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1 Motivation

Two of the best known functional equations for which there are no satisfactory results
as regards generalized stability in the sense of Bourgin [1] and Gavruta [2] are Fréchet’s
polynomial equations:

an(xlx“wxnﬂ) = O; K1see o3 Xptl eM (11)
see or the original equation) an
(see [3] for the original equation) and

Arp(x) =0, xyeM (1.2)

(see [4], for the original equation), where p : M — B is the unknown function, M is an
abelian monoid, B is a real (or complex) Banach space, # is a positive integer and, for any
mapping f : M — B, D"\ : M" — B is the symmetric function defined by

1
D”_lf(xl, ey X)) = Z (—1)”_(€1+"'+€”)]‘(61x1 et €4Ky). (1.3)

€150 =0

The Hyers-Ulam stability of equation (1.2) has been studied intensively. Starting with the
fundamental work of Whitney [5, 6] and Hyers [7], in 1983 Albert and Baker [8] proved
the Hyers-Ulam stability of equation (1.2) using the Hyers-Ulam stability of the equation

Agyo--0A, px)=0, xi,...,%,1,x€M (1.4)
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which is equivalent to equation (1.2) [9, 10], but apparently more restrictive than equa-
tion (1.1). The only results of generalized stability in the sense of Bourgin and Géavruta
for equation (1.2) have recently been obtained by Jun and Kim [11] and by Lee [12, 13] for
n<3.

The difficulties that arise in the proof of a criterion of the generalized stability for such
equations with differences for an arbitrary n are caused by the necessity of inventing a
recursive procedure of determining the control functions and the monomial components
of the approximated polynomial.

In this paper we eliminate these impediments with the help of two new instruments:
the stability couples - which rigorously define the concept of the stability of a functional
equation - and the stability chains - necessary for studying the stability of equation (1.1).
First we prove - through the so-called direct method (of Hyers) - a new generalized stability
theorem for multi-additive and symmetric functions in the spirit of Bourgin and Gavruta.
We use this result to justify a recursive procedure of solving the stability of equation (1.1)
and we prove the equivalence of equations (1.1), (1.2), and (1.4). We then give a general
technique of solving the stability of equation (1.2) using the stability of equation (1.1). As
a consequence, we obtain stability results of Hyers-Ulam type which extend and improve
the above mentioned results, and Aoki-Rassias type stability results for equations (1.1) and
(1.2). Finally, we give a new technique for proving the generalized stability of the monomial

equation
A;m(x) = (mYm(y), xy€M. (1.5)

2 Framework
Throughout this paper we assume: N is the set of nonnegative integers, # > 1 is an integer,
M is an abelian monoid under addition, B is a Banach space with the norm || - ||, and B¥
is the vector space of all functions from M to B.

We recall some definitions and properties of difference operators that we use in the
following sections (see for details [14] or [15]).

For y € M, the linear operators A,, A) : B¥ — B are defined by

A =fr+9)~fx),  AYE) =),

Forallx,ye Mwehave Ayo Ay = A0 A=Ay — A — A,
The nth iteration of Ay, denoted A7, verifies the identity

n

ATFG) = 31y (Z)/(x k), myeMf B

k=0

Let j € N. The function m : M — B is a j-monomial if Aém(x) = (Dm(y) for all x,y e M
(we agree that 0! = 1). If j > 1, the j-monomial m verifies the relation m(kx) = K'm(x), x € M,
keN.

We say that the mapping p : M — B is an n-polynomial if for any j € {0,...,n} there
exists a j-monomial m;: M — B such that p = mg + my + - - - + m,,.
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If g: M" — B is a symmetric function, we define D, g : M"*! — B by D,g(x1,%,) := g(x; +
x7) — g(x1) — g(xy), for n =1, and for n > 1 by

Dyg (1. s %ns1) 1= G0 oo s Xy X + Xia1) = X155 %) = X1, - X1, X
The symmetric mapping a : M" — B is n-additive if and only if
D,a(z) =0, zeM™. (2.1)

The operator D" : BM — BM" defined in equation (1.3) can be described by the differ-
ence operators as follows:

D" (x1, %) 1= Ay 00 Ay f(0),  w1,...,%, € M,f € BM.
Since D' = D; 0o D°, and for k > 1 and x;,...,%k,1 € M we have Ay 0---0 A

ANy =Ayo0---0Ay oA
it follows that

Xp_1 © Axk o

Xk wpragy — D 00 Ay 0 Ay — Ay o0 Ay 0Ay ,and

Df=DioDM', k=1,2,....

The following fundamental features of difference operators were given by Mazur and
Orlicz [9, 10] on linear spaces and extended on commutative semigroups by Djokovic¢ [15].

Theorem 2.1 If a : M" — B is a symmetric and n-additive mapping then the function
a*: M — B defined by a*(x) := a(x,...,x) is an n-monomial,

D" a*(y) = (n)a(y), yeM" and D"a*(z)=0, zeM"™.

