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Abstract
By means of a new stability result, established for symmetric and multi-additive
mappings, and using the concepts of stability couple and of stability chain, we prove,
by a recursive procedure, the generalized stability of two of Fréchet’s polynomial
equations. We also give a new functional characterization of generalized polynomials
and a new approach to solving the generalized stability of the monomial equation.
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1 Motivation
Two of the best known functional equations for which there are no satisfactory results
as regards generalized stability in the sense of Bourgin [] and Găvruţa [] are Fréchet’s
polynomial equations:

Dnp(x, . . . ,xn+) = , x, . . . ,xn+ ∈M (.)

(see [] for the original equation) and

�n+
y p(x) = , x, y ∈M (.)

(see [], for the original equation), where p : M → B is the unknown function, M is an
abelian monoid, B is a real (or complex) Banach space, n is a positive integer and, for any
mapping f :M → B, Dn–f :Mn → B is the symmetric function defined by

Dn–f (x, . . . ,xn) :=
∑

ε,...,εn=

(–)n–(ε+···+εn)f (εx + · · · + εnxn). (.)

TheHyers-Ulam stability of equation (.) has been studied intensively. Startingwith the
fundamental work of Whitney [, ] and Hyers [], in  Albert and Baker [] proved
the Hyers-Ulam stability of equation (.) using the Hyers-Ulam stability of the equation

�x ◦ · · · ◦ �xn+p(x) = , x, . . . ,xn+,x ∈M (.)
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which is equivalent to equation (.) [, ], but apparently more restrictive than equa-
tion (.). The only results of generalized stability in the sense of Bourgin and Găvruţa
for equation (.) have recently been obtained by Jun and Kim [] and by Lee [, ] for
n≤ .
The difficulties that arise in the proof of a criterion of the generalized stability for such

equations with differences for an arbitrary n are caused by the necessity of inventing a
recursive procedure of determining the control functions and the monomial components
of the approximated polynomial.
In this paper we eliminate these impediments with the help of two new instruments:

the stability couples - which rigorously define the concept of the stability of a functional
equation - and the stability chains - necessary for studying the stability of equation (.).
First we prove - through the so-called directmethod (ofHyers) - a new generalized stability
theorem for multi-additive and symmetric functions in the spirit of Bourgin and Găvruţa.
We use this result to justify a recursive procedure of solving the stability of equation (.)
and we prove the equivalence of equations (.), (.), and (.). We then give a general
technique of solving the stability of equation (.) using the stability of equation (.). As
a consequence, we obtain stability results of Hyers-Ulam type which extend and improve
the abovementioned results, and Aoki-Rassias type stability results for equations (.) and
(.). Finally, we give a new technique for proving the generalized stability of themonomial
equation

�n
ym(x) = (n!)m(y), x, y ∈M. (.)

2 Framework
Throughout this paper we assume:N is the set of nonnegative integers, n≥  is an integer,
M is an abelian monoid under addition, B is a Banach space with the norm ‖ · ‖, and BM

is the vector space of all functions fromM to B.
We recall some definitions and properties of difference operators that we use in the

following sections (see for details [] or []).
For y ∈M, the linear operators �y,�

y : BM → BM are defined by

�yf (x) := f (x + y) – f (x), �
y f (x) := f (x).

For all x, y ∈ M we have �x ◦ �y =�y ◦ �x =�x+y –�x –�y.
The nth iteration of �y, denoted �n

y , verifies the identity

�n
y f (x) =

n∑
k=

(–)n–k
(
n
k

)
f (x + ky), x, y ∈M, f ∈ BM.

Let j ∈ N. The function m :M → B is a j-monomial if �
j
ym(x) = (j!)m(y) for all x, y ∈ M

(we agree that ! = ). If j ≥ , the j-monomialm verifies the relationm(kx) = kjm(x), x ∈M,
k ∈N.
We say that the mapping p : M → B is an n-polynomial if for any j ∈ {, . . . ,n} there

exists a j-monomialmj :M → B such that p =m +m + · · · +mn.

http://www.advancesindifferenceequations.com/content/2014/1/16
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If g :Mn → B is a symmetric function, we define Dng :Mn+ → B by Dng(x,x) := g(x +
x) – g(x) – g(x), for n = , and for n >  by

Dng(x, . . . ,xn+) := g(x, . . . ,xn–,xn + xn+) – g(x, . . . ,xn) – g(x, . . . ,xn–,xn+).

The symmetric mapping a :Mn → B is n-additive if and only if

Dna(z) = , z ∈Mn+. (.)

The operator Dn– : BM → BMn defined in equation (.) can be described by the differ-
ence operators as follows:

Dn–f (x, . . . ,xn) := �x ◦ · · · ◦ �xn f (), x, . . . ,xn ∈ M, f ∈ BM.

Since D = D ◦ D, and for k >  and x, . . . ,xk+ ∈ M we have �x ◦ · · · ◦ �xk– ◦ �xk ◦
�xk+ = �x ◦ · · · ◦ �xk– ◦ �xk+xk+ –�x ◦ · · · ◦ �xk– ◦ �xk –�x ◦ · · · ◦ �xk– ◦ �xk+ , and
it follows that

Dk =Dk ◦Dk–, k = , , . . . .

The following fundamental features of difference operators were given by Mazur and
Orlicz [, ] on linear spaces and extended on commutative semigroups by Djoković [].

Theorem . If a : Mn → B is a symmetric and n-additive mapping then the function
a∗ :M → B defined by a∗(x) := a(x, . . . ,x) is an n-monomial,

Dn–a∗(y) = (n!)a(y), y ∈ Mn and Dna∗(z) = , z ∈Mn+.

Theorem . The function p :M → B is an n-polynomial if and only if it verifies one of
the equivalent equations (.) and (.). In these conditions, for any i ∈ {, . . . ,n} there is a
symmetric and i-additive mapping ai :Mi → B such that

p = a∗
 + a∗

 + · · · + a∗
n,

where a∗
 :M → B is the -monomial defined by a∗

(x) := p().

