 2-lane roads were further 
subdivided into low, medium, and high volume roads based on average annual 
daily traffic (AADT).  
     To support this research, the roads were divided into segments. Analysis was 
conducted on the annual number of crashes for these segments. Three different 
sizes of segments were used: short segments with approximate length of 
0.25 miles, medium segments with approximate length of 2.5 miles, and long 
segments with approximate length of 4 miles. All in all, this created fifteen 
collections of segments for which crash models were developed.   
     The second type of data was crash and road inventory data from the US 
Federal Highway Administration, Highway Safety Information System (HSIS). 
The HSIS data are collected from seven participating States and maintained by 
the Federal Highway Administration to support highway safety research. (More 
information is available from the HSIS website at http://www.hsisinfo.org/.) For 
this research, five years of crash and road inventory data were provided for the 
approximately 18,000 junctions (intersections) included in the California HSIS 
data. One limitation regarding the California HSIS data was noted – few of the 
cross street volumes had been recently updated.  
     The data were filtered to identify intersections for which key intersection 
attributes (i.e., intersection geometry and type of traffic control) were constant 
over the five-year period and the number of crashes per year was tallied for each 
of these intersections. As with the Iowa data, the intersections were then divided 
into groups based on the intersection geometry and the type of traffic control at 
the intersection, and crash models were developed for the different groups of 
intersections.  This resulted in three datasets: multi-phase signal control 
(873 intersections), single-phase signal control (374 intersections) and two-way 
stop-control, aka through-stop control (3047 intersections). 

5 Analysis approach 

For each of the 15 road section datasets and for the three intersection datasets,  
negative binomial safety performance functions (SPFs) were fit using the R 
program (available at http://www.r-project.org/)  While five years of crash data 
were available, only 2004 crash data were used to develop the models.  This was 
to demonstrate the use of EB where several years of crash data may not be 
available.  Road models (SPFs) are of the general form: Crashes = α Length 
(AADT)β.  Table 1 presents the road model parameters and descriptive statistics. 
     The intersection model (SPF) are of three forms: a) Crashes = α(ADTML)β, 
b) Crashes = α(ADTML)β(ADTXS)γ, or c) Crashes = α (ADTML)β(NXSL)δ,  
where ADTML is average daily traffic on the main line, ADTXS is ADT on the 
cross street and NXSL is the number of cross street lanes.  Table 2 presents the 
intersection model parameters and descriptive statistics.   
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Table 1:  Road model parameters and descriptive statistics. 
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Table 2:  Intersection model parameters and descriptive statistics. 
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Figure 1: Example road SPFs. 

     Most of the models fit produced statistically valid results.  Exceptions were 
the low volume 2-lane model and two of the intersection models based on cross 
street number of lanes as a proxy for cross street ADT (as confidence in the cross 
street ADT values was low, models were also fit on NXSL as a proxy).  Figure 1 
illustrates freeway and AADT variant 2-lane models derived from the various 
levels of segmentation used in this research. 

6 Analysis results 

To illustrate the effects of segmentation and choice of “comparable data” on the 
results of the EB procedure, several “high crash” road segments and intersections 
were selected.  These locations were chosen based only on their 2004 crash 
experience.  The purpose was to compare EB estimates for these high crash 
locations to their five-year crash performance average and to demonstrate the 
effect of various levels of data aggregation.  Recall that data aggregation was 
performed across two dimensions, segment length (short, medium and long) and 
similarity of segments (road type, intersection control, AADT class, etc.)   
     A total of nine road sections, all of the freeway/Interstate class, were selected 
as “high crash locations.”  Three each were selected from each of the three road 
segmentation databases (low, medium and high).  Table 3 presents the 
comparison of EB estimate to five-year average crash frequencies.  It can be seen 
that the EB correction is most accurate when longer segmentation is used.  While 
the shortest segmentation provides the greatest homogeneity, the longer sections 
values are corrected most closely to their five-year averages. 
     Three intersections, all of the multi-phase signalized class, were also selected 
as “high crash locations.”  Table 4 presents the comparison of EB estimate to 
five-year average crash frequencies.  It can be seen that the EB provides very 
good adjustments to the single year crash numbers – placing the expected value 
much closer to the five-year average.  (Recall that only one year of data was used 
to derive the EB corrected estimates.)  
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Table 3:  Road section case studies. 