Theorem 2.2 The function p : M — B is an n-polynomial if and only if it verifies one of
the equivalent equations (1.2) and (1.4). In these conditions, for any i € {1,...,n} there is a
symmetric and i-additive mapping a; : M' — B such that

p=ayg+aj+---+a,,
where ajj : M — B is the 0-monomial defined by ajj(x) := p(0).

The concept of Hyers-Ulam stability of a functional equation has surfaced as a conse-
quence of the first answer given by Hyers (for Cauchy’s equation on Banach spaces [16])
to a question posed by Ulam in 1940 about the stability of group morphisms. The con-
cept was extended by Aoki [17], Bourgin [1], Rassias [18], Gévruta [2] and others. Here we
consider that a functional equation is stable if it admits a nontrivial stability couple.

Definition 2.3 Let Ea(z) = 0, z € §” be a functional equation, where E: A C BS — B isa
mapping, S is a nonempty set and a € A is the unknown function. Let also ¢ : S* — [0, 00)
and @ : S — [0,00) be two mappings. The pair (¢, ®) is called a stability couple for the
functional equation Ea = 0, if for all f € A for which

IEf(@)| < ¢2), zeS”
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there exists a function a € A such that Ea = 0 and
Hf(x) - u(x)H <®kx), =xe€S.

If, in addition, a is the unique mapping with these properties, we say that (¢, ®) is a strong

stability couple.

If (¢, @) is a stability couple, ¢ is called a control function. If for any constant and positive
function ¢ there is a stability couple (¢, ®) for equation Ea = 0, we say that this equation
is stable in the Hyers-Ulam sense. If S is a normed vector space and there is a nontrivial
stability couple (¢, @) (i.e. ¢ # 0) such that the control function ¢ is defined with the help
of the norm from S, we say that the equation is stable in the Aoki-Rassias sense (see [17]
and [18] for the origin of the eponymies).

We recall only two classic stability results, reformulated in terms of stability couples.

Theorem 2.4 [2] Let G be an abelian group, ¢ : G* — B a function such that

o0
W(z):= 22_(1‘*1)(/;(2";5) <00, ze€G*
k=0

and ®(x) := V(x,x). Then the pair (¢, ) is a strong stability couple for Cauchy’s functional
equation Aya(x) —a(y) =0,x,y € G.

Theorem 2.5 [8] The functional equation (1.2) is stable in the Hyers-Ulam sense: if M is
an (n + 1)\-divisible abelian group and § > 0, then there exists a positive constant k,, such
that (8, k,0) is a stability couple for equation (1.2).

The functional characterization of the real polynomial functions of degree less than or
equal to n with the continuous solutions of equation (1.1), or of equation (1.2) - seen as
generalizations of Cauchy’s equation - was realized by M. Fréchet in [3] and [4]. Funda-
mental studies of Fréchet’s equations (1.2) and (1.4) on more general structures can be
found in [9, 10, 14, 15, 19]. Some classical works on the stability of Cauchy’s equation are
[1, 2, 16-18, 20, 21]. The stability of some particular polynomials has been studied by a
great number of authors [22]. Aoki-Rassias type theorems for equation (1.4) are given in
[23] and [24]. For some results on stability of multi-additive mappings we refer the reader
to [8, 25, 26], on stability of monomials to [8, 27-33] and on stability of other different
kinds of polynomials to [7, 8, 26, 34—44].

3 Stability of symmetric and n-additive mappings
In the proving of the generalized stability - part of the existence - the following lemma is

very useful.

Lemma 3.1 Let (by)ren be a sequence in B, let (ox)ren be a sequence in [0,00) and ¢ > 0
such that B =Y roo ¢ Lag < 0o, If ||bks1 — chill < oy for all k € N, then (c™*bp)en is a

convergent sequence and ||b — by|| < B, where b = limy_, o, ¢ *by.
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Proof According to the hypothesis it follows that
||c‘k‘1bk+1 —c by || <c g, keN.

Let j be an arbitrary positive integer. Then, by using the triangle inequality and the above

inequality, we obtain

—k-j —k —k—j —k—ji+1 —k-1
||c by —c bk” < g+ T

hence

o0
||c‘k‘7bk+,~ - c‘kbk || < Z o, keN.
i=k

Since limy_ o Zl kc ; = 0, it follows that (c*bp)reny is a Cauchy sequence. Let
b =: limy_, o, ¢ ¥ by. Then, for k = 0 and j — oo in the previous inequality, we obtain
16— boll < B. O

The following result is crucial in determining of strong stability couples for the func-
tional equations (2.1), (1.1), (1.2), and (1.5).