The concept of Hyers-Ulam stability of a functional equation has surfaced as a conse-
quence of the first answer given by Hyers (for Cauchy’s equation on Banach spaces [])
to a question posed by Ulam in  about the stability of group morphisms. The con-
cept was extended by Aoki [], Bourgin [], Rassias [], Găvruţă [] and others. Here we
consider that a functional equation is stable if it admits a nontrivial stability couple.

Definition . Let Ea(z) = , z ∈ Sn be a functional equation, where E : A⊆ BS → BSn is a
mapping, S is a nonempty set and a ∈ A is the unknown function. Let also ϕ : Sn → [,∞)
and � : S → [,∞) be two mappings. The pair (ϕ,�) is called a stability couple for the
functional equation Ea = , if for all f ∈ A for which

∥∥Ef (z)∥∥ ≤ ϕ(z), z ∈ Sn

http://www.advancesindifferenceequations.com/content/2014/1/16
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there exists a function a ∈ A such that Ea =  and

∥∥f (x) – a(x)
∥∥ ≤ �(x), x ∈ S.

If, in addition, a is the unique mapping with these properties, we say that (ϕ,�) is a strong
stability couple.

If (ϕ,�) is a stability couple, ϕ is called a control function. If for any constant and positive
function ϕ there is a stability couple (ϕ,�) for equation Ea = , we say that this equation
is stable in the Hyers-Ulam sense. If S is a normed vector space and there is a nontrivial
stability couple (ϕ,�) (i.e. ϕ �= ) such that the control function ϕ is defined with the help
of the norm from S, we say that the equation is stable in the Aoki-Rassias sense (see []
and [] for the origin of the eponymies).
We recall only two classic stability results, reformulated in terms of stability couples.

Theorem . [] Let G be an abelian group, ϕ :G → B a function such that

�(z) :=
∞∑
k=

–(k+)ϕ
(
kz

)
<∞, z ∈G

and �(x) := �(x,x). Then the pair (ϕ,�) is a strong stability couple for Cauchy’s functional
equation �ya(x) – a(y) = , x, y ∈G.

Theorem . [] The functional equation (.) is stable in the Hyers-Ulam sense: if M is
an (n + )!-divisible abelian group and δ > , then there exists a positive constant kn such
that (δ,knδ) is a stability couple for equation (.).

The functional characterization of the real polynomial functions of degree less than or
equal to n with the continuous solutions of equation (.), or of equation (.) - seen as
generalizations of Cauchy’s equation - was realized by M. Fréchet in [] and []. Funda-
mental studies of Fréchet’s equations (.) and (.) on more general structures can be
found in [, , , , ]. Some classical works on the stability of Cauchy’s equation are
[, , –, , ]. The stability of some particular polynomials has been studied by a
great number of authors []. Aoki-Rassias type theorems for equation (.) are given in
[] and []. For some results on stability of multi-additive mappings we refer the reader
to [, , ], on stability of monomials to [, –] and on stability of other different
kinds of polynomials to [, , , –].

3 Stability of symmetric and n-additivemappings
In the proving of the generalized stability - part of the existence - the following lemma is
very useful.

Lemma . Let (bk)k∈N be a sequence in B, let (αk)k∈N be a sequence in [,∞) and c > 
such that β :=

∑∞
k= c–k–αk < ∞. If ‖bk+ – cbk‖ ≤ αk for all k ∈ N, then (c–kbk)k∈N is a

convergent sequence and ‖b – b‖ ≤ β , where b = limk→∞ c–kbk .

http://www.advancesindifferenceequations.com/content/2014/1/16
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Proof According to the hypothesis it follows that

∥∥c–k–bk+ – c–kbk
∥∥ ≤ c–k–αk , k ∈ N.

Let j be an arbitrary positive integer. Then, by using the triangle inequality and the above
inequality, we obtain

∥∥c–k–jbk+j – c–kbk
∥∥ ≤ c–k–jαk+j– + c–k–j+αk+j– + · · · + c–k–αk ,

hence

∥∥c–k–jbk+j – c–kbk
∥∥ ≤

∞∑
i=k

c–i–αi, k ∈N.

Since limk→∞
∑∞

i=k c–i–αi = , it follows that (c–kbk)k∈N is a Cauchy sequence. Let
b =: limk→∞ c–kbk . Then, for k =  and j → ∞ in the previous inequality, we obtain
‖b – b‖ ≤ β . �

The following result is crucial in determining of strong stability couples for the func-
tional equations (.), (.), (.), and (.).

Lemma . Let K be a commutative semigroup, r >  and let ϕ : K → [,∞) be a function
such that ϕ̃(x) :=

∑∞
k= –r(k+)ϕ(kx) <∞, x ∈ K . Then

lim
k→∞

–rkϕ̃
(
kx

)
=  and

∞∑
k=

–(r+)(k+)ϕ̃
(
kx

) ≤ –rϕ̃(x), x ∈ K .

Proof For x ∈ K we have

lim
k→∞

–rkϕ̃
(
kx

)
= lim

k→∞

∞∑
i=

–r(k+i+)ϕ
(
k+ix

)
= lim

k→∞

[
ϕ̃(x) –

k–∑
j=

–r(j+)ϕ
(
jx

)]
= ,

and also

∞∑
k=

–(r+)(k+)ϕ̃
(
kx

)
=

∞∑
k=

∞∑
j=

–(r+)(k+)–r(j+)ϕ
(
k+jx

)

=
k+j:=i

–r–
∞∑
i=

–r(i+)
i∑

k=

–kϕ
(
ix

)
= –r

∞∑
i=

(
 – –i–

)
–r(i+)ϕ

(
ix

) ≤ –rϕ̃(x). �

The operators rn, Rn, and the set D+
n defined in the following lines will play a key role in

building concrete stability couples for equations (.), (.), (.), and (.).

http://www.advancesindifferenceequations.com/content/2014/1/16
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Let ϕ :Mn+ → [,∞) be a function. Then rnϕ :Mn → [,∞) is the mapping defined by
rϕ(x) := ϕ(x,x) if n = , and, for n > , by

rnϕ(x, . . . ,xn) := ϕ(x, . . . , xn–,xn,xn) + ϕ(x, . . . , xn–,xn,xn–,xn–) + · · ·
+ n–ϕ(x,xn,xn–, . . . ,x,x,x) + n–ϕ(xn,xn–, . . . ,x,x,x).

