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Abstract 

 
Optimal sensor placement is one that maximizes the 

likelihood of identifying future damage models. Based 
on assumptions from engineers, damage models of a 
structure are simulated and their predictions are 
computed. Computational approaches are used to 
place sensors at locations that maximize the chances of 
identifying damage. This paper studies the application 
of global search for optimal sensor placement. The 
global search methodology uses stochastic sampling to 
find optimal locations for sensors. In a previous study, 
Robert-Nicoud et al. proposed a greedy strategy that 
places sensors sequentially at locations where model 
predictions have maximum entropy. Performance of 
the two strategies are compared for the Schwandbach 
bridge in Switzerland. The results show that global 
search is better for designing measurement systems on 
a previously unmonitored structure while the greedy 
algorithm is better for incremental measurement-
interpretation strategies.  
 
1. Introduction 
 

There are hundreds of ways to measure physical 
phenomena in structures and many new measurement 
technologies are emerging every year. However, 
inferring meaningful information from data remains a 
major difficulty. A systematic approach to 
interpretation of measurement data employs 
methodologies developed in the field of system 
identification [1]. System identification involves 
determining the state of a system and values of system 
parameters through comparisons of predictions with 
measurements. Once identified, models can support 
decision-making with respect to future maintenance 
and repair. Since system identification is an inverse 
problem and errors are involved in both measurement 
and modeling, many models may be able to explain the 
same measurement [2]. Therefore it is of interest to 
configure measurement systems such that maximum 

separation between candidate models can be achieved 
[3]. 

Sensors are increasingly used for tasks such as fault 
diagnosis [4] and automatic control [5]. Civil 
engineering examples are bridge diagnosis [6] and 
construction quality control [7]. The configuration of 
sensors within these systems remains a task that 
engineers perform often without systematic and 
scientific evaluation. The field of sensor configuration 
is at an early research stage and the subject of sensor 
networks is now emerging in parallel [5]. Currently, 
engineers often make ad hoc decisions related to 
location and types of sensors to be used.  

The main objective of employing sensors on 
infrastructure systems such as bridges is damage 
detection. For successful damage detection, it is 
essential that appropriate sensors are placed at 
locations such that the chances of detecting damage are 
maximized. Damage scenarios to be considered depend 
on factors such as the material, the structural system, 
boundary conditions, loads and geographical location. 
For instance, one of the piers in a bridge may not be 
functioning as a support after a flood or an earthquake. 
Combinations of different scenarios are also possible. 
Optimal sensor placement is one that gives maximum 
separation between predictions of the effects of 
damage scenarios. 

In this paper, configuring a measurement system is 
considered to be a discrete combinatorial optimization 
problem. Indeed, the number of sensors to be used as 
well as the number of possible sensor locations are 
discrete variables. The complexity of the solution is 
combinatorial since each sensor can be placed 
anywhere although only once. Robert-Nicoud et al. [8] 
suggested a greedy strategy for sensor placement that 
uses the entropy among model predictions to identify 
optimal sensor locations. In greedy algorithms, 
strategies that accept a less attractive local alternative 
for a better overall solution do not exist. Although 
finding the globally optimal solution for some 
optimization problems, greedy algorithms may find 
non optimal solutions for other problems.  
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Unlike greedy algorithms, global search algorithms 
[9-11] aim to find the best solution among all possible. 
This paper explores the role of global search in 
measurement system design using the Schwandbach 
bridge in Switzerland as a representative structure. 
Section 2 formally defines the problem of optimal 
sensor placement. The greedy algorithm and global 
search approach to find the best sensor locations are 
described. Section 3 describes the Schwandbach bridge 
that is used to illustrate the sensor placement 
algorithms. Section 4 discusses results from both 
greedy algorithm and global search. Section 5 lists the 
conclusions from the study. 
 
2. Optimal Sensor Placement 
 

Sensor-data driven decision support systems can be 
the basis of proactive management of structural 
facilities [12]. For effective decision support, it is 
essential that sensor systems are configured to measure 
responses at locations such that the measured data can 
be meaningfully interpreted. 

Robert-Nicoud et al. [13] developed a sensor 
placement methodology that consists of two key steps - 
(1) Generation of candidate models and (2) Sensor 
performance evaluation at each location. Since 
generating all possible models is combinatorial, a 
population of models is randomly generated using 
assumptions declared by the engineer. Each model is 
evaluated by finite element analysis. Its predictions pi 
at all possible sensor locations are computed and stored 
in a set M0. The number N of sampled models depends 
upon the modeling assumptions and engineer 
preferences. Thus, there are N sets of predictions p in 
M0. 