Lemma 3.2 Let K be a commutative semigroup, r > 0 and let ¢ : K — [0,00) be a function
such that $(x) := Y o0 27" ® Vg (2kx) < 00, x € K. Then

Jim 27*G(2"x) =0 and § 27 NG (0ky) <275 (x), x€K.
— 00
k=0

Proof For x € K we have

k-1
kll:,lgo 2—7‘/(9'5'(2]( _ 111,20 Zz r(k+i+1) (2k+l )_ llm [w(x ZZ r(j+1) (2]x):| 0

j=0
and also
00 0o 00
Z 2 (r+1) (k+1)¢(2k ) — Z Z 2*(r+1)(k+1)—r(j+1)g0(2k+jx)
k=0 k=0 j=0

00 i
:4'_4 2—r—1 Zz—r’(i+l) Zz—kw (2lx)
i=0 k=0

k+j:=i
00
1 1) —re
ZrZOI o-i- —r(i+ (21 )<2 r(p(x) -
i=

The operators r,, R,,, and the set D, defined in the following lines will play a key role in

building concrete stability couples for equations (2.1), (1.1), (1.2), and (1.5).

Page 5 of 19
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Let ¢ : M"™! — [0, c0) be a function. Then r,¢ : M" — [0, 00) is the mapping defined by
re(x1) := @(x,x1) if n =1, and, for n > 1, by

rn@(xl’ o :xn) = w(le; ooy zxn—hxnrxn) + 2‘#(2961, ey zxn—Z,xmxn—bxn—l) +oe

) -1
+ 27770201, Xy Xpp1y v+ 2 X3, %2, %2) + 270Xy X154+ 2y X2y X1, K1)

If §(2) := Y 1oy 27" KD (2kz) < 00, z € M1, then we define the mapping R,¢ : M" —
[0, 00) by

Ry := 1n@.

From Lemma 3.2 it follows that limy_, o 27%R,,¢ (2% y) =0,y € M". Therefore

o0
@ : M"™ — [0,00), ZZ‘”(k”)go(Zkz) <00,z € M™,
k=0

D%=h%¢)
¢':M" = [0,00),¢'(y) = Rug(y), and_lim 27/ (2"y) = 0,y e M”
— 00

is a nontrivial set.

Now, we are able to prove that D; is a set of strong stability couples for the functional
equation (2.1), where the operator D,, acts on the vector space of symmetric functions
from M" to B. The following theorem extends Gavruté’s result from Theorem 2.4.

Theorem 3.3 Let (¢n1,¢4) € D}, and g : M" — B be a symmetric function satisfying the

inequality
”Dng(z) ” <@gual2), ze€ M (3.1)

Then a(y) := limy_, o, 27 g(2Xy) defines the unique symmetric and n-additive function a :
M" — B such that

le6) - at)] < @u(), yeM” (32)
Moreover, m := a* is the unique n-monomial from BM for which
g, 0) = m)| < @uls,....x), xeM. (33)

Proof Lety = (x1,...,%,) € M". Putting z = (xy,...,%,-1, %4, %,) in (3.1) we get ||D,g(xy,...,
xn—lrxn;xn) | = ”g(xl; ces¥n-1, 2xn) - 2g(x1) cee 7xn)”) hence

”Dng(xl, e K1y Xy Ky ” < Q1 (X1 s K15 X X).
But g is a symmetric function; therefore

lg@y) - 2"¢)|

= || [g(ler 2x21 ey 2xn—17 2xn) - Zg(th 2x2) ey 2xn—l)xn)]
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+2[g(2%1, 2%, ., 2%, %0, 201) — 28281, 22, ., 202, Xy K1) | + -+
+ 2" (s Xt X2, 251) = 28 (X Kot - X2, %1) ] |

< [ D21, 201,50 | + 2 D210, 22 5, r) |+
+ 277 D,ug (s Xy -y 22,201, 21) |

S rn‘pn+l(x1: e 1xn)’

hence
le2y) = 2"¢®)|| < rupun(y), vy €M™
Replacing y by 2Ky we get
|g(21y) - 2"g(29) || < ruguai (2%y), keN,yem™.

Now, from Lemma 3.1 (for b := g(2%y), ¢ := 2", ax := r,0.1(2Ky) and B := @,(y) >
R, @1 (9)) it follows that (27 g(2¥y))xen is a convergent sequence in the Banach space
B, and its limit, a(y), satisfies (3.2). But g is symmetric, therefore a is a symmetric func-
tion, too. From (3.1), the definition of the set D}, and Lemma 3.2 it follows that

ok k C ok k) _
k1i>r£102 ||Dng(2 z) || < klirgoZ Pni1 (2 z) =0,

whence D,a(z) = 0, z € M™!, i.e. a is a symmetric and n-additive mapping that satisfies
(3.2) and a* is a n-monomial that satisfies (3.3).

In order to justify the uniqueness of 4, we consider the symmetric and #-additive
mapping a’ : M" — B for which |g(y) - d ()| < ¢.(y), y € M"; since for any y € M”,
a'(2Fy) = 2%/ (y), we have

kli)rglo||2_"kg(2ky) -d )| < kli)ngo 2%, (25y) =0, yeM",
it follows that a’ = a.

Finally, if m is an n-monomial that satisfies (3.3), that s, [|g(x, ..., %) —m(x)|| < @u(x,...,x),
x € M, since m(2*x) = 2 m(x), x € M, it follows that

”2_"kg(2kx, . ..,ka) -mx)| < 27, (2kx, . ..,ka) -0,
as k — oo; therefore m = a*. O
The following consequence is a stability result in the sense of Aoki-Rassias which gener-
alizes Aoki’s result from [17] and the result of Rassias from [18] (where the case n =1 was

considered).