If ϕ̃(z) :=
∑∞

k= –n(k+)ϕ(kz) < ∞, z ∈ Mn+, then we define the mapping Rnϕ : Mn →
[,∞) by

Rnϕ := rnϕ̃.

From Lemma . it follows that limk→∞ –nkRnϕ(ky) = , y ∈Mn. Therefore

D+
n :=

{(
ϕ,ϕ′)∣∣∣ϕ :Mn+ → [,∞),

∞∑
k=

–n(k+)ϕ
(
kz

)
< ∞, z ∈ Mn+,

ϕ′ :Mn → [,∞),ϕ′(y) ≥ Rnϕ(y), and lim
k→∞

–nkϕ′(ky) = , y ∈Mn

}

is a nontrivial set.
Now, we are able to prove that D+

n is a set of strong stability couples for the functional
equation (.), where the operator Dn acts on the vector space of symmetric functions
fromMn to B. The following theorem extends Găvruţă’s result from Theorem ..

Theorem . Let (ϕn+,ϕn) ∈ D+
n and g :Mn → B be a symmetric function satisfying the

inequality

∥∥Dng(z)
∥∥ ≤ ϕn+(z), z ∈Mn+. (.)

Then a(y) := limk→∞ –nkg(ky) defines the unique symmetric and n-additive function a :
Mn → B such that

∥∥g(y) – a(y)
∥∥ ≤ ϕn(y), y ∈Mn. (.)

Moreover, m := a∗ is the unique n-monomial from BM for which

∥∥g(x, . . . ,x) –m(x)
∥∥ ≤ ϕn(x, . . . ,x), x ∈M. (.)

Proof Let y = (x, . . . ,xn) ∈ Mn. Putting z = (x, . . . ,xn–,xn,xn) in (.) we get ‖Dng(x, . . . ,
xn–,xn,xn)‖ = ‖g(x, . . . ,xn–, xn) – g(x, . . . ,xn)‖, hence∥∥Dng(x, . . . ,xn–,xn,xn)

∥∥ ≤ ϕn+(x, . . . ,xn–,xn,xn).

But g is a symmetric function; therefore

∥∥g(y) – ng(y)
∥∥

=
∥∥[
g(x, x, . . . , xn–, xn) – g(x, x, . . . , xn–,xn)

]

http://www.advancesindifferenceequations.com/content/2014/1/16
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+ 
[
g(x, x, . . . , xn–,xn, xn–) – g(x, x, . . . , xn–,xn,xn–)

]
+ · · ·

+ n–
[
g(xn,xn–, . . . ,x, x) – g(xn,xn–, . . . ,x,x)

]∥∥
≤ ∥∥Dng(x, . . . , xn–,xn,xn)

∥∥ + 
∥∥Dng(x, . . . , xn–,xn,xn–,xn–)

∥∥ + · · ·
+ n–

∥∥Dng(xn,xn–, . . . ,x,x,x)
∥∥

≤ rnϕn+(x, . . . ,xn),

hence

∥∥g(y) – ng(y)
∥∥ ≤ rnϕn+(y), y ∈Mn.

Replacing y by ky we get

∥∥g(k+y) – ng
(
ky

)∥∥ ≤ rnϕn+
(
ky

)
, k ∈N, y ∈Mn.

Now, from Lemma . (for bk := g(ky), c := n, αk := rnϕn+(ky) and β := ϕn(y) ≥
Rnϕn+(y)) it follows that (–nkg(ky))k∈N is a convergent sequence in the Banach space
B, and its limit, a(y), satisfies (.). But g is symmetric, therefore a is a symmetric func-
tion, too. From (.), the definition of the set D+

n , and Lemma . it follows that

lim
k→∞

–nk
∥∥Dng

(
kz

)∥∥ ≤ lim
k→∞

–nkϕn+
(
kz

)
= ,

whence Dna(z) = , z ∈ Mn+, i.e. a is a symmetric and n-additive mapping that satisfies
(.) and a∗ is a n-monomial that satisfies (.).
In order to justify the uniqueness of a, we consider the symmetric and n-additive

mapping a′ : Mn → B for which ‖g(y) – a′(y)‖ ≤ ϕn(y), y ∈ Mn; since for any y ∈ Mn,
a′(ky) = nka′(y), we have

lim
k→∞

∥∥–nkg(ky) – a′(y)
∥∥ ≤ lim

k→∞
–nkϕn

(
ky

)
= , y ∈Mn,

it follows that a′ = a.
Finally, ifm is an n-monomial that satisfies (.), that is, ‖g(x, . . . ,x)–m(x)‖ ≤ ϕn(x, . . . ,x),

x ∈M, since m(kx) = knm(x), x ∈M, it follows that

∥∥–nkg(kx, . . . , kx) –m(x)
∥∥ ≤ –nkϕn

(
kx, . . . , kx

) → ,

as k → ∞; thereforem = a∗. �

The following consequence is a stability result in the sense of Aoki-Rassias which gener-
alizes Aoki’s result from [] and the result of Rassias from [] (where the case n =  was
considered).

Corollary . Let M be a linear normed space, δ > , r ∈ (, ) and let ϕn+ : Mn+ →
[,∞) be defined by ϕn+(x,x) := δ(‖x‖r + ‖x‖r) if n = , and ϕn+(x, . . . ,xn+) :=

http://www.advancesindifferenceequations.com/content/2014/1/16
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δ‖x‖r · · · ‖xn–‖r(‖xn‖r +‖xn+‖r) if n > . Suppose that g :Mn → B is a symmetric function
such that

∥∥Dng(z)
∥∥ ≤ ϕn+(z), z ∈Mn+.