The goal of measurement system configuration is to 
place sensors at locations that offer maximum 
separability between these N model predictions. Given 
sensor configuration with s number of sensors, its 
performance is evaluated as follows. Depending upon 
the precision of the sensor and the model predictions in 
M0, a suitable number of intervals I is identified for 
classifying predictions at each potential sensor 
location. At each location i where a sensor is placed, a 
histogram with I intervals is built for the model 
predictions in M0. Each bar in the histogram represents 
the number of models whose predictions lie within the 
corresponding interval. Let Bi represent a set of subsets 
where each subset contains predictions in a bar of 
histogram at location i. Thus, B1, B2… Bs represent the 
corresponding sets obtained by evaluating histograms 

at sensor locations 1 to s. Then the maximum number 
of non-identifiable models Umax is given as the 
maximum possible size of the set B given by 

{ }1 2 3... sB b b b b= ∩ ∩ ∩  
bi represents an element of set Bi. Thus the objective of 
the optimal sensor placement problem is to minimize 
the value of Umax. The following sections describe two 
strategies to identify sensor locations that minimize 
Umax. 

 
2.1 Greedy Algorithm 
 

The greedy algorithm places a sensor at the location 
that best separates the biggest subset of model 
predictions. It does not allow for subsequent relocation 
when more sensors are added. To measure the 
separation between models, [8] uses the notion of 
entropy. Shannon's entropy function [14] is a 
mathematical representation for the uncertainty in a 
set. This expression comes from the field of 
information theory and it formulates the disorder 
within a set. In our case, a set is an ensemble of model 
predictions for a system identification task. For a 
random variable X, the entropy H(X) is given by the 
following equation. 

 
| |

1
( ) log( )

X

i i
i

H X P P
=

= − ⋅∑               (1) 

Pi are the probabilities of the |X| different possible 
values of X. For practical purposes, 0·log(0) is taken to 
be 0. The maximum of the entropy function is at P = 
0.5 when the probability is equally distributed between 
the two values. When a variable takes |X| discrete 
values, the entropy is a maximum when all values have 
the same probability log2(X). Thus entropy is a 
measure of homogeneity in a distribution. A 
completely homogenous distribution has maximum 
entropy. The entropy for a given sensor location is 
calculated for the histogram of model predictions. The 
probability Pi of an interval is the ratio of the number 
of models in the interval to the total number of models. 
At the best measurement locations, model predictions 
should have maximum variation.  

The greedy algorithm for sensor placement is 
described in the flowchart given in Figure 1. The 
algorithm iteratively chooses locations with highest 
entropy for sensor placement. The algorithm stops 
when there is no further improvement to the maximum 
number of non-identifiable models, i.e., Mmax does not 
become smaller. 
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Figure 1: Flowchart of greedy algorithm for 
sensor placement 

  
2.2 Analysis of Complexity 
 

In the greedy algorithm, previously selected sensor 
locations are not permitted to change when the next 
best sensor is determined. This is the principal 
drawback of the greedy solution. Strategies that accept 
a less attractive intermediate solution for a better 
overall solution are not allowed. A more rigorous 
approach is to test all possible configurations for 
sensor placement. If l sensors are to be placed on the 
system, all combinations of l sensors among L possible 
locations are tested. Then the computational 
complexity of the task to determine the optimal 
number of sensors and their locations is given by 

 

               
1

2 1
L

l L
L

l
C

=
= −∑                          (2) 

 
The task of placing l sensors among L possible 

locations is combinatorial and the total complexity is 
exponential as shown by Equation (2). It is obvious 
that trying all possible solutions for the measurement 
system gives the best configuration. However, as 
explained in [7] the number of possible sensor 
locations can be extremely high. This makes the 

calculation of all possible configurations infeasible. 
Therefore, a global search algorithm is used. PGSL 
[16] is chosen due to its efficiency and ease of use. 
 
2.3 Global Search (PGSL) 
 

PGSL [11, 15] is a direct search algorithm that 
employs global sampling to find the minimum of a 
user defined objective function. Gradient calculations 
are not needed and no special characteristics of the 
objective functions (such as convexity) are required. 
PGSL has been successfully applied to optimization 
problems in structural control [16] and system 
identification [13].  

Primary input to PGSL is the number of variables 
and the range of acceptable values for each variable. 
For the sensor placement problem, the number of 
decision variables is equal to the number of potential 
sensor locations. The stochastic sampling nature of 
PGSL means that it operates only on continuous 
variables. However, the variables for the sensor 
placement problem are binary decision variables 
representing the presence or absence of a sensor at 
each sensor location. To overcome this problem, each 
variable is modeled as continuous and varying between 
0 and 1 in PGSL. Consider the case when PGSL is 
used to find the optimal sensor locations for number of 
sensors equal to I. Then each solution generated by 
PGSL is interpreted as having sensors only at those 
locations corresponding to variables with the I largest 
values.   
 