Corollary 3.4 Let M be a linear normed space, § > 0, r € (0,1) and let ¢, : M™! —
[0,00) be defined by @ui1(x1,%2) := S([x1ll” + llx2ll”) if n = 1, and @ua(ey,...,%01) =
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Sl )™ - Nuet " Uz |” + Nl%nsa ") if 1 > 1. Suppose that g : M"* — B is a symmetric function
such that

“D”g(z) || = §0n+1(z)¢ FAS MVHI.

Then a(y) := limy_, o, 27X g(2Xy) defines the unique symmetric and n-additive mapping a :
M" — B for which

||g(x1,...,xn) —a(xl,...,xn)H < loerll” - Nall”s,  %15...,%, €M,

2-2r

and m := a* is the unique n-monomial that satisfies the inequality

”g(x,...,x)—m(x)H < lxl™, xe€M.

T 2-2r

. . n(1_on(r-1)
Proof 1t is sufficient to remark that (¢,.1, Ry@us1) € Dy 1u@ua 1., %,) = %
-n
Sllatll” - 11", and Rugpst = 2ty o O
4 Stability of the equation D"p =0
The recurrence D¥ = Dy o D¥1, k =1,2,..., is an essential tool in this section. First we

complete Theorem 2.2.
Theorem 4.1 The function p : M — B is an n-polynomial if and only if D"p = 0.

Proof 1f pisan n-polynomial then foranyj € {0, ..., n} there exists a j-monomial s : M —
Bsuch thatp = mg +m + - - - + m,. Then, for all x,y € M we have Aém/(x) = (j)m;(y), hence
A’;lmj(x) = A’}m/(x +9) — Aémj(x) =0,j€{0,...,n}. Therefore A;’*lp(x) =0,xy€M.
From Theorem 2.2 it follows that A, o---0 A, . p(0) =0, x1,...,%,.1 € M, or, equiva-
lently, D"p = 0.

Conversely, suppose that D"p = 0. Then

[D.(D"'p)](2) =0, zeM™,

hence the symmetric function D" p is n-additive. From Theorem 2.1 it follows that 11, :=
(D" p)* is an n-monomial and D" 'm,, = (n!)D"'p. Therefore

1
Dn_1 (p — ;mn) = O,

analogously (for 7 > 1), m,,_; := (D" "}(p — L m,))* is an (1 — 1)-monomial and

nl

D" —lm —;m =0
P my ™) T

By recurrence we finally obtain D°(p — %mn — = %ml) =0, where

D 1 1 1 *
mj = p—;mn—mnh—l—“'—mmﬁl
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is a j-monomial for j=n—1,n-2,...,1. But D°(p — %mn - ﬁmn_l — = %ml)(x) =
plx) — %mn(x) - ﬁmn_l(x) — = %ml(x) —p(0) =0, x € M and my(x) := p(0) defines a
0-monomial. Consequently p = Z;I:O ]l,m] and, therefore, p is an n-polynomial. d

The central idea in justifying the fact that a pair (¢, @) is a stability couple for equation
(1.1) is the existence of a stability chain (¢,+1, 9us - . -, ¢1) between the mappings ¢ and .

Definition 4.2 We say that (¢,.1, ¢, ..., 1) is a stability chain between the functions ¢ :
M"™! — [0,00) and @ : M — [0, 00) if (¢;,1, ¢;) is a stability couple for the equation D;a = 0,
ief{l,2,...,n}, @us1 =@ on M™1, and ¢; = ® on M \ {0}.

Remark Theorem 3.3 provides stability chains: if (¢;,1,¢;) € D] foralli € {1,...,n}, then
(@n+1>Pu> - - - 1) is a stability chain between the ¢,,,; and ¢;.

Stability chains provide stability couples for equation (1.1).

Theorem 4.3 If there exists a stability chain between ¢ : M — [0,00) and & : M —
[0, 00), then (¢, ®) is a stability couple for equation (1.1).

Proof Let (¢n+1,@u> -, ¢1) be a stability chain between the functions ¢ = ¢,,; and ®. Let
also f : M — B be a mapping such that | D"f(z)|| < ¢(z), z € M"*L. Since D" = D, o D"},

we have

” [Dn (Dn_lf)](z) ” <¢nal2), ze€ M
Because (¢,.:1, ¥, is a stability couple for equation (2.1) and D"~ : M" — Bis a symmetric
mapping, it follows that there is a symmetric and n-additive mapping a, : M" — B, such

that | D" (y) —a,(y) | < ¢u(¥),y € M". According to Theorem 2.1 we have D"'a* = (n!)a,,,
hence