Then a(y) := limk→∞ –nkg(ky) defines the unique symmetric and n-additive mapping a :
Mn → B for which

∥∥g(x, . . . ,xn) – a(x, . . . ,xn)
∥∥ ≤ δ

 – r
‖x‖r · · · ‖xn‖r , x, . . . ,xn ∈ M,

and m := a∗ is the unique n-monomial that satisfies the inequality

∥∥g(x, . . . ,x) –m(x)
∥∥ ≤ δ

 – r
‖x‖nr , x ∈M.

Proof It is sufficient to remark that (ϕn+,Rnϕn+) ∈ D+
n , rnϕn+(x, . . . ,xn) = n(–n(r–))

–r– ×
δ‖x‖r · · · ‖xn‖r , and Rnϕn+ = –n

–n(r–) rnϕn+. �

4 Stability of the equation Dnp = 0
The recurrence Dk = Dk ◦ Dk–, k = , , . . . , is an essential tool in this section. First we
complete Theorem ..

Theorem . The function p :M → B is an n-polynomial if and only if Dnp = .

Proof If p is an n-polynomial then for any j ∈ {, . . . ,n} there exists a j-monomialmj :M →
B such that p =m +m + · · ·+mn. Then, for all x, y ∈M we have�

j
ymj(x) = (j!)mj(y), hence

�
j+
y mj(x) = �

j
ymj(x + y) – �

j
ymj(x) = , j ∈ {, . . . ,n}. Therefore �n+

y p(x) = , x, y ∈ M.
From Theorem . it follows that �x ◦ · · · ◦ �xn+p() = , x, . . . ,xn+ ∈ M, or, equiva-
lently, Dnp = .
Conversely, suppose that Dnp = . Then

[
Dn

(
Dn–p

)]
(z) = , z ∈Mn+,

hence the symmetric function Dn–p is n-additive. From Theorem . it follows thatmn :=
(Dn–p)∗ is an n-monomial and Dn–mn = (n!)Dn–p. Therefore

Dn–
(
p –


n!
mn

)
= ;

analogously (for n > ),mn– := (Dn–(p – 
n!mn))∗ is an (n – )-monomial and

Dn–
(
p –


n!
mn –


(n – )!

mn–

)
= .

By recurrence we finally obtain D(p – 
n!mn – · · · – 

!m) = , where

mj =
(
Dj

(
p –


n!
mn –


(n – )!

mn– – · · · – 
(j + )!

mj+

))∗

http://www.advancesindifferenceequations.com/content/2014/1/16
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is a j-monomial for j = n – ,n – , . . . , . But D(p – 
n!mn – 

(n–)!mn– – · · · – 
!m)(x) =

p(x) – 
n!mn(x) – 

(n–)!mn–(x) – · · · – 
!m(x) – p() = , x ∈ M and m(x) := p() defines a

-monomial. Consequently p =
∑n

j=

j!mj and, therefore, p is an n-polynomial. �

The central idea in justifying the fact that a pair (ϕ,�) is a stability couple for equation
(.) is the existence of a stability chain (ϕn+,ϕn, . . . ,ϕ) between the mappings ϕ and �.

Definition . We say that (ϕn+,ϕn, . . . ,ϕ) is a stability chain between the functions ϕ :
Mn+ → [,∞) and� :M → [,∞) if (ϕi+,ϕi) is a stability couple for the equationDia = ,
i ∈ {, , . . . ,n}, ϕn+ = ϕ onMn+, and ϕ =� onM \ {}.

Remark Theorem . provides stability chains: if (ϕi+,ϕi) ∈ D+
i for all i ∈ {, . . . ,n}, then

(ϕn+,ϕn, . . . ,ϕ) is a stability chain between the ϕn+ and ϕ.

Stability chains provide stability couples for equation (.).

Theorem . If there exists a stability chain between ϕ : Mn+ → [,∞) and � : M →
[,∞), then (ϕ,�) is a stability couple for equation (.).

Proof Let (ϕn+,ϕn, . . . ,ϕ) be a stability chain between the functions ϕ = ϕn+ and �. Let
also f :M → B be a mapping such that ‖Dnf (z)‖ ≤ ϕ(z), z ∈ Mn+. Since Dn = Dn ◦ Dn–,
we have

∥∥[
Dn

(
Dn–f

)]
(z)

∥∥ ≤ ϕn+(z), z ∈Mn+.

Because (ϕn+,ϕn) is a stability couple for equation (.) andDn–f :Mn → B is a symmetric
mapping, it follows that there is a symmetric and n-additive mapping an :Mn → B, such
that ‖Dn–f (y)–an(y)‖ ≤ ϕn(y), y ∈Mn. According toTheorem.we haveDn–a∗

n = (n!)an,
hence∥∥∥∥[

Dn–
(
f –


n!
a∗
n

)]
(y)

∥∥∥∥ ≤ ϕn(y), y ∈Mn.

By reverse induction we finally obtain∥∥∥∥[
D

(
f –


n!
a∗
n –


(n – )!

a∗
n– – · · · – a∗



)]
(x)

∥∥∥∥ ≤ ϕ(x), x ∈ M,

hence∥∥∥∥f (x) – f () – a∗
 (x) – · · · – 

n!
a∗
n(x)

∥∥∥∥ ≤ �(x), x ∈ M,

where aj :Mk → B is a symmetric and j-additive mapping, j ∈ {, . . . ,n}. According to The-
orem ., p := f () + a∗

 + · · · + 
n!a

∗
n is an n-polynomial, and, from Theorem ., it follows

that Dnp = . Consequently, (ϕ,�) is a stability couple for equation (.). �

The following theorem provides a technique of building strong stability couples for
equation (.) and is the main result of this section.

http://www.advancesindifferenceequations.com/content/2014/1/16
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Theorem . Suppose that (ϕi+,ϕi) ∈ D+
i for all i ∈ {, . . . ,n}, �(x) = ϕ(x) for all x ∈ M \

{}, and �() = . If f :M → B is a function satisfying

∥∥Dnf (z)
∥∥ ≤ ϕn+(z), z ∈Mn+, (.)

then there exists a unique n-polynomial p :M → B such that

∥∥f (x) – p(x)
∥∥ ≤ �(x), x ∈M. (.)