Segmentation Length AADT 
Crashes 
in 2004 

 
Model EB estimate 

5yr avg 
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0.35 30600 6 3.69 5.63 2.0 
0.46 16300 7 2.87 6.18 5.4 

short 0.24 19900 8 1.77 6.22 4.8 
1.01 35444 16 5.79 11.9 10.2 
0.86 38953 23 5.30 15.5 19.8 

med 0.65 27948 26 3.11 13.3 15.0 
1.88 22828 25 8.53 20.0 21.6 
0.65 27948 26 3.51 14.4 15.0 

long 3.56 17312 35 12.75 30.0 25.4 
 
 

Table 4:  Intersection case studies. 
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     A more detailed comparison was also conducted across all of the 
intersections. In this comparison, the standard deviation of the difference 
between the number of crashes in 2004 and the 5-year average was 2.43. For 
model a, the standard deviation was 3.95. When the EB formula was used to 
combine the model with the 2004 observations, the standard deviation was 2.03. 
In other words, the model by itself provided a poor estimate for the expected 
number of crashes, but improved the estimates when used with EB and a single 
year of crash data. 
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7 Conclusions 

This paper demonstrates the effectiveness of EB at improving estimates for the 
expected number of crashes for road segments and intersections. For road 
segments, a simple model was applied to fifteen different road segment 
databases. A sample of nine segments was considered and comparisons made 
between the 5-year average number of crashes for these segments and the 
estimates of the expected number of crashes based on a single year of data at that 
location, a model for crashes at similar locations, and the EB combination of the 
two. These examples demonstrate how EB improves estimates over use of either 
a single year of data or the model alone. 
     These examples demonstrate another feature related how the explanatory 
power of the model impacts the effectiveness of EB. Table 1 indicates that the 
term φ is significantly lower for short segments than for medium and long 
segments. This indicates that, for short segments, there is greater variability 
about the model estimates than for longer segments. In other words, the model is 
a better estimator of the expected number of crashes for medium and long 
segments. The EB formula takes this into consideration when adjusting the 
estimate for the expected number of crashes. For medium and long segments, the 
model is more accurate. Because of this, the EB formula places a higher weight 
on the model, increasing the overall effect of the model on the EB estimate. This 
is apparent in Table 3 because the EB adjustment for short segments is very 
small (because φ indicates that the model is not very accurate) and the EB 
adjustment for medium and long segments is much larger. 
     For intersections, several different models were developed for three different 
types of intersections. Table 4 lists the model and EB estimates for 3 example 
intersections. Even though the differences in φ are small, larger values of φ still 
correspond to better EB estimates for the 5-year average of the number of 
observed crashes. A comparison of the single-year, model, and EB estimates for 
the expected number of crashes for all the intersections with multi-phase signal 
controllers provides further evidence of the power of EB. EB combined two 
estimates for the number of crashes at each intersection, one with a root-mean 
square difference of 2.43 from the average of 5-years of observations and one 
with a root-mean square difference of 3.95, to produce an EB estimate with root-
mean square difference of 2.03. Thus, EB combined two relatively poor 
estimates for the expected number of crashes at these intersections to produce a 
significantly improved estimate.  
     These results demonstrate how EB improves estimates for the expected 
number of crashes for road segments and at intersections. For the intersections in 
this study, the use of EB with very simple model resulted in a 20% improvement 
in estimates for the expected number of crashes at these intersections. Better 
results would be expected with a more accurate model. The road segment results 
listed in this paper provide some support for this statement. The improvement in 
estimates for short segments (where φ was small, indicating more variance 
unexplained by the model) was less dramatic than for medium and long 
segments (where φ was larger and there was less unexplained variance).  
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