1
[ -2z oo
By reverse induction we finally obtain

1 1

hence

<@ilx), xeM,

Hj(x)—f(O)—af(x)—-u—%a:(x) <d(x), xeM,

where a; : MK — Bisa symmetric and j-additive mapping, j € {1,...,n}. According to The-
orem2.1,p:=f(0)+aj +---+ %az is an n-polynomial, and, from Theorem 4.2, it follows

that D"p = 0. Consequently, (¢, @) is a stability couple for equation (1.1). O

The following theorem provides a technique of building strong stability couples for
equation (1.1) and is the main result of this section.
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Theorem 4.4 Suppose that (i1, ¢;) € D} forallie{1,...,n}, ®(x) = ¢i(x) for all x e M\
{0}, and ®(0) = 0. If f : M — B is a function satisfying

ID"f @) < pun(a), zeM™, (4.1)
then there exists a unique n-polynomial p : M — B such that

If(x) - p@)| < D(x), xeM. (4.2)
Moreover, p =: Z;l:o %m}-, where m; is a j-monomial for any j € {0,...,n}, mo(x) := £(0),
and the monomials mj, j € {1,...,n}, can be obtained by recurrence: let f, := f; then, for

j=nn-1,...,1, we have the alternative

m;(x) = klirgZ’ij’lﬁ(2kx,...,2kx), or mj(x):= (j!)}}iﬁn;c 279 (2%%),

1 (4.3)

and  fi_1:=f— ]—'m,

Proof Since (¢i.1,¢:) € D}, i € {1,...,n}, from Theorem 3.3 and Theorem 4.3 it follows
that (¢u41, @u> ..., ¢1) is a stability chain between ¢,,; and ®, the pair (p, ®) is a stability
couple for equation (1.1), and there exists an n-polynomial p satisfying (4.2).

We successively apply Theorem 3.3 and Theorem 2.1 (as in the proof of Theorem 4.3)
for justifying procedure (4.3). From (4.1) we have

|| [Dn (Dn71 n)](z)“ =< ‘Pn+1(Z)¢ VAS M;Hl-
Since (¢y+1, ¢4) € D;;, from Theorem 3.3 it follows that
o 1; —kn ryn—-1 k k
My, (x) := kILIEOZ D" (25, ..., 25%)
defines an #n-monomial satisfying the inequality
1D O] < 0u@),  y M,

where f,, 1 :=f, — %m,,. Analogously, (¢, 9,-1) € D;_; (if n > 1) and, from Theorem 3.3, it
follows that

My (%) = lim 2K Dpr2p (2K, ., 2%%)
—00
defines an (# — 1)-monomial satisfying the inequality

ID"2f20)| < pua (), ye M"Y,

where f,,_5 :=f,.1 — ﬁmn_l. By recurrence, we finally find that

my (x) = klggo 27kpOf (ka)
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defines an additive function such that

ID°%@)| = [fo®) - fo0)] < @1(x), xeM,

where fj := f; — m. Since fj_; = f; - }.l!mj,j €{l,...,n} it follows that fo = f — 2;1:1 },m] and
f0(0) =£(0). Therefore the above inequality becomes

If ) -p@)| <@1(x), xe€M.

From ¢;(x) = ®(x) for x # 0 and ®(0) = 0 it follows that (4.2) is satisfied for the x-
polynomial p = Z;’:o ].l!mj, where m;(x) = limg_, o 27V D71f(2%x, ..., 2%%), j € {1,...,n} and
mo(x) =£(0), x € M.

We prove now by reverse induction that

j
P,(x) Y

i=0

<®(x), and myx) = (j!)klim 279 (2kx), (4.4)
—00
forxe Mandj=n,...,1. Let x € M. Since m; is a j-monomial and (¢, ¢1) € D] we have
mj(2%) =2my(x), and  lim 270 (2%) =0, j=m,...,1. (4.5)
—00

We prove relations (4.4) for j = n. First, we remark that inequality (4.2) becomes

Pn(x)—z L)

i=0

< O(x).

Replacing here x by 2¥x, multiplying both members of this inequality by 2% and taking
into account relations (4.5), we obtain

<2 k”CD(Zk )—>0, ask— oo,

kn k k(n—i)
2 27
f ;0 3 m i(x)

hence limy_, o 2™ k"fn(ka) = mn(x) and (4.4) is proved for j = n.
Since f,.1 =fu — m,,, (4. 2) becomes

n-1
1
_ml
7!
i=0

By recurrence, we finally obtain ||f;(x) — mo(x) — m;(x)|| < ®(x), hence

< O(x).

||2’kfl (ka) — 2Ky (x) — my (%) | < 2’kCI>(2kx) — 0, ask— oo.

Therefore m1;(x) = limy_, o, 27%£;(2Fx) and the alternative is completely proved.

We have yet to show that the only #-polynomial satisfying (4.2) is p = Z;':O ll,m} Suppose
that m]’ is a j-polynomial, j € {0,...,n}, and p’ = Z;l:o m}’ verifies (4.2), i.e. ||f(x) — p'(®)] <
d(x), x € M. It follows immediately that

lp(x) - p @) <20(x), xeM.
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Putting here x = 0, we obtain m, = m; and thus

n

Z[il!mj(x) - m,’r(x)}

j=1

<2®(x), xeM.