Moreover, p =:
∑n

j=

j!mj, where mj is a j-monomial for any j ∈ {, . . . ,n}, m(x) := f (),

and the monomials mj, j ∈ {, . . . ,n}, can be obtained by recurrence: let fn := f ; then, for
j = n,n – , . . . , , we have the alternative

mj(x) := lim
k→∞

–kjDj–fj
(
kx, . . . , kx

)
, or mj(x) := (j!) lim

k→∞
–kjfj

(
kx

)
,

and fj– := fj –

j!
mj.

(.)

Proof Since (ϕi+,ϕi) ∈ D+
i , i ∈ {, . . . ,n}, from Theorem . and Theorem . it follows

that (ϕn+,ϕn, . . . ,ϕ) is a stability chain between ϕn+ and �, the pair (ϕ,�) is a stability
couple for equation (.), and there exists an n-polynomial p satisfying (.).
We successively apply Theorem . and Theorem . (as in the proof of Theorem .)

for justifying procedure (.). From (.) we have

∥∥[
Dn

(
Dn–fn

)]
(z)

∥∥ ≤ ϕn+(z), z ∈Mn+.

Since (ϕn+,ϕn) ∈D+
n , from Theorem . it follows that

mn(x) := lim
k→∞

–knDn–fn
(
kx, . . . , kx

)
defines an n-monomial satisfying the inequality

∥∥Dn–fn–(y)
∥∥ ≤ ϕn(y), y ∈Mn,

where fn– := fn – 
n!mn. Analogously, (ϕn,ϕn–) ∈ D+

n– (if n > ) and, from Theorem ., it
follows that

mn–(x) := lim
k→∞

–k(n–)Dn–fn–
(
kx, . . . , kx

)
defines an (n – )-monomial satisfying the inequality

∥∥Dn–fn–(y)
∥∥ ≤ ϕn–(y), y ∈Mn–,

where fn– := fn– – 
(n–)!mn–. By recurrence, we finally find that

m(x) := lim
k→∞

–kDf
(
kx

)

http://www.advancesindifferenceequations.com/content/2014/1/16
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defines an additive function such that

∥∥Df(x)
∥∥ =

∥∥f(x) – f()
∥∥ ≤ ϕ(x), x ∈M,

where f := f –m. Since fj– = fj – 
j!mj, j ∈ {, . . . ,n} it follows that f = f –

∑n
j=


j!mj and

f() = f (). Therefore the above inequality becomes

∥∥f (x) – p(x)
∥∥ ≤ ϕ(x), x ∈ M.

From ϕ(x) = �(x) for x �=  and �() =  it follows that (.) is satisfied for the n-
polynomial p =

∑n
j=


j!mj, where mj(x) = limk→∞ –kjDj–fj(kx, . . . , kx), j ∈ {, . . . ,n} and

m(x) = f (), x ∈M.
We prove now by reverse induction that∥∥∥∥∥fj(x) –

j∑
i=


i!
mi(x)

∥∥∥∥∥ ≤ �(x), and mj(x) = (j!) lim
k→∞

–kjfj
(
kx

)
, (.)

for x ∈M and j = n, . . . , . Let x ∈M. Sincemj is a j-monomial and (ϕ,ϕ) ∈D+
 we have

mj
(
kx

)
= kjmj(x), and lim

k→∞
–jk�

(
kx

)
= , j = n, . . . , . (.)

We prove relations (.) for j = n. First, we remark that inequality (.) becomes∥∥∥∥∥fn(x) –
n∑
i=


i!
mi(x)

∥∥∥∥∥ ≤ �(x).

Replacing here x by kx, multiplying both members of this inequality by –kn and taking
into account relations (.), we obtain∥∥∥∥∥–knfn(kx) –

n∑
i=

–k(n–i)

i!
mi(x)

∥∥∥∥∥ ≤ –kn�
(
kx

) → , as k → ∞,

hence limk→∞ –knfn(kx) = 
n!mn(x), and (.) is proved for j = n.

Since fn– = fn – 
n!mn, (.) becomes∥∥∥∥∥fn–(x) –

n–∑
i=


i!
mi(x)

∥∥∥∥∥ ≤ �(x).

By recurrence, we finally obtain ‖f(x) –m(x) –m(x)‖ ≤ �(x), hence

∥∥–kf(kx) – –km(x) –m(x)
∥∥ ≤ –k�

(
kx

) → , as k → ∞.

Thereforem(x) = limk→∞ –kf(kx) and the alternative is completely proved.
We have yet to show that the only n-polynomial satisfying (.) is p =

∑n
j=


j!mj. Suppose

that m′
j is a j-polynomial, j ∈ {, . . . ,n}, and p′ =

∑n
j=m′

j verifies (.), i.e. ‖f (x) – p′(x)‖ ≤
�(x), x ∈M. It follows immediately that

∥∥p(x) – p′(x)
∥∥ ≤ �(x), x ∈M.
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Putting here x = , we obtain m =m′
 and thus∥∥∥∥∥

n∑
j=

[

j!
mj(x) –m′

j(x)
]∥∥∥∥∥ ≤ �(x), x ∈M.

Again, replacing here x by kx and multiplying both members of this inequality by –kn,
we obtain∥∥∥∥∥ 

n!
mn(x) –m′

n(x) –
n–∑
j=

–k(n–j)
[

j!
mj(x) –m′

j(x)
]∥∥∥∥∥ ≤ –kn�

(
kx

) → 

as k → ∞, namelym′
n =


n!mn, and inequality ‖p(x) – p′(x)‖ ≤ �(x) becomes

∥∥∥∥∥
n–∑
j=

[

j!
mj(x) –m′

j(x)
]∥∥∥∥∥ ≤ �(x).