3. Representative Bridge 
 

A bridge that was designed by Maillart in 1933 
(Figure 2) is used to illustrate the sensor configuration 
methodology. Still standing today, the Schwandbach 
Bridge is an early example of a deck-stiffened open-
spandrel arch and has been named by [17] “to be one 
of the two or three most beautiful concrete bridges ever 
built”.  

A set of possible sensor locations on the bridge are 
shown in Figure 3 using node numbers. Since this is a 
bridge with a short span of approximately 50 m, the 
deflections of the bridge are relatively small. 
Displacement sensors that can measure with an 
accuracy of up to 1 mm are found to be insufficient for 
system identification. However, inclinometers with 
fairly high accuracy (approximately 1 µR) are available 
and this resolution is observed to be acceptable for 
performing system identification. In the following 
section, damage scenarios that determine the location 
of the inclinometers on the bridge are explained. 
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Figure 2: Schema of the Schwandbach bridge 

 
The damage scenarios that are used in this case 

study are listed in Table 1. The scenarios are derived 
from a previous experimental study on the Z24 bridge 
in Switzerland by Maeck et al. [18]. Table 1 also lists 
the degree of damage to be simulated under each 
scenario. In this study, the bridge is modeled as a finite 
element model in ANSYS. Damage scenarios are 
simulated by appropriately changing the parameters of 
the finite element model. Candidate models are 
generated by stochastic sampling in a model space that 
consists of all combinations of the damage scenarios 
listed in Table 1. 
 
4. Results 
 

A set containing 5000 damage models of 
Schwandbach Bridge is created in order to represent 
the space of possible models. The number of possible 
sensor locations is 20 (see Figure 2 for details). The 
size of the solution space is 220 since a sensor may or 
may not be present at a given location. This space is 
sufficiently large to illustrate key aspects of the 
methodology.  
  Schwandbach Bridge is nearly symmetrical with 
respect to a center line (depicted by line X-X in Figure 
2) and the damage scenarios considered in this study 
are also symmetrical. Therefore, the sensor placement 
algorithms explicitly impose symmetry by placing a 
pair of sensors in each iteration. 

Both greedy strategy and global search are used for 
sensor placement. The number of intervals I depends 
on the sensor precision. For this simulation, I = 10. 
Table 2 shows the results obtained from the two 
strategies. For every consecutive set of sensors placed, 
the size of the biggest subset of non identifiable (non-
id.) models is given in Table 2. The global search is 
able to generate better sensor configurations than the 
greedy strategy when the number of sensors is greater 
than 1. Also while global search is able to achieve 
maximum identifiability with only 10 sensors, greedy 

strategy proposes a configuration requiring 14 sensors. 
Further reduction in the number of non-identifiable 
models would require use of new sensor types or 
inclusion of new sensor locations in the sensor 
placement strategy. 

 
Table 1: Damage scenarios considered 

 
Damage Damage limits 
Arch abutment settlement 0 – 30 cm 
Arch abutment tilt 0 – 2 o 
Deck support settlement 0 – 30 cm 
Cracks on inner girder 0 – 50% reduction 
Spalling on inner girder 0 – 50% reduction 
Spalling on outer girder 0 – 50% reduction 

 
Table 2: Comparison of greedy and global 

strategies 
 

Non-id. models # Number 
of 
sensors Greedy 

strategy 
Global 
search 

2 181 181 
4 113 111 
6 86 76 
8 80 58 
10 63 51 
12 54 51 
14 51 51 
16 51 51 

 
 
In spite of being less attractive for initial sensor 

configuration, the greedy strategy is the only option 
when making decisions related to additional 
measurements on structures that already contain 
sensors. Since civil engineering structures are often 
designed to last over a hundred years, incremental 
measurement-interpretation strategies are expected to 
be normal practice. Therefore, both configuration 
strategies are useful. 
 

Figure 3: Potential sensor locations on 
Schwandbach bridge 
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5. Conclusions 
 

The conclusions of this research are 
 

• Global search is a better option for sensor 
placement than a greedy strategy when 
configuring new measurement systems for 
structures 

• A greedy strategy is useful when 
augmenting an existing measurement 
system with additional sensors 

 
Future research in measurement system design 

involves extending sensor placement algorithms to 
accommodate multiple sensor types. The inclusion of 
model predictions corresponding to variations in 
modeling assumptions in the initial model set is being 
investigated. The effect of measurement errors and 
sensor types with different precisions is also current 
research. 
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