Again, replacing here x by 2x and multiplying both members of this inequality by 27%",
we obtain

n-1
my(x) — m, (x) — 22 k(n ’)|: mj(x) — m; (x):| < 2’k”d>(2kx) -0
! S

1
n!

as k — 0o, namely m, = %mn, and inequality | p(x) — p'(x)|| < 2®(x) becomes

-1
[ mj(x) — m; x)i| <2®(x).
j=1
By reverse induction, we obtain n1; = i Lmjforj=mnmn-1,...,1.So p/ = p and the theorem
is proved. d

Remark The condition ®(0) = 0 imposed in the previous theorem is needed to ensure
the uniqueness of the 0-monomial . In fact, as D”f(0) = 0, we can consider, without
affecting the generality, ¢,,1(0) = 0 in inequality (4.1).

The following consequence provides a class of strong stability couples for equation (1.1),
and a technique for building stability chains.

Corollary 4.5 Let ¢ : M"*' — [0,00) be a mapping such that Y p-, 2~ Ve (2kz) < oo,
z € M"Y, Then for all functions ® : M — [0, 00) for which

d@) >Ry - Rup(), kli)r(r)lo2‘kd>(2kx) =0, xeM\{0} and ®(0)=0,

the pairs (¢, ) are strong stability couples for equation (1.1). Moreover, if 9,41 := ¢ and f
M — B is a function satisfying (4.1), then procedure (4.3) defines the unique n-polynomial
p that verifies (4.2).

Proof We successively apply Lemma 3.2. Let @(z) := Y o0y 2 %Vg(2%z). Then
limg_, o 27¥9(2%2) = 0. Because R,¢(y) < r,@(y), y € M", it follows that (¢, R,¢) € D;. By

reverse induction, we obtain
RjRj+1 e ’Rn‘p(y) STt rna()/)r kll>nolo 2_kRj ce Rn(p(zky) =0, ye M
and

Ris1 -+ - Ru@, Rj - - - Ryp) eD].*, forj=n-1,n-2,...,1.

Since (Ry -+ R,¢, Ry - - - R,p) € Dy it follows immediately that (Ry---R,¢, ®) € Df and
from Theorem 4.4, we obtain the conclusion. O
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The following consequence is a stability result for equation (1.1) in the sense of Hyers-
Ulam.

Corollary 4.6 Let$ >0.Iff : M — Bis a function such that
”D”f(z)” <8, zeM™,

then procedure (4.3) gives the unique n-polynomial p satisfying the condition
If (x) - px) || < (),

where ®(x) := 6, for x € M\ {0} and ®(0) := 0.

Proof Let¢(z) =8,z € M™!. Thenr,p(y) = (2" -1)8,and R,¢(y) = §,y € M". By recurrence
we obtain R; - - - R,¢ = §, and, from the previous corollary, we obtain the conclusion. [

The functional equation (1.1) is stable in the Aoki-Rassias sense, as can be seen from the
following corollary.

Corollary 4.7 Let M be a normed space, r € (0,1) and § > 0. If f € B and
|07 @ men) | < S (ol 4+ 7)1, € M,

then there exists a unique n-polynomial p = Z]’io ll,m, such that

n i

If(x) - p(x) || <278 (H%) Ixl”, xeM.

i=1
The j-monomial mj, j € {1,...,n} is given in (4.3), and my(x) = £(0), x € M.

Proof Let 9(x1, .., %u1) = 8(Ix1 " + -+ + %1 ") and D (x) := 28([ Ty 220) |xIl". Accord-
ing to Corollary 4.5, it is sufficient to show that R; - - - R,¢(x) < ®(x), x € M. It is straight-

forward to verify that

a1, %) < 28(2" = 1) () + - - + l2a").

Therefore
2" -1 r r
Rup(xy,...,%,) < 252,, o (leall” + - + lxull”)s  %1se.r 0 €M
and, by recurrence, we finally obtain R; - - - R,¢(x) < ®(x), x € M. O

5 Stability of the equation A"'p=0
Further, we use the following conventions:
+ M is a uniquely (# + 1)!-divisible and commutative group. If y € M and
ke{l,...,n+1} we denote by %y the unique solution of the equation kx = y.
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o Letse€{0,...,n+1},andletw : {1,...,n+1} = {0,...,n + 1} \ {s} be a bijection. For

any z = (z1,...,2us1) € M™1 the linear system
x5+ (j)y; =0, X +sy=z, forjel{l,...,n+1} (5.1)

with the unknowns x = (x1,...,%441),¥ = (1, .- ., Yns1) € M™*! has a unique solution
denoted by x(z), y(2).

o If Y : M x M — [0,00) is a function, s € {0,...,n + 1}, and
7:{1,...,n+1} — {0,...,n + 1} \ {s} is a bijection, then ¥ : M"*! x M"*1 — [0, 00) is
the mapping defined by

1
J((xl, e ;xn+1)’ ()'1, ee ryn+1)) = Z ¢(€1x1 to+ €11%0415 61)’1 teeet en+1yn+1)

€1)0r€p+1=0

The following lemma establishes a fundamental connection between the behavior of the
operators A"*! and D",

Lemma 5.1 Lets€{0,...,n+1}, w:{1,...,n +1} = {0,...,n + 1} \ {s} be a bijection, let
Y M x M — [0,00) be a mapping and let f : M — B be a function satisfying

|A @) <v@xy), xyeM. 52)
Then
D@ < vie), zem™.