By reverse induction, we obtain m′
j =


j!mj for j = n,n – , . . . , . So p′ = p and the theorem

is proved. �

Remark The condition �() =  imposed in the previous theorem is needed to ensure
the uniqueness of the -monomial m. In fact, as Dnf () = , we can consider, without
affecting the generality, ϕn+() =  in inequality (.).

The following consequence provides a class of strong stability couples for equation (.),
and a technique for building stability chains.

Corollary . Let ϕ : Mn+ → [,∞) be a mapping such that
∑∞

k= –(k+)ϕ(kz) < ∞,
z ∈Mn+. Then for all functions � :M → [,∞) for which

�(x)≥ R · · ·Rnϕ(x), lim
k→∞

–k�
(
kx

)
= , x ∈ M \ {} and �() = ,

the pairs (ϕ,�) are strong stability couples for equation (.).Moreover, if ϕn+ := ϕ and f :
M → B is a function satisfying (.), then procedure (.) defines the unique n-polynomial
p that verifies (.).

Proof We successively apply Lemma .. Let ϕ(z) :=
∑∞

k= –(k+)ϕ(kz). Then
limk→∞ –kϕ(kz) = . Because Rnϕ(y) ≤ rnϕ(y), y ∈ Mn, it follows that (ϕ,Rnϕ) ∈ D+

n . By
reverse induction, we obtain

RjRj+ · · ·Rnϕ(y) ≤ rjrj+ · · · rnϕ(y), lim
k→∞

–kRj · · ·Rnϕ
(
ky

)
= , y ∈ Mj

and

(Rj+ · · ·Rnϕ,Rj · · ·Rnϕ) ∈D+
j , for j = n – ,n – , . . . , .

Since (R · · ·Rnϕ,R · · ·Rnϕ) ∈ D+
 it follows immediately that (R · · ·Rnϕ,�) ∈ D+

 and
from Theorem ., we obtain the conclusion. �
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The following consequence is a stability result for equation (.) in the sense of Hyers-
Ulam.

Corollary . Let δ > . If f :M → B is a function such that

∥∥Dnf (z)
∥∥ ≤ δ, z ∈Mn+,

then procedure (.) gives the unique n-polynomial p satisfying the condition

∥∥f (x) – p(x)
∥∥ ≤ �(x),

where �(x) := δ, for x ∈M \ {} and �() := .

Proof Let ϕ(z) = δ, z ∈ Mn+. Then rnϕ(y) = (n–)δ, andRnϕ(y) = δ, y ∈Mn. By recurrence
we obtain R · · ·Rnϕ = δ, and, from the previous corollary, we obtain the conclusion. �

The functional equation (.) is stable in the Aoki-Rassias sense, as can be seen from the
following corollary.

Corollary . Let M be a normed space, r ∈ (, ) and δ > . If f ∈ BM and

∥∥Dnf (x, . . . ,xn+)
∥∥ ≤ δ

(‖x‖r + · · · + ‖xn+‖r
)
, x, . . . ,xn+ ∈M,

then there exists a unique n-polynomial p =
∑n

j=

j!mj such that

∥∥f (x) – p(x)
∥∥ ≤ nδ

( n∏
i=

i – 
i – r

)
‖x‖r , x ∈M.

The j-monomial mj, j ∈ {, . . . ,n} is given in (.), and m(x) = f (), x ∈M.

Proof Let ϕ(x, . . . ,xn+) := δ(‖x‖r + · · ·+‖xn+‖r) and �(x) := nδ(
∏n

i=
i–
i–r )‖x‖r . Accord-

ing to Corollary ., it is sufficient to show that R · · ·Rnϕ(x) ≤ �(x), x ∈ M. It is straight-
forward to verify that

rnϕ(x, . . . ,xn) ≤ δ
(
n – 

)(‖x‖r + · · · + ‖xn‖r
)
.

Therefore

Rnϕ(x, . . . ,xn) ≤ δ
n – 
n – r

(‖x‖r + · · · + ‖xn‖r
)
, x, . . . ,xn ∈ M

and, by recurrence, we finally obtain R · · ·Rnϕ(x)≤ �(x), x ∈M. �

5 Stability of the equation�n+1p = 0
Further, we use the following conventions:
• M is a uniquely (n + )!-divisible and commutative group. If y ∈ M and
k ∈ {, . . . ,n + } we denote by 

k y the unique solution of the equation kx = y.
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• Let s ∈ {, . . . ,n + }, and let π : {, . . . ,n + } → {, . . . ,n + } \ {s} be a bijection. For
any z = (z, . . . , zn+) ∈ Mn+, the linear system

xj + π (j)yj = , xj + syj = zj, for j ∈ {, . . . ,n + } (.)

with the unknowns x = (x, . . . ,xn+), y = (y, . . . , yn+) ∈Mn+ has a unique solution
denoted by x(z), y(z).

• If ψ :M ×M → [,∞) is a function, s ∈ {, . . . ,n + }, and
π : {, . . . ,n + } → {, . . . ,n + } \ {s} is a bijection, then ψ :Mn+ ×Mn+ → [,∞) is
the mapping defined by

ψ
(
(x, . . . ,xn+), (y, . . . , yn+)

)
:=

∑
ε,...,εn+=

ψ(εx + · · ·+ εn+xn+, εy + · · ·+ εn+yn+)

and ψ s
π :Mn+ → [,∞) is the function defined by

ψ s
π (z) :=

(n+
s

)ψ
(
x(z), y(z)

)
.

The following lemma establishes a fundamental connection between the behavior of the
operators �n+ and Dn.

Lemma . Let s ∈ {, . . . ,n + }, π : {, . . . ,n + } → {, . . . ,n + } \ {s} be a bijection, let
ψ :M ×M → [,∞) be a mapping and let f :M → B be a function satisfying

∥∥�n+
y f (x)

∥∥ ≤ ψ(x, y), x, y ∈M. (.)

Then

∥∥Dnf (z)
∥∥ ≤ ψ s

π (z), z ∈Mn+.

Proof The central idea of this proof is to work with the operator �n+ in the direct prod-
uctMn+. Let x = (x, . . . ,xn+), y = (y, . . . , yn+) ∈ Mn+. Then

(
�n+

y Dnf
)
(x)

=
n+∑
j=

(–)n+–j
(
n + 
j

)
Dnf (x + jy)

=
n+∑
j=

(–)n+–j
(
n + 
j

)

·
∑

ε,...,εn+=

(–)n+–(ε+···+εn+)f
(
εx + · · · + εn+xn+ + j(εy + · · · + εn+yn+)

)

=
∑

ε,...,εn+=

(–)n+–(ε+···+εn+)�n+
εy+···+εn+yn+ f (εx + · · · + εn+xn+).
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Dăianu Advances in Difference Equations 2014, 2014:16 Page 15 of 19
http://www.advancesindifferenceequations.com/content/2014/1/16

From this, using the triangle inequality, hypothesis (.), and the definition of ψ , we
obtain ‖(�n+

y Dnf )(x)‖ ≤ ψ(x, y), x, y ∈Mn+, or, equivalently,

∥∥∥∥∥
n+∑
j=

(–)n+–j
(
n + 
j

)
Dnf (x + jy)

∥∥∥∥∥ ≤ ψ(x, y), x, y ∈Mn+.

Since Dnf (x, . . . ,xn, ) = �x ◦ · · · ◦ �xn (f () – f ()) =  for all x, . . . ,xn ∈ M, it follows
immediately that, for all z ∈Mn+, we have

Dnf
(
x(z) + sy(z)

)
=Dnf (z) and Dnf

(
x(z) + π (j)y(z)

)
= 

for all j ∈ {, . . . ,n + }, where x(z), y(z) is the solution of system (.); consequently, for
x = x(z) and y = y(z) in the previous inequality, we obtain ‖Dnf (z)‖ ≤ ψ s

π (z), z ∈Mn+. �

The stability couples of equation (.) provide stability couples for equation (.): from
Theorem ., Theorem ., and the previous lemma we obtain the following stability re-
sult.

Theorem . Let s ∈ {, . . . ,n + }, π : {, . . . ,n + } → {, . . . ,n + } \ {s} be a bijection,
let ψ :M × M → [,∞) be a mapping, and let (ϕn+,�) be a (strong) stability couple for
equation (.) such that

ψ s
π (z) ≤ ϕn+(z), z ∈Mn+.

Then (ψ ,�) is a (strong) stability couple for equation (.). If, in addition, the pair (ϕn+,�)
verifies the conditions of Theorem . and f :M → B is a mapping that satisfies (.), then
procedure (.) gives the unique n-polynomial p that verifies (.).

The consequences of Theorem . and the previous theorem provide specific classes of
strong stability couples for Fréchet’s second functional equation as follows.

Corollary . Let s ∈ {, . . . ,n + }, π : {, . . . ,n + } → {, . . . ,n + } \ {s} be a bijection, let
ψ :M ×M → [,∞) be a function such that

∞∑
k=

–kψ
(
kx, ky

)
<∞, x, y ∈M

and let � :M → [,∞) be a mapping satisfying the conditions

�() = , �(x)≥ R · · ·Rnψ
s
π (x) and lim

k→∞
–k�

(
kx

)
= 

for all x ∈ M. If f : M → B satisfies (.), then there exists a unique n-polynomial p for
which

∥∥f (x) – p(x)
∥∥ ≤ �(x), x ∈M,

and the monomial components of p can be calculated with procedure (.).
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Proof It is sufficient to note that
∑∞

k= –kψ s
π (kz) < ∞, z ∈ Mn+, and that we can apply

Corollary . for ϕ =ψ s
π . �

Applying Corollary ., we obtain an improvement of Theorem ..

Corollary . If ε >  and f :M → B verifies the inequality

∥∥�n+
y f (x)

∥∥ ≤ ε, x, y ∈ M,

then there exists a unique n-polynomial p that satisfies the inequality

∥∥f (x) – p(x)
∥∥ ≤ �(x), x ∈M,

where �(x) = εn+/ sup
(n+

j
)
, for x ∈ M \ {} and �() = . The monomial components of

p can be calculated with procedure (.).

Proof Let s = [n/] +  and π : {, . . . ,n + } → {, . . . ,n + } \ {s} defined by π (j) = j if j ∈
{, . . . ,n+}\{s} andπ (s) = . Then

(n+
s

)
= sup

(n+
j
)
. Definingψ(x, y) := ε, we haveψ(x, y) =

ε[ +
(n+


)
+ · · · + (n+

n+
)
] = εn+, x, y ∈ Mn+, and ψ s

π (z) = εn+/ sup
(n+

j
)
, z ∈ Mn+. From

Corollary . it follows that (ψ s
π ,�) is a strong stability couple for equation (.); hence,

from Theorem ., it follows that (ψ ,�) is a strong stability couple for equation (.) and
that procedure (.) can be applied in this case. �

The flexibility of working with stability couples is illustrated by the following Aoki-
Rassias type result.

Corollary . Let M be a rational and normed vector space, r ∈ (, ), and ε > . If f :
M → B is a function satisfying

∥∥�n+
y f (x)

∥∥ ≤ ε
(‖x‖r + ‖y‖r), x, y ∈ M,

then procedure (.) defines the unique n-polynomial p :M → B for which

∥∥f (x) – p(x)
∥∥ ≤ n+ε

( n∏
i=

i – 
i – r

)
‖x‖r , x ∈M. (.)