Proof The central idea of this proof is to work with the operator A"*! in the direct prod-
uct M1 Letx = (x1,...,%41), ¥ = V15> Yne1) €M™, Then

(A;Jranf) (x)
n+l

=Y (" )i )
j=0

Ak n+1
=) (=t ( . )
2 j

1
D (AT (x4t €t + (€91 F E1Yan))

_ n+l—(e1+---+€,41) A n+1
= > ) PUAL bvepiym) (E1F1+ 0+ €1X11).
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From this, using the triangle inequality, hypothesis (5.2), and the definition of ¥r, we
obtain ||(A}*'D"f)(x)|| < ¥(x,9), x,y € M"*1, or, equivalently,

n+l

3yt (" ; 1) D'f(x+jy)

Jj=0

<V(xy), xyeM"L

Since D"f(x1,...,%,,0) = Ay, 0 --- 0 Ay (f(0) — £(0)) = O for all xy,...,x, € M, it follows
immediately that, for all z € M"*!, we have

D”f(x(z) + sy(z)) =D"f(z) and D”f(x(z) + n(j)y(z)) =0

for all j € {1,...,n + 1}, where x(z), y(2) is the solution of system (5.1); consequently, for
x = x(z) and y = y(2) in the previous inequality, we obtain | D"f(2)|| < ¥ (z),z € M™1. O

The stability couples of equation (1.1) provide stability couples for equation (1.2): from
Theorem 4.3, Theorem 4.4, and the previous lemma we obtain the following stability re-

sult.

Theorem 5.2 Let s € {0,...,n+ 1}, w : {1,...,n + 1} = {0,...,n + 1} \ {s} be a bijection,
let Y : M x M — [0,00) be a mapping, and let (¢,41, P) be a (strong) stability couple for
equation (1.1) such that

V3 (2) < @unle), zeM™.
Then (y, @) is a (strong) stability couple for equation (1.2). If, in addition, the pair (11, D)
verifies the conditions of Theorem 4.4 and f : M — B is a mapping that satisfies (5.2), then

procedure (4.3) gives the unique n-polynomial p that verifies (4.2).

The consequences of Theorem 4.4 and the previous theorem provide specific classes of
strong stability couples for Fréchet’s second functional equation as follows.

Corollary 5.3 Lets€{0,...,n+1}, 7w :{1,...,n+1} = {0,...,n + 1} \ {s} be a bijection, let
Y : M x M — [0,00) be a function such that

[e¢]
> 2ty (2kx,2ky) <00, xyeM
k=0

and let ® : M — [0, 00) be a mapping satisfying the conditions
©(0)=0, @R R () and lim 275 (2kx) =0

forall x e M. If f : M — B satisfies (5.2), then there exists a unique n-polynomial p for
which

If @) —p@)|| < @), xeM,

and the monomial components of p can be calculated with procedure (4.3).
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Proof 1t is sufficient to note that Y po, 27¥y$ (2€2) < 0o, z € M1, and that we can apply
Corollary 4.5 for ¢ = ¥3. O

Applying Corollary 4.6, we obtain an improvement of Theorem 2.5.

Corollary 5.4 Ife >0 and f : M — B verifies the inequality
A7) <e, xyeM,

then there exists a unique n-polynomial p that satisfies the inequality
[f @) - p@)| < ®(x), xeM,

where ®(x) = €2/ sup (”;1),forx € M\ {0} and ®(0) = 0. The monomial components of
p can be calculated with procedure (4.3).

Proof Lets=[n/2] +1land w : {1,...,n+1} = {0,...,n + 1} \ {s} defined by = (j) = j if j €
{1,...,n+1}\{s}and 7 (s) = 0. Then (":1) = sup (";'1) Defining v/ (x,y) := €, we have ¥ (x, ) =
€[l + ("Il) Foeet (Zﬁ)] =e2™1, x,y € M, and 5 (2) = €21/ sup (”;1), z € M. From
Corollary 4.6 it follows that (3, ®) is a strong stability couple for equation (1.1); hence,
from Theorem 5.2, it follows that (v, ®) is a strong stability couple for equation (1.2) and

that procedure (4.3) can be applied in this case. d

The flexibility of working with stability couples is illustrated by the following Aoki-

Rassias type result.