Proof Let s = , π (j) = j, j ∈ {, . . . ,n+} and ψ(x, y) := ε(‖x‖r +‖y‖r). Then ψ((x, . . . ,xn+),
(y, . . . , yn+)) ≤ n+ε[(‖x‖r + · · ·+‖xn+‖r)+(‖y‖r + · · ·+‖yn+‖)r] for all x, . . . ,xn+, y, . . . ,
yn+ ∈ M. Let z = (z, . . . , zn+) ∈Mn+. The system (.) has the solution

x(z) = z, y(z) =
(
–z, –



z, . . . , –


n
zn, –


n + 

zn+
)
.

Therefore,

ψ s
π (z, . . . , zn+) ≤ n+ε

(‖z‖r + · · · + ‖zn+‖
)r .
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Applying Theorem . for ϕn+(z) =: n+ε(‖z‖r + · · · + ‖zn+‖)r , and Corollary . for δ =
n+ε, it follows that procedure (.) gives the unique n-polynomial p that satisfies (.).

�

Finally, we give a stability theorem for the monomial equation (.) (see [, –] for
other approaches).

Theorem . Let s ∈ {, . . . ,n + }, π : {, . . . ,n + } → {, . . . ,n + } \ {s} be a bijection, let
ψ :M ×M → [,∞) be a function so that

∞∑
k=

–knψ
(
kx, ky

)
< ∞, x, y ∈M,

and ψ̃(x, y) := ψ(x + y, y) +ψ(x, y). If g :M → B is a mapping such that

∥∥�n
y g(x) – (n!)g(y)

∥∥ ≤ ψ(x, y), x, y ∈M (.)

then there exists a unique n-monomial m :M → B that verifies the inequality

∥∥g(y) –m(y)
∥∥ ≤ 

n!
[
ψ(, y) + Rnψ̃

s
π (y, . . . , y)

]
, y ∈M. (.)

The n-monomial m is given by m(y) := limk→∞ –kng(ky).

Proof Let us first note that from
∑∞

k= –knψ(kx, ky) < ∞, x, y ∈M it follows that

∞∑
k=

–knψ̃ s
π

(
kz

)
<∞, z ∈Mn+,

and fromLemma . it follows that (ψ̃ s
π ,Rnψ̃

s
π ) ∈D+

n . For all x, y ∈Mwehave ‖�n+
y g(x)‖ ≤

‖�n
y g(x + y) – (n!)g(y) – (�n

y g(x) – (n!)g(y))‖ ≤ ψ̃(x, y); hence, from Lemma . we have
‖Dng(z)‖ ≤ ψ̃ s

π (z), z ∈ Mn+, or, equivalently,

∥∥[
Dn

(
Dn–g

)]
(z)

∥∥ ≤ ψ̃ s
π (z), z ∈ Mn+.

From Theorem ., it follows that there exists a unique n-additive mapping a :Mn → B so
that ‖Dn–g(y, . . . , y) – a∗(y)‖ ≤ Rnψ̃

s
π (y, . . . , y), y ∈M, or, equivalently,

∥∥�n
y g() – a∗(y)

∥∥ ≤ Rnψ̃
s
π (y, . . . , y), y ∈M. (.)

Let m = 
n!a

∗. Then

∥∥g(y) –m(y)
∥∥ ≤

∥∥∥∥g(y) – 
n!

�n
y g()

∥∥∥∥ +

n!

∥∥�n
y g() – a∗(y)

∥∥,
and, from (.) and (.), it follows that the n-monomial m satisfies (.). But m(ky) =
nkm(y); therefore, from (.) we have for all y ∈M

∥∥–kng(ky) –m(y)
∥∥ ≤ 

n!
[
–knψ

(
, ky

)
+ –knRnψ̃

s
π

(
ky, . . . , ky

)]
. (.)
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Letting k → ∞ in (.) and taking into account that (ψ̃ s
π ,Rnψ̃

s
π ) ∈ D+

n , we obtain m(y) =
limk→∞ –kng(ky), y ∈M.
Finally, if m′ is an n-monomial that verifies (.), then ‖m(y) –m′(y)‖ ≤ ‖m(y) – g(y)‖ +

‖g(y) –m′(y)‖ ≤  
n! [ψ(, y) + Rnψ̃

s
π (y, . . . , y)]. Sincem′(ky) = nkm′(y), we have

∥∥m(y) –m′(y)
∥∥ ≤ 


n!

[
–knψ

(
, ky

)
+ –knRnψ̃

s
π

(
ky, . . . , ky

)] → 

as k → ∞. Therefore,m is the only n-monomial that satisfies (.). �

6 Future work
As future work we propose two unsolved problems.
. Suppose that (ϕi+,ϕi) ∈D+

i for all i ∈ {, . . . ,n}, α :M → [,∞) is an arbitrary
function, ϕ′

n+(x, . . . ,xn+,x) := α(x)ϕn+(x, . . . ,xn+), �(x) := α()ϕ(x) for all
x ∈M \ {}, and �() = . Then (ϕ′

n+,�) is a strong stability couple for equation (.)
(see Theorem .).

. New stability couples for equations (.), (.), (.), and (.) can be determined using
the ideas of the above theory, but replacing the operator Rn with the operator R–

n

defined by R–
nϕ := rnϕ, where ϕ :Mn+ → [,∞) is a function for which

ϕ(z) :=
∑∞

k= nkϕn+(–k–z) < ∞, z ∈Mn+, and M is a commutative -divisible
monoid (see also []).

The main results of this research paper are:
• the first proofs of generalized stability for two of the best known functional equations:
the Fréchet polynomial equations;

• a proof of the equivalence of these two equations;
• a very general iterative technique for solving the stability of polynomial equations that
can be applied to other similar problems;

• extensions and improvements of some known results of Hyers-Ulam type;
• a new technique for proving the generalized stability of the monomial equation.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
I would like to thank to the referees for careful reading of this paper and their useful comments.

Received: 4 March 2013 Accepted: 17 December 2013 Published: 15 Jan 2014

References
1. Bourgin, D: Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 57, 223-237 (1951)
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