Corollary 5.5 Let M be a rational and normed vector space, r € (0,1), and € > 0. If f :
M — B is a function satisfying

| Az @) < e(lxl + Ipl7), xyeM,

then procedure (4.3) defines the unique n-polynomial p : M — B for which

202"
i=1

[f @) - pa)| < 4"*16(1_[ A )nxn’, xeM. (5.3)

Proof Lets=0,7(j) =j,j € {l,...,n+1}and ¥ (x,y) := €(||lx||" + [[y]|"). Then ¥ ((x1, ..., %u.1),

01 yne1) < 27 e[l + -+ (e 1)+ Uyl + - -+ 1Y )] forall e, ., X1, Y15 - - -
Yui1 €EM. Let z=(z1,...,2,51) € M™L. The system (5.1) has the solution

1 1 1
x(z) = z, y(z) = B A e T Y
Therefore,

r

2
V(21,0 2a) <27 %(lzll + - + 2 )
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Applying Theorem 5.2 for ¢,,,1(2) =: 2" %€ (||z1||" + - - + [|Zns1]l)’", and Corollary 4.7 for § =
2"+2¢, it follows that procedure (4.3) gives the unique z-polynomial p that satisfies (5.3).
|

Finally, we give a stability theorem for the monomial equation (1.5) (see [8, 27-33] for
other approaches).

Theorem 5.6 Letse {0,...,n+1}, w:{1,...,n+1} > {0,...,n + 1} \ {s} be a bijection, let
Y M x M — [0,00) be a function so that

Z 2_1‘”1p(2kx, Zky) <00, X%y€M,
k=0
and J(x,y) =Y+, +¥xy). Ifg: M — B is a mapping such that
|Argx) - (g | < ¥ (x9), xyeM (5.4)

then there exists a unique n-monomial m : M — B that verifies the inequality

1 ~
lg®) =m)] < —[W(©O.) + R 0r-09)], yEM. (5.5)
The n-monomial m is given by m(y) := limy_, o 2% g(25y).
Proof Let us first note that from Z;ﬁo 2”“‘1//(2/%, 2k y) < 00, %,y € M it follows that
oo
> 2k (2kz) <00, zeM™,
k=0

and from Lemma 3.2 it follows that (NfT R, @;) € D;.Forallx,y € M wehave || A;’*lg(x) | <
IIAJ’,’g(x + y)N— (n"g(y) - (A;’g(x) - (Mgl < J(x,y); hence, from Lemma 5.1 we have
D"g(2)|| < ¥S(2), z € M"*1, or, equivalently,

(DP9 < Fete), zear,

From Theorem 3.3, it follows that there exists a unique n-additive mapping a : M" — B so
that | D" g(y,...,y) —a*(®)| < R,,IZ; o, ...,¥), ¥y € M, or, equivalently,

| A1g(0) —a* ()| <RV (,...00), yEM. (5.6)

Let m = #u*. Then

1 1
lg®) - m)| < |g0) - - A72(0)] + = || A}g(0) - a*(»)
n! n!

’

and, from (5.4) and (5.6), it follows that the #-monomial # satisfies (5.5). But m(2*y) =
28 m(y); therefore, from (5.5) we have for all y € M

1 ~
[27¢(2%9) = mO)| < —[27w (0,2') + 27" Ru¥; (29, 2') . (5.7)
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Letting kK — oo in (5.7) and taking into account that (J;,R,,,J;) € D}, we obtain m(y) =
limy_, o 27%"g(2%y), y € M.

Finally, if »’ is an n-monomial that verifies (5.5), then ||m(y) — m' ()| < [lm(y) —gW) || +
lg®) = m Ol <25 1¥(0,9) + RyP5 (3, 9)]. Since m'(2%y) = 2" (y), we have

1 ~
|m@y) —m' ()| < 2;[2*%(0, 2ky) + 277 R, Y5 (28, 259) ] > 0

as k — 0o. Therefore, m is the only n-monomial that satisfies (5.5). (I

6 Future work

As future work we propose two unsolved problems.

1. Suppose that (pi.1,¢:) € Df forallie{l,...,n}, a : M — [0,00) is an arbitrary

Sunction, @), (X1, ..., %11, %) 1= AX)Ppe1(X1, - . ., K1), Px) := 2 (0)1(x) for all
x € M\ {0}, and ®(0) = 0. Then (¢,,,,, P) is a strong stability couple for equation (1.4)
(see Theorem 4.4).

. New stability couples for equations (2.1), (1.1), (1.2), and (1.5) can be determined using
the ideas of the above theory, but replacing the operator R, with the operator R;,
defined by R;,¢ := r,@, where ¢ : M"1 — [0,00) is a function for which
0(2) 1= > 020 2™ 0,1 (275 12) < 00, z € M"Y, and M is a commutative 2-divisible

monoid (see also [20]).

The main results of this research paper are:

3

the first proofs of generalized stability for two of the best known functional equations:
the Fréchet polynomial equations;

a proof of the equivalence of these two equations;

a very general iterative technique for solving the stability of polynomial equations that
can be applied to other similar problems;

extensions and improvements of some known results of Hyers-Ulam type;

a new technique for proving the generalized stability of the monomial equation.
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